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1 The Reduced Wave Equation

Let v (t,x) satisfy the wave equation

∆v −
1

c2 (X)

∂2v

∂t2
= 0, (1)

where c(X) is the propagation speed at the point X. Separate variables, letting v (t,X) =
g (t)u (X). Then

c2 (X)
∆u (X)

u (X)
=

g′′ (t)

g (t)
= −ω2. (2)

So
g′′ (t) + ω2g (t) = 0 (3)

and

∆u +
ω2

c2 (X)
u = 0. (4)

Here the constant ω is the angular frequency. Equation 4 is known as the reduced wave

equation or the Helmholtz equation. Introduce a constant reference speed c0, and define
the index of refraction n(X) = c0/c(X) and the propagation constant (or wave number)
k = ω/c0. Then the reduced wave equation (4) becomes

∆u + k2n2 (X)u = 0. (5)

2 Leading order asymptotics

When n(X) is constant, the reduced wave equation has the plane wave solution

u (X,K) = z (K) einK·X. (6)

Here the propagation vector K is any constant vector such that |K| = k, and the amplitude
z (K) is a constant. In the case of n(X) not constant, the plane wave solution motivates
looking for solutions to (5) of the form

u (X) = z (X, k) eiks(X). (7)
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Here z(X, k) is the amplitude and s(X) the phase. Substituting this form into the reduced
wave equation (5) yields

−k2
[

(∇s)2 − n2
]

z + 2ik∇s · ∇z + ikz∆s + ∆z = 0. (8)

We are interested in looking at the asymptotic behavior of solutions to the reduced wave
equation (5) as k → ∞. To explore this, we suppose z (X, k) has an asymptotic expansion

of the form

z (X, k) ∼

∞
∑

m=0

zm (X) (ik)−m =

∞
∑

m=−∞

zm (X) (ik)−m , zm = 0 for m = −1,−2, ... . (9)

Here ∼ denotes asymptotic equality. The asymptotic expansion above means that for each
n ≥ 0

z(X, k) =

n
∑

m=0

zm (X) (ik)−m + o
(

k−n
)

, (10)

where the notation o (k−n) denotes a term for which limk→∞ kn|o (k−n) | = 0. Note that
an asymptotic expansion may not converge! However, by truncation of the series we get an
approximation with an error which tends to zero as k → 0. Substituting the asymptotic
expansion (9) for z(X, k) into (8) yields

∑

m

(ik)1−m
{[

(∇s)2 − n2
]

zm+1 + [2∇s · ∇zm + zm∆s] + ∆zm−1

}

∼ 0. (11)

The coefficient of each power of k must be zero. For m = −1 this gives
[

(∇s)2 − n2
]

z0 = 0, (12)

since zm = 0 for m = −1,−2, ... . Assuming z0 6= 0, this implies the eikonal equation for
the phase s,

(∇s)2 = n2 (X) . (13)

m = 0 yields the transport equation for the leading order amplitude z0,

2∇s · ∇z0 + z0∆s = 0. (14)

m = 1, 2, ... yield further transport equations for determining the other zm. We shall
concentrate on the leading order amplitude z0 in what follows. The leading order solution
z0 (X) eiks(X) is known as the geometrical optics field.

3 Phase, Wavefronts, and Rays

Surfaces of constant phase, defined by s(X) = constant, are called wavefronts. Curves
orthogonal to the wavefronts are called rays (or more generally, characteristics), and are
used to solve for s(X). We write the equation of a ray in terms of a parameter σ in the
form

X = (x1, x2, x3) = X (σ) (15)
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Orthogonality of the ray and the wavefronts implies

dxj

dσ
= λ

∂s

∂xj
, (16)

where λ(X) is an arbitrary proportionality factor, and j = 1, 2, 3. Now, dividing the above
expression by λ, differentiating with respect to σ, and using the summation convention we
have that

d

dσ

(

1

λ

dxj

dσ

)

=
d

dσ

(

∂s

∂xj

)

=
dxi

dσ

∂2s

∂xi∂xj
= λ

∂s

∂xi

∂2s

∂xi∂xj
=

λ

2

∂

∂xj

(

∂s

∂xi

∂s

∂xi

)

. (17)

Then, using the eikonal equation (13) on the right hand side we have that

1

λ

d

dσ

(

1

λ

dxj

dσ

)

=
∂

∂xj

(

n2

2

)

. (18)

Furthermore, substituting the orthogonality equation (16) into the eikonal equation (13)
yields

dxj

dσ

dxj

dσ
= λ2n2. (19)

The four equations given by (18) and (19) are known as the ray equations. The three
equations given by (18) are second order ordinary differential equations for the rays X(σ),
and (19) gives the variation of σ along the ray. The rays are determined solely by n(X)
once the initial values for (18) are specified and the arbitrary proportionality factor λ(X)
chosen.

Since λ is arbitrary, we may choose it as we please. When λ = n−1 the ray equations
become

n
d

dσ

(

n
dxj

dσ

)

=
∂

∂xj

(

n2

2

)

, (20)

dxj

dσ

dxj

dσ
= 1. (21)

(21) implies that σ is simply the arc length along the ray. When λ = 1 with σ replaced by
τ , the ray equations become

d2xj

dτ2
=

∂

∂xj

(

n2

2

)

, (22)

dxj

dτ

dxj

dτ
= n2. (23)

(22) has a natural interpretation in terms of classical mechanics, with the left hand side
being an acceleration and the right hand side being the gradient of a potential. Also, from
(21) and (23) we can see σ is related to τ by

dσ =
√

dxjdxj = ndτ. (24)

c0τ is known as the optical length along a ray.
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4 Ray solution

The eikonal equation (13) can be solved for the phase s. Using the orthogonality (16) we
have for the derivative of s along a ray

d

dσ
s[X (σ)] =

∂s

∂xj

dxj

dσ
= λ

∂s

∂xj

∂s

∂xj
= λn2. (25)

This can be integrated to give the solution for s

s[X (σ)] = s[X(σ0)] +

∫ σ

σ0

λ
[

X
(

σ′
)]

n2
[

X
(

σ′
)]

dσ′. (26)

The transport equation (14) can be solved for the leading order amplitude z0. Again
using orthogonality, we find that

∇s · ∇z0 =
∂s

∂xj

dz0

dxj
=

1

λ

dxj

dσ

dz0

dxj
=

1

λ

d

dσ
z0 [X (σ)] . (27)

Thus the transport equation (14) becomes a first order ordinary differential equation along
the ray

2

λ

dz0

dσ
+ z0∆s = 0. (28)

Given initial conditions (28) can also be integrated to solve for z0. However, there is a more
direct way to solve for z0. Note that (14) implies

∇ ·
(

z2
0∇s

)

= z0 (2∇z0 · ∇s + z0∆s) = 0. (29)

Introduce a region R bounded by a tube of rays containing the given ray, and by two
wavefronts W (σ0) and W (σ) at the points σ0 and σ of the given ray (Figure 1). Then
the gradient of the phase, ∇s, is parallel to the sides of the tube and normal to its ends.
Integrating (29) over R and using the divergence theorem yields

0 =

∫

R
∇ ·
(

z2
0∇s

)

dV =

∫

W (σ)
z2
0∇s ·Nda −

∫

W (σ0)
z2
0∇s ·Nda. (30)

Here N is a unit vector orthogonal to the wavefront and da is an element of area on the
wavefront. From the eikonal equation (13) we have that ∇s · N = n. Then, by shrinking
the tube of rays to the given ray we obtain the solution for z0 from (30)

z2
0 (σ) n (σ) da (σ) = z2

0 (σ0)n (σ0) da (σ0) . (31)

This can be written more conveniently in terms of the expansion ratio ξ (σ) with respect
to a reference point σ1 on the ray, defined by

ξ (σ) =
da (σ)

da (σ1)
. (32)
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Figure 1: Ray tube and wavefronts defining region R.

The expansion ratio measures the expansion of the cross-section of a tube of rays, and is
simply the Jacobian of the mapping by rays of W (σ1) on W (σ). (31) then becomes

z0 (σ) = z0 (σ0)

[

ξ (σ0) n (σ0)

ξ (σ) n (σ)

]1/2

. (33)

Importantly we note that the amplitude z0 (σ) varies inversely as the square root of nξ
along a ray. Thus for n constant, as rays converge the amplitude z0 increases, and as rays
diverge z0 decreases.

5 Case of Homogeneous Media

A homogeneous medium is defined as one where the propagation speed c(X), and thus
n(X) = c0/c(X), are constants. If λ = n−1, the ray equations (22) become

d2xj

dτ2
=

∂

∂xj

(

n2

2

)

= 0. (34)

(34) gives that the rays are straight lines. The equation (26) for the phase s becomes

s(σ) = s(σ0) + n(σ − σ0). (35)

To determine the amplitude z0(σ) using (33), we need to determine the expansion ratio
ξ(σ). To calculate the expansion ratio, look at two intersecting rays which form an infinites-
imal angle dθ1, as in Figure 2. Now take any two wavefronts W (0) and W (σ) intersecting
these two rays. Denote the distance between them as σ, and the distance to the intersection
point to be ρ1, the radius of curvature of W (0). Then we can calculate the infinitesimal
area ratio to be

ξ(σ) =
da(σ)

da(0)
=

(ρ1 + σ)dθ1

ρ1dθ1
=

ρ1 + σ

ρ1
, (36)
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Figure 2: Calculating the expansion ratio.

ρ1 + σ is the radius of curvature of W (σ). (36) states that the expansion ratio is just the
ratio of the radii of curvature of the two wavefronts. (33) then becomes

z0 (σ) = z0 (σ0)

[

ρ1 + σ0

ρ1 + σ

]1/2

. (37)

To use this analysis works in three dimensions, we must take twp cross sections which
slice the wavefront into its curves of maximal and minimal curvature. In 3-D this analysis
gives the expansion ratio

ξ(σ) =
(ρ1 + σ)(ρ2 + σ)

ρ1ρ2
. (38)

The 3-D analogue of (37) is

z0(σ) = z0(σ0)

[

(ρ1 + σ0)(ρ2 + σ0)

(ρ1 + σ)(ρ2 + σ)

]1/2

. (39)

6 An Initial Value Problem for the Eikonal Equation

Here we consider the solution of the eikonal equation with initial data s(x) given at x on a
manifold M , ie a point, line or surface. The eikonal equation is

(∇s)2 = n2. (40)

To make s(x) unique, we impose the condition that the solution is outgoing. Mathematically,
this condition can be expressed as

∇s ·N > 0, with N = The unit outward normal from M. (41)

Here M is the initial surface from which the solution is outgoing.

We will solve this problem using the method of characteristics. When the initial data
is given at a point p, we can define the solution, using the previous theory, on each ray
emanating from p.
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When the initial data is given on a curve C we must determine the angle at which rays
emanate. This can be done by parameterizing the curve by arc length, η. Now the initial
condition s|C = s0(η) with a parameterization X0(η) of the curve C, yields the equation
s0(η) = s(X0(η)). Differentiation yields

∇s ·
dX0

dη
=

ds0

dη
. (42)

Now we use the vector identity a · b = |a||b| cos β, where a and b are vectors and β is the
angle between them. Then (42) gives that the angle β(η) between the tangent vector dX0

dη
to the curve C and the direction ∇s of the ray is given by

cos(β(η)) =
1

|∇s|

ds0

dη
=

1

n[X0(η)]

ds0

dη
. (43)

We have now shown how to solve the initial value problem with initial data at a point
p or on a curve C in an infinite domain. Similar analysis works when initial data is given
on a surface. Next we will consider what happens when the domain has boundaries.

7 Reflection From a Boundary

In order to consider reflection from a boundary B, we must first prescribe a boundary
condition. We will take the general impedance boundary condition, with impedance Z:

∂u

∂ν
+ ikZ(X)u = 0, X on B, ν = ∇B. (44)

Notice that the limits Z → 0 and Z → ∞ yield the simpler Neumann and Dirichlet boundary
conditions. To satisfy the boundary condition (44), we must introduce a reflected wave, ur

in addition to the incident wave, ui. Here we will try the same type of expansion for ur

that we have been using for ui

ur ∼ eiksr

∞
∑

m=0

zr
m(ik)−m. (45)

Now plugging u = ur +ui into the boundary condition, we see immediately that the phases
must match on the boundary for these waves to add to zero

sr(X) = si(X), X on B. (46)

Now collecting powers of (ik) we get the following equation for the leading order amplitudes

zi
0

(

∂si

∂ν
+ Z

)

+ zr
0

(

∂sr

∂ν
+ Z

)

= 0. (47)

Thus

zr
0 = −

(

∂si

∂ν + Z
∂sr

∂ν + Z

)

zi
0. (48)

We have found the phase and amplitude of the reflected wave on the boundary. Then we
can use the previous method to construct the reflected wave.
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8 Reflection From a Parabolic Cylinder

To illustrate how this method works we will consider the example of waves reflected by a
parabolic cylinder. Physically we could envision this to be the example of waves hitting a
vertical cliff with a parabolic profile when viewed from above. Here we will consider the
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Figure 3: Reflection from a parabolic cylinder.

simple problem of an incoming plane wave eikx, with the x axis the axis of symmetry of
the parabola. We will also take a uniform bottom, so that n ≡ 1, and the cliff face to be
rigid, ∂u

∂ν = 0 for x ∈ B. Now using the fact that parabolas focus all rays to a point, we see
that the rays reflected from the boundary of the cliff will all emanate from the focus of the
parabola. Thus the wavefronts will be circles centered at the focus of the parabola (Figure
3). If we define our coordinate system with origin at the focus of the parabola, we get the
phase of the reflected wave to be

s(r) = s0 + r. (49)

Here r is the distance from the origin, as in polar coordinates. We can also determine the
reflected amplitude. Here matching the incident and reflected amplitude on the boundary
and using equation (37) give

z0(r) =

√

r0(θ)

r
. (50)

Here r = r0(θ) is the equation of the parabola. Thus we get the leading order solution to
be

u = ui + ur ∼ eikx +

√

r0(θ)

r
eik(s0+r). (51)

Similar analysis enables us to determine the higher order terms in ur.

Notes by Ben Akers and John Rudge.
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