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1 Introduction

Our aim in this course is to understand some of the processes associated with ice in the
natural environment. Figure 1 shows the location of some of Earth’s ice during the north-
ern winter. These ice deposits may be categorized as sea ice, ice sheets and shelves, and
permafrost.

Figure 1: Satellite image showing the ice cover in the northern hemisphere during northern
winter, showing sea ice lying in the Arctic basin, the permanent ice sheet over Greenland
and permafrost in the exposed land surface.

2 Ice sheets

Firstly, figure 1 shows the ice sheet that covers approximately 80% of Greenland. This is
about 105 years old and reaches depths of 2–3 kilometers. On large scales, ice can be treated
as a highly viscous, non-Newtonian fluid that can flow because it is a polycrystalline solid
and contains a percentage of unfrozen water (figure 2). Looking on a scale of about 100µm,
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Figure 2: Image of the intersection of four ice grains. Between these grains lie the veins
containing liquid water and dissolved impurities. The scale bar on this picture is 100 µm.

we can see the ice grain junctions and the veins which lie between them. The liquid water
contained in the veins between the ice crystals lubricates the flow, allowing the ice to flow
more easily. This water can also transport dissolved impurities, which will therefore move
relative to the ice crystals; this is important when analyzing ice cores, for example.

Figure 2 also shows that there is a curvature to the solid–liquid interface which is
associated with the surface energy of the phase boundary. We will see later that this
surface energy sets the scales for morphological instabilities of the solid–liquid interface,
such as those seen in snowflakes (figure 4).

The grounded ice cap flows slowly towards the coast, sometimes flowing into floating ice
shelves, which ultimately break up to form icebergs. Projects such as the Greenland Ice Core
Project (GRIP) have obtained deep ice cores from near Greenland’s summit. Analyzing the
properties of the ice cores, such as oxygen isotope ratios, allow inferences about the ancient
climate to be drawn.

In figure 3 we see the flow from the grounded ice sheet to a floating ice shelf (Larsen
B) in Antarctica. At the edge of the ice shelf we see the calving of icebergs; this is respon-
sible for approximately 80% of the mass lost from Antarctica. The icebergs are composed
predominantly of freshwater ice, as the ice which comprises the ice sheets first fell as snow.
Owing to the density difference between water and ice, approximately 90% of the volume
of an iceberg is below the surface of the ocean.

When these icebergs come into contact with the warm, salty ocean they ablate, providing
a freshwater flux to the ocean. This is important as the production of deep ocean waters is
sensitive to changes in the freshwater budget.

3 Sea ice

Secondly, there is the sea ice which fills the Arctic basin and is formed by direct freezing
of the ocean. It is typically 1–3 m thick and less than 10 years old; in its first year, sea
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Figure 3: (left) Satellite image of the Larsen B ice shelf on the coast of Antarctica. Near
the edge of the ice shelf, it is possible to see the icebergs formed by calving. (right) An
example of an iceberg formed by calving at the edge of an ice sheet or ice shelf. Here the
vertical face is 30 m above the surface of the ocean, meaning that approximately 300 m of
ice lie below the surface.

ice typically grows to a depth of 1 m. This relative youth (in comparison to ice sheets
or glaciers, for example) is caused by the movement of sea ice by polar winds and ocean
currents to warmer waters, where it melts.

Many of the structures and processes observed in sea ice develop because the thermal
diffusivity of heat is much larger than the diffusivity of salt. In this course we shall see that
sea ice can be considered as an inhomogeneous porous medium. While sheet ice only contains
water in the veins between ice crystals, sea ice has a much higher porosity (approximately
10 % in old ice and up to 40 % in new ice). The porous nature of sea ice means that it can
also be modified by internal convection.

We shall consider sea ice to be a mushy layer, which is a two-phase reactive porous
medium. We see in figure 4 that it is not macroscopically solid; instead, it is composed
of ice platelets with salty brine between them. The platelets which form are composed of
pure ice crystals, as the crystals reject the salt contained in the ocean water. Some of this
rejected salt convects into the ocean below the sea ice, and the rest remains between the
crystals.

This convection is also seen in the laboratory. Figure 5 shows shadowgraph pictures of
sea ice growing in a laboratory. In figure 5 (left) when the sea ice is only 3 cm thick, it is
possible to see some convection occurring in the salt water below it, but it is small scale
and has no obvious structure. However, when the ice has grown to a thickness of about 13
cm (figure 5), it is possible to see strong convective plumes in the water below. These have
a high salt content and therefore deliver a large flux of salt to the water below. We shall
see that there is a critical ice thickness at which such plumes occur; this criterion for the
onset of convection is determined by a form of Rayleigh number.
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Figure 4: (left) Picture of a snowflake. Here the smallest scale at which instabilities occur
is comparable to the radius of the tip of one of the needles. (right) Horizontal cross section
of sea ice, showing both ice platelets and brine channels. The ice platelets are typically less
than 1 mm wide and form a porous matrix, which allows convection and the erosion of such
channels by the rejection of salt. These channels have a diameter of a few millimetres.

Figure 5: (left) Image of sea ice growing in the laboratory. At this time, the layer of ice
(the dark upper region) is 3 cm thick, and it is possible to see some convection occurring
below it. (right) Image of sea ice growing in the laboratory where the layer of ice is now 13
cm thick, and it is possible to see the salty convective plumes below it. It is also possible to
see the ‘pinching’ instability at the base of these plumes. Note that the scales of the images
are different.
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Figure 6: (left) An example of erosion caused to a rockery by winter frost. (right) Stone
circles as an example of differential frost heave.

Figure 7: (left) Ice needles protruding from soil. (right) Photograph of a column of water-
saturated soil cooled at the top (Taber, 1929). The black regions are ice lenses, which
contain no soil; between these are regions of partially frozen soil. There may also be ice
between the soil particles below the lowest lens.
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4 Permafrost

The final type of ice we shall consider is permafrost, or permanently frozen ground (defined
as remaining below 0◦C for more than two years). It occurs both on land and beneath
offshore Arctic continental shelves, and its thickness ranges from less than one meter to
greater than 1 kilometer. Permafrost underlies about 15% of the exposed land surface in
the Northern Hemisphere and causes deformation of the ground; we shall be looking at this
and the associated flows.

Figure 6 shows the effects of ice damage to rocks and buildings if they are eroded by
winter frost. The ground may also ‘heave’, i. e. rise upwards due to water being pulled up
from the unfrozen ground below. Differential frost heave may form patterned ground, such
as hummocks and the stone circles seen in figure 6. Underlying this is the force of separation
between ice and other materials: in this context, we will consider the other materials to be
silicates. We will consider how ice pushes on another material forming, for example, the ice
needles seen in figure 7.

There are still some puzzles remaining. Figure 7 shows a laboratory experiment by
Taber where a column of water-saturated soil was frozen by cooling at its top. It might be
expected that a freezing front which moves downwards is observed, but instead a sequence
of layers of alternating pure ice and partially frozen soil forms.

5 Student Problem

If two identical ice cubes are placed in glasses of water and whisky, where the liquids are
at the same temperature, it is observed that the ice cube in the whisky melts more quickly
than that in the water. Why? (Hint: It is not because the melting point of ice is lower in
whisky than in water.)

Answer

Initially when the ice cube is placed into a glass of whisky at room temperature the ice
melts, forming a layer of cold freshwater adjacent to the phase boundary. Since water is
denser than alcohol and the the melted water is colder than the whisky, a plume forms
that convects the cool fresh water downwards and brings warmer fluid with a higher alcohol
concentration upwards. This convective mixing of the liquid below the ice cube supplies
a heat flux at the phase boundary; this flux is stronger than the diffusive heat flux in the
absence of convection.

6 Stefan Condition

The distinguishing feature of solidification or melting is the evolution of a phase boundary
which separates solid and liquid. The speed of this interface can be determined by energy
conservation, as illustrated in figure 8, which relates the rate of energy absorption or release
to the difference in heat fluxes across this boundary. This is formulated mathematically as
follows by considering a control volume around the phase boundary

qs · n− ql · n− ρVnHs + ρVnH` = 0 ⇒ ρLVn = n · (ql − qs) . (1)
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Figure 8: Illustration showing the control volume taken around the phase boundary and
the energy fluxes into and out of it.

Here q = −k∇T is the heat flux from Fourier’s law, k is thermal conductivity, n is the unit
normal vector pointing from solid to liquid, ρ is the density (assumed to be the same in
each phase), Vn the interface velocity, H is the enthalpy, L = H`−Hs is the latent heat and
subscripts s and ` denote solid and liquid respectively. We assume that the phase boundary
is in equilibrium, implying that the temperature is constant on either side of the interface.
This equation is known as the Stefan condition, attributed to Stefan in 1891.

7 Problem 1

We consider a problem posed by Stefan in 1891, where solid ice is growing into relatively
warm (Tm > TB) water from a cooled boundary at z = 0 (figure 9). We assume that
the liquid portion is at the melting temperature Tm initially and therefore remains at this
temperature. The governing equation is given by the thermal diffusion equation

ρcp
∂T

∂t
=

∂

∂z

(

k
∂T

∂z

)

⇒ ∂T

∂t
= κ

∂2T

∂t2
, (2)

where the conductivity k = ρcpκ is assumed to be constant and the thermal diffusivity is
represented by κ. The boundary conditions for this equation are then

T (t, z = 0) = TB , T (t, z = a(t)) = Tm, (3)

where z = a(t) denotes the interface position and the unknown interface velocity is deter-
mined by the Stefan condition

ρL
da

dt
= k

∂T

∂z

∣

∣

∣

∣

z=a(t)

. (4)

7.1 Solution

This problem can be solved using a similarity solution, as there is no intrinsic length scale in
the problem. We can determine the form of this similarity variable using a scaling analysis
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Figure 9: Growth of a planar solid into a liquid, maintained at the melting temperature Tm

from a cooled boundary maintained at temperature TB. The position of the interface as a
function of time is given by a(t).

and show that a fixed length scale cannot be formed. Let us define the appropriate scales,
∆T = Tm − TB, D and τ for the temperature, length of the domain and time respectively.
From the diffusion equation (2) and the Stefan condition (8) we obtain the following

∆T

τ
∼ κ

∆T

D2
⇒ D ∼

√
κτ , (5)

ρL
D

τ
∼ k

∆T

D
= ρcpκ

∆

D
T ⇒ D ∼

√
κτS−1/2, (6)

where S = L/(cp∆T ) is the Stefan number. Since the relationships between D and τ in (5)
and (6) are the same, there is no intrinsic length scale, and a similarity solution is possible.
In addition there therefore is no time scale so we choose τ = t, the actual time, in which
case D ∼

√
κt.

We introduce the dimensionless variable f such that

T − TB = ∆Tf

(

z

D
,
t

τ

)

= ∆T f

(

z√
κt

, 1

)

= ∆T f(η). (7)

We choose η = z/2
√

κ t for mathematical convenience, as the similarity variable may be
multiplied by an arbitrary constant. In addition we know from scale analysis, using the
diffusion equation, that length and therefore interface position can be assumed to have the
form

a = 2µ
√

κt, (8)

where the parameter µ must be determined as part of the solution. Rewriting the model in
terms of the similarity variable, we arrive at the final set of non-dimensional equations

f ′′ = −2η f ′, (9)

f(η = 0) = 0, (10)

f(η = µ) = 1, (11)

2S µ = f ′(η = µ). (12)
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Figure 10: (a) Solution to equation (17) for the eigenvalue µ as a function of the Stefan
number, S. (b) Solution to equation (7) of Lecture 2.

The solution to equation (9) is determined using an integrating factor and determining

f ′ = c1 e−η2 ⇒ f = c1

∫ η

0
e−y2

dy + c2 ⇒ f = ĉ1erf(η) + c2. (13)

The error function, erf(η), is defined by

erf(x) =
2√
π

∫ x

0
e−u2

du, (14)

with the following properties

erf(0) = 0, (15)

erf(∞) = 1. (16)

Boundary condition (10) implies that c2 = 0 and boundary condition (11) gives ĉ1 =
1/erf(µ). Finally the Stefan condition (12) gives us an parameter equation to be solved for
the parameter µ. From equation (12) we then have

1

S
=

√
π µ erf(µ) eµ2

= F (µ). (17)

In figure 10 we plot the parameter µ as a function of Stefan number. We see that the growth
speed increases as the Stefan number decreases, which corresponds to increasing the driving
temperature difference or decreasing the amount of energy required to melt a unit mass
of solid. We should note that the interface position is given by a ∝

√
t and the interface

velocity by ȧ ∝ 1/
√

t so that the growth rate of a solid decreases with time.

7.2 Quasi Stationary Approximation

For large Stefan numbers we have relatively small sensible heat compared to latent heat
and the growth rate will be slow compared to the thermal diffusion rate. In this case, the
temperature field will evolve more rapidly than the boundary position and we have a quasi-
steady state regime for the the diffusion equation. This implies a linear profile of the solid
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temperature that is slowly decreasing in slope as the boundary moves. Integrating Laplace’s
equation twice and applying boundary conditions given in (3) we obtain the linear solution

T = TB + (Tm − TB)
z

a
. (18)

Substituting this solution into the Stefan condition (12) we arrive at the following expression
for the interface position a

a
da

dt
=

1

S
, a(0) = 0 ⇒ a =

√

2

S

√
κt. (19)

8 Student Problem

Question

Solve the Stefan problem given in problem 1 for the case ρs 6= ρ`.

Answer

When the density between the solid and liquid differ by an appreciable amount there will
be a normal velocity to the phase change surface due to the expansion or contraction of
the liquid as it solidifies. To formulate this effect mathematically we draw a control volume
around the moving surface and conserve mass and energy as follow

d

dt

∫

V
ρ dV =

∫

S
ρs (ȧ − Vs) dSs −

∫

S
ρ` (ȧ − V`) dS`, (20)

d

dt

∫

V
ρH dV =

∫

S
ρsHs (ȧ − Vs) + n · qs dSs −

∫

S
ρ`H` (ȧ − V`) + n · q` dS`. (21)

In the limit as dx → 0 the amount of mass and energy stored within the control volume
becomes negligible and we are left with the following relationships

ρs(a − Vs) = ρ`(a − V`), (22)

ρsHs (ȧ − Vs) + n · qs = ρ`H` (ȧ − V`) + n · q`. (23)

Since there is no motion in the solid, Vs = 0 and the mass conservation relation gives us a
relationship for the fluid velocity. Substituting this relationship into the energy conservation
equation and noting that L = Hs − H` we obtain the modified Stefan condition. These
conditions are

V` =
da

dt

(

ρ` − ρs

ρ`

)

, (24)

ρsL
da

dt
= (q` − qs) · n. (25)

The addition of a fluid velocity on the liquid side adds an advective component to the
governing temperature equation. The new model can be solved by a similarity solution
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as a simple extension of the last section, but does not yield any new results. Since the
temperature profile is homogeneous initially it must remain so for all time. On the other
hand, if the liquid were under-cooled (as we shall see in the third lecture) or if we were
melting the solid, the advective component would give a small correction to the interface
speed as long as ρs ≈ ρ`.
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