
Lecture 2: The Role of Tidal Dissipation

and the Laplace Tidal Equations

Myrl Hendershott

1 Introduction

In this lecture we make a first attempt to describe the energetics of tides. We first provide
some discussion of their influence on the global processes of the earth by relating tidally
induced dissipation to the change in the earth’s rotation rate, and consider whether there
is any fossil evidence of such a change. We then approach this question of dissipation a
little more formally, from the perspective of an angular momentum budget of the earth-
moon system. Finally, we develop the dynamics of tides from first principles, starting with
the Navier-Stokes equations on a rotating planet and finally obtaining the Laplace tidal
equations.

2 Energetic Dissipation

We shall first consider the relationship between tidal dissipation and the rotation rate of
the earth. If we neglect the internal dynamics of the earth, regarding it as a collection of
processes that will eventually lead to dissipation, then the persistent energy of the planet
is due to rigid-body rotation, whose rate of change is

Et =
∂

∂t

(

1
2
CΩ2

)

, (1)

where C is the earth’s moment of inertia along the polar axis and Ω is the earth’s rotation
rate. The change in Ω is then given by

Ωt =
Et

CΩ
. (2)

Historically, astronomical data is used to infer Ωt, which is then used to compute Et. But
to help motivate this relationship, we would like to compare it to some sort of observational
record. For the moment, let us suppose that we have some rough estimate for the tidal
dissipation. We may then use this to demonstrate how this lead to a variation in the length
of day. Such variation could then leave an imprint in the fossil records, for example. So in
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this case, if we use the following values,[1]

Et = −4.0 × 1019 erg sec−1,

C = 8.043 × 1044 g cm2,

Ω =
2π

the sidereal period
=

2π

86164 sec

= 7.292 × 10−5 sec−1,

then we would presume that the earth’s rotation rate is currently decreasing at about

Ωt = −6.8 × 10−22 rad sec−2.

We can use this to estimate the variation in length of day (LOD),1

∆(LOD) = τ ′ − τ

= 2π

(

1

Ω′
− 1

Ω

)

,

where
Ω′ = Ω + ∆Ω ' Ω + Ωt∆t,

so that

∆(LOD) ' −
(

2π

Ω

) (

Ωt

Ω

)

∆t

= 6.9 × 10−8 sec

(3)

for ∆t = 1 day = 86400 sec. Or, in more appropriate units,

∆(LOD)/day = 2.5 msec cy−1.

As long as Ωt∆t � Ω remains a reasonably accurate statement, it should be possible to
extrapolate about the LOD over epochal times. If we take −∆t to be 400 million years, then
Ωt∆t ≈ 0.12Ω and our estimate for a constant LOD variation should be accurate within
about 10%. Then in we compare the difference between current years and 400 million years
ago, we find the following:

Today 365 days per year

400 Million Years Ago 414 days per year

Although mass factor has been neglected, this does demonstrate that there has likely been
a significant change in both the dynamical and radiation cycle of the earth. A natural
question is whether there is any evidence supporting the conjecture that the LOD was
longer in the past, and how much Ωt and Et may have varied. The fossil record offers a
possibility, since biological activity should be sensitive to rotation induced variations in the
radiation cycle; this is explored in the next section.

1The angular rotation per day is slightly greater than 2π, but the error is insignificant for our purposes.
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3 Biological Records

Several groups of organisms leave records in the skeletal parts of their accruing tissue, in the
form of sequential and repetitive layers. These layers are interpreted in growth increments,
and the sequence of layers appears to be a consequence of modulation of growth by internal
rhythms inherent to the animal and environmental conditions.

Growth patterns that are controlled by astronomical phenomena are of particular inter-
est. A comparison of frequencies found in living and fossil specimens may reveal indications
of the constancy or periodicity of certain astronomical phenomena. One of the types of
organisms that have been studied in a geophysical context is corals.

Seasonal fluctuations in the rate of coral growth were first reported by R. P. Whitefield in
1898, who described undulations on some surfaces of living corals and suggested that these
represented annual growth increments associated with seasonal water temperature changes.
However, the detailed mechanism by which growth occurs and the factors controlling the
rate of growth are still inadequately understood.

The skeletal part of corals consist of several elements, one of which, the epitheca, reveals
a fine structure of ridges that are parallel to the growing edge (figure 1). These ridges are
interpreted as growth increments and they suggest a periodic fluctuation in the rate of
calcium carbonate secretion. The rate of deposition of these growth increments in modern
reef-forming corals is believed to be daily.

An indication that the growth ridges are daily is that modern corals typically add
about 360 such increments per year, suggesting that the solar day controls the frequency of
deposition[2, 3]. Although, factors other than variable daylight may be important here in
modulating the growth rates, indirect evidence suggests that the solar day has remained the
dominant periodicity in corals studied; Devonian corals studied by Wells[2] show about 400
daily growth increments between successive seasonal annulations, in keeping with expected
value, if present tidal acceleration of the Earth has remained roughly constant over last
3–4 × 108 years. The same qualitative results can be found in molluscs and stromatolites
too.

4 Angular Momentum

The consequences of tidal dissipation can also be seen in the receding of the moon from the
earth. If we ignore the rotation of the moon and regard it as a point in space moving in a
simple circular orbit, and again focus on the rigid-body rotation of the earth, then the total
angular momentum of the earth-moon system is conserved and

∂

∂t

(

CΩ + ml2ω
)

= 0, (4)
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Figure 1: Middle Devonian coral epitheca from Michigan, U.S.A.

where m is the moon’s mass, l is the orbital radius, and ω is the orbital frequency. These
parameters currently have values of

m = 7.35 × 1025 g,

l = 3.84 × 1010 cm,

ω =
2π

27.32166 × 86400 sec
= 2.66 × 10−6 rad sec−1.

Expansion of the angular momentum equation gives

CΩt + m
(

2lωlt + l2ωt

)

= 0.

To relate the change in distance to the change in frequency, we note that since the motion
is assumed circular,

GMm

l2
= mω2l,

so that
ω2l3 = GM (Kepler’s Third Law),

and hence

ωt = −3

2

(ω

l

)

lt. (5)

We then obtain an expression for the rate at which the moon drifts from the earth,

lt = −2CΩt

mlω
. (6)
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Laser ranging of the moon tells us that

lt = 3.8 cm yr−1 = 1.2 × 10−7 cm sec−1

from which we infer that the change in the lunar cycle is

ωt = −1.25 × 10−23 rad sec−2 = −25.7′′ cy−2.

This simple estimate is in close agreement with a more sophisticated calculation by Brosche
and Sündermann, who obtained a result of −26.06′′ cy−2.[4]

From (6), we find that the rate of change of the earth’s rotation is

Ωt = −5.6 × 10−22 rad sec−1.

Based on this rotation rate, the loss of energy of the moon, from (2), is

Et = −3.3 × 1019 erg sec−1 = −3.3 TW

which, despite our idealizations, is in fairly good agreement with more sophisticated astro-
nomical calculations of 3.75 ± 0.08 TW for lunar dissipation.[5]

5 Terrestrial Coordinates and the Traditional Approxima-

tion

In this section we consider the dynamics of a shallow fluid on a rotating planet. Later sec-
tions will introduce further approximations, which will lead us to the Laplace tidal equations
(LTE) for each vertical mode.

The Navier-Stokes equations for an incompressible rotating fluid in spherical (terrestrial)
coordinates are

Dsu

Dt
−

[

2Ω +
u

r cos θ

]

v sin θ +
[

2Ω +
u

r cos θ

]

w cos θ = −
pφ

ρr cos θ
−

Φφ

r cos θ
+ X, (7a)

Dsv

Dt
+

[

2Ω +
u

r cos θ

]

u sin θ +
[v

r

]

w = −pθ

ρr
− Φθ

r
+ Y, (7b)

Dsw

Dt
−

[v

r

]

v −
[

2Ω +
u

r cos θ

]

u cos θ = −pr

ρ
− Φr + Z, (7c)

1

r cos θ
[uφ + (v cos θ)θ] +

1

r2

(

r2w
)

r
= 0, (7d)

where θ and φ are the latitude and longitude, Φ is the geopotential, and X = (X, Y, Z)
represent dissipative forces. The advective derivative, Ds

Dt
, is

Ds

Dt
=

∂

∂t
+

u

r cos θ

∂

∂φ
+

v

r

∂

∂θ
+ w

∂

∂r

and the self-gravitating potential of the earth, including centrifugal forcing, is

Φ = −GME

r
+ A(r, θ) − 1

2
Ω2r2 cos2 θ, (8)
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where A(r, θ) describes the deviation of gravitation from that of a spherical earth.
The centrifugal forcing of the earth causes the earth to deform, so that the equilibrium

shape is closer to an oblate spheroid than a perfect sphere. But since the geopotentials are
also deformed to match the shape of the earth, this tends to produce a situation that is only
a slight distortion of the purely spherical dynamics. Veronis [6] has shown that the actual
dynamics can be explicitly written as a perturbation series in terms of the ellipticity of the
earth, e, with the leading order equations corresponding to dynamics on a sphere of radius
a = 1

2
(req + rpole) and a uniform gravitational acceleration. The errors are more or less

bounded by 3
2
e ≈ 1

200
, or 0.5%, so it is generally reasonable to treat the earth as spherical

if we restrict ourselves to large-scale flows.
The full set of equations satisfy the usual conservation laws. For example, if we neglect

gravitational and dissipative forcing, the kinetic energy of a fluid parcel is balanced by the
work due to pressure,

Ds

Dt

[

u2 + v2 + w2

2

]

= −u · ∇p

ρ
(9)

and the angular momentum is balanced by the pressure torque,

Ds

Dt
[r cos θ (u + Ωr cos θ)] = −

pφ

ρ
. (10)

When integrated over the earth, both quantities are conserved.
From incompressibility

(

W
H

� U
L

)

and a shallow water aspect ratio (H � L), we expect
a scaling where W � U and that it is reasonable to neglect the centrifugal and Coriolis
forces involving w and to replace r by a. But these changes also disrupt the conservation of
energy and angular momentum unless we also neglect the centrifugal and Coriolis forces in
z. This so-called traditional approximation is not always justifiable from scale analysis for
flows of a homogeneous fluid shell , but it does produce a set of equations that is generally
consistent with terrestrial fluid flow.

After applying the traditional approximation, we have

Dsau

Dt
−

[

2Ω +
u

a cos θ

]

v sin θ = −
pφ

ρa cos θ
+ X, (11a)

Dsav

Dt
+

[

2Ω +
u

a cos θ

]

u sin θ = − pθ

ρa
+ Y, (11b)

Dsaw

Dt
= −pz

ρ
− g + Z, (11c)

1

a cos θ
(uφ + (v cos θ)θ) + wz = 0, (11d)

where z = r − a is the displacement from the earth’s surface, Dsa/Dt is the advective
derivative with r = a, and g = GME/a2 is the radial acceleration due to the (now spherical)
geopotentials.
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6 Boussinesq Approximation

Because density variations are expected to be small, it is appropriate to introduce a Boussi-
nesq approximation, where we only consider small variations from a hydrostatic basic state.
Let p0 denote the hydrostatic pressure, and also let ρ0 be the mean density and ρ0(z) the
steady state variation from ρ0. Then since u = 0 and X = 0 at equilibrium, p0 = p0(z) and

dp

dz
= − (ρ0 + ρ0) g. (12)

So if p = p0 + p′ and ρ = ρ0 + ρ0 + ρ′, then the hydrostatic balance is removed and, to
leading order in density, the equations are

Du

Dt
−

[

2Ω +
u

a cos θ

]

v sin θ = −
p′φ

ρ0a cos θ
+ X, (13a)

Dv

Dt
+

[

2Ω +
u

a cos θ

]

u sin θ = −
p′θ
ρ0a

+ Y, (13b)

Dw

Dt
= −p′z

ρ0

− g
ρ′

ρ0

+ Z, (13c)

1

a cos θ
(uφ + (v cos θ)θ) + wz = 0, (13d)

D

Dt

(

ρ0 + ρ′
)

= 0, (13e)

where the thermodynamic incompressibility equation has been written explicitly, and the
advective derivative subscript has been dropped.

Since the study of tidal dynamics focuses on the generation and propagation of grav-
itationally forced tidal waves, we will use the linearized Boussinesq equations. If we also
assume that the perturbation flow is hydrostatic, then the system of equations for freely
propagating waves is

ut − (2Ω sin θ) v = −
pφ

ρ0a cos θ
, (14a)

vt + (2Ω sin θ) u = − pθ

ρ0a
, (14b)

0 = −pz

ρ0

− g
ρ

ρ0

, (14c)

1

a cos θ
(uφ + (v cos θ)θ) + wz = 0, (14d)

ρt =
ρ0

g
N2w, (14e)

where the buoyancy frequency is

N(z) =

(

− g

ρ0

dρ0

dz

)
1

2
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and primes have been dropped. The vertical velocity w becomes a diagnostic variable that
can be computed from the density (thermodynamic) equation.

The original system was assumed to be incompressible. If we had included compressible
effects, then the only major difference under the Boussinesq approximation would be that
the buoyancy frequency is

N(z) =

(

− g

ρ0

dρ0

dz
− g2

c2

)

1

2

,

where c is the speed of sound.

7 Vertical Mode Decomposition

Under certain situations, such as in the absence of a mean flow and with flat topography, we
can decompose our solutions into a set of vertical modes, where each mode corresponds to
the flow of a shallow water fluid. This provides an interpretation that relates the stratified
continuum to a sequence of layered fluids, and isolates the barotropic waves (the unstratified
dynamics) from the baroclinic waves. The analysis here closely follows Pedlosky.[7]

For a flat bottom (at, say, z = −D∗) we can separate the variables of the problem into
a function of z and a function of horizontal and time variables so that

u = U(φ, θ, t)F (z),

v = V (φ, θ, t)F (z),

w = W (φ, θ, t)G(z),

p = ρ0gζ(φ, θ, t)F (z).

When we insert these expressions into the equations of motion, the horizontal momentum
equations become

Ut − fV = −
gζφ

a cos θ
,

Vt + fU = −gζθ

a
.

Now let us apply these forms to the continuity equation,

Uφ

a cos θ
+

(V cos θ)θ

a cos θ
= −W

Gz

F
.

All terms except the ratio
(

Gz

F

)

are independent of z while each term of this ratio is a
function only of z. The only way this can hold for every z is if both sides equal a constant.
Let us define this constant as

Gz

F
≡ 1

h
.

Then the continuity equation becomes

Uφ

a cos θ
+

(V cos θ)θ

a cos θ
+

W

h
= 0.
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Applying the separable forms to the adiabatic equation yields

ζt + W
G

Fz

N2

g
= 0,

which becomes

ζt + W
G

Gzz

N2

gh
= 0.

Again we see that because ζ and W are not functions of z the coefficient of W must be
constant. We can choose this constant to be −1 without any loss of generality (a different
constant will only change the definition of h). With this choice the adiabatic equation
becomes

ζt = W.

This choice yields an equation for G,

Gzz +
N2

gh
G = 0.

This is a homogeneous differential equation with, generally, non-constant coefficients since
N is a function of z and there is a free parameter h. The problem is not complete until the
boundary conditions are established. In order to have w vanish on z = −D∗ we must take

G(z) = 0, z = −D∗.

At the free surface with a shallow water assumption the conditions are that the free surface
displacement, which here we will call zT satisfies

w = WG(zT ) =
∂zT

∂t
.

While the total pressure is atmospheric pressure, which we will take to be a constant (zero),
thus

Ptotal = p0(zT ) + gζF (zT ) = p0(0) +
dp0

dz
zT + . . . + ρ0gζF (0).

Now keeping only linear terms let us derive the former equation with respect to time and
combine it with the linearized kinematic equation,

0 =
dp0

dz

∂zT

∂t
+ ρ0gζtF (0),

0 = −ρ0gWG(0) + ρ0gζtF (0),

ρ0gWG(0) = ρ0gζtF (0).

But, from the continuity equation we know that,

ζt = W,

thus,
G(0) = F (0) = hGz(0).
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Which means that the final condition for G is,

Gz − G/h = 0, z = 0.

Let us summarize the equations for the resulting eigenvalue problem,

Gzz + N2

gh
G = 0,

G = 0, z = −D∗,
Gz − G/h = 0, z = 0.

Using the relations between F and G we obtain as an equally valid alternative problem,

(

Fz

N2

)

z
+ 1

gh
F = 0,

Fz = 0, z = −D∗,

Fz − N2

g
F = 0, z = 0.

The advantage of the second formulation is that the eigenvalue h is not in the boundary
condition. These equations can either be solved numerical for a varying N or examined
analytically for the case of a constant N .

7.1 Vertical Modes For Constant N

Let us derive h for the case of a constant N . In this case the solution for G(z), which
satisfies the boundary condition at z = −D∗ is

G = A sin m(z + D∗), m2 ≡ N2

gh
,

where m is the vertical wavenumber of the solution. The eigenvalue relation for h is obtained
from the boundary condition at z = 0, and yields,

m cos(md) − 1

h
sin(md) = 0,

or,

tan(md) = mh =
N2

gm
,

or,

tan(md) =
N2d

g

1

md
.

We note that

N2d

g
= −

ddρ0

dz

ρ0

' ∆ρ0

ρ0

� 1.

Thus, the roots of the dispersion relation split into two classes. The first class has roots
for which md is order O(1). In that case the right hand side of the dispersion relation is
essentially zero and the solutions correspond to the zeros of the tangent function,

md = jπ, j = 1, 2, 3, . . . .
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In this approximation, there is an infinite number of roots corresponding to

m = −jπ

d
.

Therefore, from the definition of m we get,

hj = −N2d2

gj2π2
.

From this we can easily see that the modal structures are,

Gj = sin jπz
d

, j = 1, 2, 3, . . . ,

Fj = cos jπz
d

, j = 1, 2, 3, . . . .

Now let us consider the second class for which md is not of order O(1) but, rather,
md → 0. Then, the dispersion relation becomes,

tan(md) ' md =
N2d

g

1

md
.

Therefore, from the definition of m we get,

h0 = d,

which gives us the barotropic mode of zero vertical velocity with m0 � 1 due to the almost
no variation of F0 in depth.

7.2 Vertical Modes For Slowly Varying N

Instead of assuming that stratification remains constant, a more realistic assumption would
be to assume that N is slowly varying in some sense, for example if dN/dz � N/l for some
length scale l, such as the characteristic mode depth. If this remains true, then we can find
an asymptotic solution using WKB methods.

If we rescale our equation in terms of a slow variable Z = εz, then the field equation for
G is

ε2GZZ +
[N(Z/ε)]2

gDn
G = 0. (15)

Since N is approximately constant, we have a WKB solution of the form

G ∼ exp

[

1

ε
S0(Z) + S1(Z)

]

.

After substitution into the differential equation and matching powers of ε, we find that

S0(Z) = ± i√
gDn

∫ Z

−εD∗

N(Z ′/ε)dZ ′, (16a)

S1(Z) = −1

2
ln [N(Z/ε)] , (16b)
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Figure 2: The solid line is the curve for tan α and the dotted line is for α
−1. The intersection of the curves

correspond to the roots of the equation α
−1 = tan α. As α increases, we see that the roots approach α = πn.

so that G, in terms of z, becomes

G(z) ' 1
√

N(z)
exp

[

± i√
gDn

∫ z

−D∗

N(z′)dz′
]

,

where by ±, we mean that G is some linear combination of each solution.
We must now apply the boundary conditions to obtain a complete solution. From the

surface condition, G(z) = 0 at z = −D∗, we see that

G(z) ' 1
√

N(z)
sin

[

1√
gDn

∫ z

−D∗

N(z′)dz′
]

. (17)

From the upper condition, Gz −G/Dn = 0 at z = 0, and using the fact that dN/dz is small,
we find that

N

√

Dn

g
= tan

[

1√
gDn

∫ 0

−D∗

N(z′)dz′
]

. (18)

If we let αn =
√

g
N2Dn

, then solving for Dn is equivalent to solving for αn in the equation

1

αn
= tan (kαn) , (19)

where k = N
g

∫ 0

−D∗

N(z′)dz′. The solutions to this equation for k = 1 are illustrated in
figure 2. We can see that the roots correspond to αn = πn/k as n becomes large so that

Dn '

[

∫ 0

−D∗

N(z′)dz′
]2

gπ2n2
. (20)
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Although this is only formally correct for large n, the error is often small even for n = 1,
and the accuracy only improves with increasing n, so that the WKB solution can usually
be safely applied to the entire baroclinic spectrum.

8 Laplace Tidal Equations

From the above equations and the modal solution with respect to the z axis we can derive
the Laplace tidal equations,

Ut − fV = −
gζφ

a cos θ
, (21a)

Vt + fU = −gζθ

a
, (21b)

Uφ

a cos θ
+

(V cos θ)θ

a cos θ
+

W

hj
= 0, (21c)

ζt = W. (21d)

And if the two last equations are combined,

Ut − fV = −
gζφ

a cos θ
, (22a)

Vt + fU = −gζθ

a
, (22b)

ζt + hj

(

Uφ

a cos θ
+

(V cos θ)θ

a cos θ

)

= 0. (22c)

This set of equations for each mode was considered for a flat bottom and with no external
forcing. The friction and the tidal gravitational potential (TGP) can be introduced by
simply decomposing these functions into their vertical modes. But since the TGP does not
vary significantly across the shallow depth of the fluid, only the barotropic mode is excited
noticeably when the bottom is flat, despite the fact that actual observations show strong
baroclinic tides.

Although we will not discuss how to approach the full baroclinic case, we can consider
the barotropic mode over a variable topography with a weakly elastic bottom (due to the
elasticity of the earth). In this case, let D(θ, φ) describe the mean depth of a homogeneous
fluid, and δ denote the displacement of the elastic bottom. Then the equations for the
barotropic mode are generalized to

ut − (2Ω sin θ) v = −
g (ζ − Γ/g)φ

a cos θ
+

F φ

ρD
, (23a)

vt + (2Ω sin θ) u = −
g (ζ − Γ/g)θ

a
+

F θ

ρD
, (23b)

(ζt − δt) +
1

a cos θ

[

(uD)φ + (vD cos θ)
]

= 0, (23c)
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where Γ is the total tide generating potential. We will refer to these as the LTE. Note that
an equation for the dynamics of the elastic bottom must be included to fully describe the
system.

Notes by Yaron Toledo and Marshall Ward.
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