
Lecture 1: Fluid Equations

Joseph B. Keller

1 Euler Equations of Fluid Dynamics

We begin with some notation; x is position, t is time, g is the acceleration of gravity vector,
u(x,t) is velocity, ρ(x,t) is density, p(x,t) is pressure. The Euler equations of fluid dynamics
are:

ρt + ∇ · (ρu) = 0 Mass conservation (1)

ρ[ut + (u · ∇u)] = −∇p− ρg Momentum equation (2)

ρ = ρ(p, S, T ) Equation of state. (3)

Here T= temperature and S= salinity in the ocean or humidity in the atmosphere. (1)-(3)
represent five equations for five unknown functions (ρ, u, p). We assume T , S are given.

Note
(a) (1)-(3) hold in air with the ideal gas law
(b) (1)-(3) hold in water with the equation of state for water
(c) instead of (1)-(3), the equations of solid mechanics (elasticity, plasticity) hold in the
interior of the Earth
(d) certain conditions must hold at the interfaces between air and water, water and solid,
where the solutions are discontinuous

1.1 Boundary conditions

To study the motion of the water and its upper surface we assume that:
(a) the location of the bottom surface is known:

z = −h(x, y, t)
(b) the pressure in the air at the top surface is known:

pair(x, y, t) = pair[x, y, η(x, y, t), t].

At the top surface z = η(x, y, t); η is to be determined.

• Kinematic condition

At each free surface, the normal velocity u · ν of the fluid in the direction of the unit
normal ν is equal to V , the normal velocity of the surface.
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uhx + vhy + w = −ht at z = −h(x , y , t) (4)

−uηx − vηy + w = ηt at z = η(x , y , t) (5)

• Dynamic condition

At z = η(x, y, t), the pressure in the water equals the pressure in the air (ignoring sur-
face tension):

p[x, y, η(x, y, t), t] = pair(x, y, t) at z = η(x , y , t) (6)

Note
(a) one condition at the bottom where h(x, y, t) is known.
(b) two conditions at top where η(x, y, t) is unknown.

1.2 Initial conditions

ρ(x, 0) = R(x) (7)

u(x, 0) = U(x) (8)

η(x, y, 0) = N(x, y) (9)

To solve the initial boundary value problem for motion of the water we must find ρ(x, t),
u(x, t), p(x, t), η(x, y, t) satisfying (1)-(9) given g, an equation of state, T (x, t), S(x, t),
h(x,y,t), pair(x, y, t), R(x), U(x), N(x, y).

1.3 Hydrostatic equilibrium in a horizontally stratified ocean

Suppose

pair = constant = p0, h = h(x, y), T = T (z), S = S(z). (10)

Then a solution to the Euler equations is:

u = 0, η = 0, ρ = ρ(z), p = p(z). (11)

Equation (1) is satisfied as are the boundary conditions (4), (5) and the x, y components
of (2). The z component of (2) becomes:

dp

dz
= −gρ[p(z), T (z), S(z)], z ≤ 0 (12)

with boundary condition

p(0) = p0. (13)
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The solution of (12) and (13) is called the hydrostatic pressure.

To solve for p(z) we need an equation of state. An approximate equation of state for
seawater is:

ρ = ρ0 − αT + βS, ρ0, α, β = constants > 0. (14)

The solution of (12) and (13) is:

p(z) = p0 − g

[

ρ0z + α

∫ z

0
T (z′)dz′ − β

∫ z

0
S(z′)dz′

]

, z ≤ 0. (15)

The solution (11) solves the initial boundary value problem when the initial values (7)-(9)
are also also given by (11). How do we find solutions for different initial and boundary
data?

1.4 Perturbation method for solving problems

Consider an equation depending on a parameter ǫ

F (u, ǫ) = 0. (16)

The unknown u may be a function of x, t or a collection of functions like ρ, u, p, η, and F
may be a set of equations like (1)-(6) with initial conditions (7)-(9). The solution of (16),
u(ǫ), will depend upon ǫ. If it is a smooth regular function of ǫ, we can expand it in a
Taylor series:

u(ǫ) = u(0) + ǫu̇(0) + O(ǫ2) (17)

u̇ =
du(ǫ)

dǫ
|ǫ=0.

Suppose that we can solve (16) when ǫ = 0, i.e. we know u(0). Then we can differentiate
(16) with respect to ǫ and set ǫ = 0:

Fu[u(0), 0]u̇(0) + Fǫ[u(0), 0] = 0. (18)

If we solve (18) for u̇(0) then (17) will give u(ǫ) with an error O(ǫ2). A better approximation

can be obtained by keeping the term ǫ2

2 ü(0) and differentiating (16) twice to get an equation
for ü(0) etc.

This is the regular perturbation method, and ǫ is the perturbation parameter. Equation
(18) is called the variational equation of (16). It is linear in the unknown u̇(0), so it is called
the linearized equation (linearized about u(0)). It can also be derived by substituting (17)
into (16) and expanding in powers of ǫ.

Note that ǫ can be any parameter, or set of parameters, which occurs in one or more
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of the differential equations or in the boundary or initial conditions. The linear operator
Fu[u(0), 0] in (18) is always the same. Only the inhomogeneous term Fǫ[u(0), 0] depends on
what the parameter is.

Here are some examples of how we can perturb hydrostatic equilibrium.

Let p0, h0(x, y), ρ0 be the equilibrium solution, and then set

pair = p0 + ǫp1(x, y, t) atmospheric disturbance (19)

h = h0(x, y) + ǫh1(x, y, t) bottom motion (earthquake, landslide) (20)

η(x, t) = 0 + ǫη1(x, y) initial elevation or depression (21)

u(x, η, 0) = 0 + ǫu1(x, y) initial motion (22)

ρ(x, η, t) = ρ0(z) + ǫρ1(x, y, z) initial density anomaly. (23)

To get the linearized equations, we linearize about the equlibrium solution. We start with
(1):

ρt + ∇(ρu) = 0.

We differentiate with respect to ǫ

ρ̇t + ∇ · (ρ̇u+ ρu̇) = 0.

We set ǫ = 0 and then u = 0, ρ = ρ0. Hence

ρ̇t + ∇ · (ρ0(z)u̇) = 0. (1̇)

Similarily, linearizing (2)-(9) we get

ρ0u̇t = −∇ṗ− ρ̇g (2̇)

ρ̇ = ρp(ρ0, T, S)ṗ + ρT Ṫ + ρSṠ (3̇)

u̇h0x + v̇h0y + ẇ = −ḣt at z = −h0 (x , y) BC at bottom (4̇)

ẇ = η̇t at z =0 BC at top (5̇)

ṗ+ pz η̇ = p1 at z =0 BC at top (6̇)

ρ̇(x, 0) = ρ1 at t =0 (7̇)

u̇(x, 0) = u1 at t =0 (8̇)

η̇(x, 0) = η1 at t =0. (9̇)

Equations (1̇) - (9̇) are the linear equations for ρ̇, u̇, ṗ, η̇ and constitute an initial boundary
value problem.

2 Fluids of Constant Density

Now let’s suppose that ρ is a constant. Then we can cancel ρ from the continuity equation
to get

∇ · u = 0.
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This condition states that u is divergence free. The momentum equation becomes

ut + (u · ∇)u = −1

ρ
p− g.

Recall we also had an equation of state, relating the density to temperature and salinity.
Here this equation is simply ρ = ρ0, a constant.
Since the density is constant, (15) becomes

p(z) = p0 − gρ0z.

Linearizing the equations around a rest state yields the linear system

∇ · u̇ = 0

u̇t = −1

ρ
∇ṗ.

At the beginning of this section we assumed the fluid was of constant density, and showed
that this implies a divergence free velocity field. If we assume instead that when we follow
a fluid element the density does not change (rather than assume that the whole fluid has
constant density), we get

Dρ

Dt
= ρt + u · ∇ρ = 0.

The conservation of mass equation is then ρ(∇ · u) = 0. Thus if the fluid is incompressible,
this also implies a divergence free velocity field.

Fluid

Bottom
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Free Surface

Figure 1: Irrotational flow of an incompressible ideal fluid
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3 Irrotational Motion

Now let’s introduce the quantity ω = ∇ × u, the vorticity of the fluid. If we assume that
(or begin with) a fluid where this quantity is zero, then we say the motion is irrotational.
When u(x, t) is a curl-free vector field, then we can introduce a potential function

φ(x, t) =

∫ x

x0

u(s, t)ds.

Here this integral is evaluated along any curve C from x0 to x. It is a calculus exercise
to show that this potential is well defined only when we have an irrotational vector field
(hint: use Stokes’ Theorem). Notice now that u = ∇φ so if an incompressible fluid is in
irrotational motion, then conservation of mass gives

∇ · u = ∇ · ∇φ = ∆φ = 0.

Thus φ solves Laplace’s equation, or in other words, φ harmonic. Now consider the mo-
mentum equation

ut + (u · ∇)u+
1

ρ
∇p = ∇V.

Here V is a potential function for the force, f , acting on the fluid. Now we can plug in
u = ∇φ, to get:

∇φt + 1/2∇(∇φ)2 +
1

ρ
∇p−∇V = 0.

If ρ is a constant, we can integrate this equation, to get:

φt + 1/2(∇φ)2 +
1

ρ
p− V = B(t).

This is called Bernoulli’s Equation. Here B(t) is an integration constant, which we can set
to zero. If B was not zero then we could consider a new system where φ is redefined to be
ψ = φ +

∫ t

0 B(s)ds, and see that ψ solves Bernoulli’s equation with zero right hand side.
Since the gradient of ψ and φ agree, and it is this gradient we are interested in, we can
safely set B to zero. Now we can solve for the velocity and pressure by solving for φ using
Laplace’s Equation, and then solving for p using Bernoulli’s equation. The boundary value
problem for φ and η is shown in Figure 1.

In Figure 1, we have a linear pde for φ with a linear boundary condition at the bottom
boundary. On the surface, we have two nonlinear boundary conditions imposed at a location
which depends upon the solution. In linearizing this system about a rest state, all the
equations stay the same except those on the free surface. There we get

η̇t + ν̇ · ∇φ+ ν · ∇φ̇+ (ν · ∇φz)η̇ = 0 z = 0

˙pair = ρgη̇ − φ̇t − φtz η̇ +
˙1

2
(∇φ)2 z = 0.

Since the rest state is φ = 0 and η = 0, these linearized surface equations become

η̇t − φ̇z = 0 z = 0

φ̇t + gη̇ = −1
ρ
ṗair z = 0.
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Now we can differentiate the second equation and plug it into the first to get a single linear
free surface condition

φ̇tt + gφ̇z = −1

ρ
ṗair

t .

When p and φ are time harmonic with time dependence exp(−iωt) this becomes

−ω
2

g
φ̇− iω

ρg
ṗair − φ̇z = 0 z = 0.

The equations for the fluid below the surface are

φ̇n = −ḣt z = −h
∆φ̇ = 0 − h ≤ z ≤ 0.

These last three equations govern time harmonic small amplitude irrotational motion of an
inviscid fluid of constant density.

Notes by Benjamin Akers and Tiffany Shaw.
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