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1 Near-homoclinic Pulse Dynamics

Near-homoclinic dynamics arise in a number of physically relevant problems in fluid dy-
namics, forexample, wherever there are coherent solitary waves, pulses in the signal of some
important system variable, or bursts of turbulence in boundary layers. Near-homoclinic
dynamics involve trajectories through phase space of a given dynamical system at param-
eter values close to a bifurcation at which there exits a homoclinic orbit, that repeatedly
visit the vicinity of an unstable saddle point, at the origin say, followed by large excursions
through the space, closely shadowing the saddle point’s homoclinic orbit. If some variable
like the energy or the distance from the saddle point is plotted against time, the resulting
time series appears as a sequence of widely separated pulses.

x

-2 -1 0 1 2

ẋ
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Figure 1: A deterministic two-dimensional system with a homoclinic orbit and its symmetric
solution x 7→ −x (left) and a trajectory at nearby parameters (right). Top, trajectory in
state space (x(t), ẋ(t)). Bottom, the homoclinic solution x(t) and a sample train of pulses
x(t).

The exact form of such a ‘pulse train’ depends heavily on the type of saddle point
that forms the start and end points of the homoclinic trajectory. In two dimensions, such



as the system plotted in Figure 1, both eigenvalues of the saddle point are real, and the
time interval between pulses for the long-time asymptotic solution is constant. For a three-
dimensional system like the Shimizu–Morioka system [14], which is a Lorenz-like system, for
which the saddle point has three real eigenvalues λ2 < λ1 < 0 < λ3, the strong contraction
due to λ2 can be ignored at leading order, and the dynamics appear at first sight to be
similar to the two-dimensional case. However, the influence of the third stable direct acts
to ‘fold’ trajectories together during their evolution through the vicinity of the origin, and
chaotically distributed time intervals between pulses arises. The Shimizu–Morioka system
is plotted in Figure 2.
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Figure 2: A deterministic three-dimensional Shimizu–Morioka system with a homoclinic
orbit and its symmetric solution (x, y) 7→ (−x,−y) (left) and a trajectory at nearby pa-
rameters (right). Top, two-dimensional projection of trajectory in state space (x(t), y(t)).
Bottom,the homoclinic solution x(t) and a sample train of pulses x(t)..

Another canonical type of saddle point found in such systems is one for which the un-
stable direction has dimension one, and hence a single real positive eigenvalue, whilst the
stable direction consists of a complex pair of eigenvalues. Their dynamics consist of trajec-
tories spiraling into the saddle point before diverging away from the saddle point around
its unstable direction. If this is combined with a strong contraction in one direction whilst
following the homoclinic trajectory through state space, we call such systems ‘Shilnikov’
systems. These systems also display chaotically distributed time intervals between pulses,
but in this case the chaos arises through the dynamics near the origin ‘mixing up’ trajec-
tories that approach the origin through different locations, and thus completing a different
number of spirals before leaving the vicinity of the saddle point. One such system is plotted
in Figure 3.

Both Lorenz and Shilnikov type behaviour are observed in many physical systems. As
was discussed in this year’s GFD lectures by H. Dijkstra, the quasi-geostrophic double-gyre
circulation undergoes bifurcations in an asymmetry variable, which measures the relative



occurrence of coherent structures above and below the symmetry line of forcing, to either
Lorenz or Shilnikov phenomena, depending upon the parameters in the problem [9, 15].
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Figure 3: A deterministic three-dimensional Shilnikov system with a homoclinic orbit and
its symmetric solution x 7→ −x (left) and a trajectory at nearby parameters (right). Top,
two-dimensional projection of trajectory in state space (x(t), ẋ(t)). Bottom, the homoclinic
solution x(t) and a sample train of pulses x(t).

The time intervals between pulses in all such systems depend most sensitively on how
the trajectories evolve through the origin, as the closer a trajectory is to the stable manifold
when approaching the origin, the longer it takes to leave the origin, and this time increases
exponentially as the distance to the stable manifold decreases. In contrast, the ‘outer’ flow
away from the origin takes an approximately constant time for all trajectories. The time
intervals are therefore controlled by the position at which trajectories enter the vicinity of
the origin.

Two successful approaches have been suggested to estimate the distribution of time
intervals between pulses, or equivalently the mapping between trajectories leaving the origin
and re-entering the origin. The approach taken by Shilnikov [13], after whom Shilnikov
systems are named, is to solve the linearised system near the origin exactly, and to assume
a linear mapping between points on a Poincaré section of trajectories leaving the origin to
points on a Poincaré section of trajectories returning to the origin. This represents stong
contraction in one of the spatial dimensions during the outer flow, and an outer flow that
closely follows the homoclinic orbit, and is explained in more intuitive detail by Glendinning
and Sparrow [7]. This can then be written as a single map between points on the entrance
Poinaré section as

Zn+1 = C +BZδn cos

(
Ω log

(
Z0

Zn

)
+ Φ

)
, (1)

for some constant B, and C is a constant that measures the distance from a bifurcation
point at which the homoclinic orbit exists, Φ is a constant phase, Ω is related to the unstable



eigenvalue and the imaginary part of the stable eigenvalue, and δ is the ratio of the real part
of the stable eigenvalue to the unstable eigenvalue. When C = 0 and δ < 1 this map has
an infinite number of unstable fixed points, and exhibits chaos for most parameter values.

The approach taken by Balmforth et al. [4] and summarised a review paper [3], is to
suppose that a solution to the equations in near homoclinic conditions can be written as a
sum of homoclinic trajectories with an error term of O(ε), where ε measures the distance
from homoclinicity. These homoclinic trajectories must then be sufficiently widely separated
in time so that the interaction of adjacent homoclinic orbits is of size O(ε). An equation for
the error term is derived, and a secularity condition deduced from the requirement that the
error term is small. This secularity condition involves interactions of adjacent homoclinic
trajectories, and hence can be interpreted as a mapping between successive spacings in time
of the homoclinic trajectories. Under further approximation, this map can be reduced to
the Shilnikov Zn map. This method is the primary method generalised here to stochastic
systems, and its details are left until later in the text.

Stochastic near-homoclinic systems have been considered in a variety of contexts, from
noise-driven excitable systems [11, 5], to exponential tails in the timing of turbulence burst-
ing events [18] and intermittent switching between cycles in a heteroclinic network [1]. The
only major theoretical work comes from Stone and Holmes [17] and extensions [18, 16].
This work deals with the stochastic dynamics near the origin only, and solves the Ornstein–
Uhlenbeck processes there, followed by assumptions of long residency time near the origin
and small amplitude noise to find simple expressions for the density of points leaving and
arriving at the origin, along with expected residency times. The key assumption in all of
this work is that since the noise amplitude is small, its only significant effect is near to
the origin, and that once a trajectory is closely following the homoclinic orbit away from
the origin, the effects of noise can be neglected, and the distribution of points leaving the
origin may be linearly mapped to a distribution of points arriving at the origin via the
deterministic linear mapping, as in Shilnikov’s approach for deterministic systems.

The work presented here demonstrates that this assumption is in fact unfounded, and
we show that for the three different homoclinic systems discussed above, the primary ef-
fect of noise on a homoclinic trajectory is the influence during the orbit away from the
origin producing a significant difference in the distribution of points arriving at the ori-
gin, and that this effect produces variances in the position and timing of trajectories that
are at least an order of magnitude larger than the effects near the origin. Section 2 deals
with the two-dimensional Duffing system originally considered in the theoretical paper of
Stone and Holmes [17]. Section 3 deals with the three-dimensional Shimizu–Morioka system
[14], which can be interpreted as the Lorenz system at high Rayleigh number and exhibits
Lorenz-like behaviour. Section 4 deals with a three-dimensional equation that arises as the
normal form of a co-dimension three bifurcation with a reflection symmetry [2] in which
three eigenvalues of an equilibrium point simultaneously have zero real part, and exhibits
Shilnikov-like behaviour. We draw our conclusions in Section 5.



2 A Stochastic Duffing Equation

Consider the following deterministic Duffing equation for x(t)

ẍ = x− x3 − εγẋ+ εβx2ẋ. (2)

A sample trajectory with γ = 0.08 and β = 0.1 is shown in Figure 1, along with the nearby
homoclinic trajectory at γ ≈ 0.080012.

This equation has a fixed point at the origin, which is a saddle, with eigenvalues

λ =
1

2
(−εγ ±

√
ε2γ2 + 4) = ±1− εγ

2
+ O(ε2), (3)

with corresponding eigenvectors

v± =

(
±1− εγ

2 + O(ε2)
1

)
. (4)

The system also has two addition fixed points at (x, ẋ) = (±
√

1− εγ, 0), which are unsta-
ble/stable sinks if β ≷ 0.

Consider the addition of a white noise process to this equation, namely

ẋ = y + εξx, (5)

ẏ = x− x3 − εγy + εβx2y + εξy, (6)

where

E(ξx,y(t)) = 0, (7)

E(ξx,y(t)ξx,y(s)) = δ(t− s), (8)

and ξx and ξy are independent.
Let δ be such that ε � δ � 1 and consider the small domain about the origin D =

{(x, ẋ) · v̂± ≤ δ} where v̂± are the normalised eigenvectors of the saddle point at the origin.
Within D we can approximate the dynamics, in local saddle coordinates, as

ẋ1 = −µx1 + εξx1 , (9)

ẋ2 = λx2 + εξx2 , (10)

where −µ and λ are respectively the stable and unstable eigenvalues of the saddle point at
the origin.

We can then consider three cases for the action of noise, namely

1. ξx1 6= 0, ξx2 6= 0 and ξ = 0 outside of D (noisy origin)

2. ξx1 = 0, ξx2 = 0 and ξ 6= 0 outside of D (deterministic origin)

3. ξx1 6= 0, ξx2 6= 0 and ξ 6= 0 outside of D (noise everywhere)

In addition, we may split case (1.) into two, namely ξx1 6= 0 and ξx2 = 0 (noisy stable
direction) and ξx1 = 0 and ξx2 6= 0 (noisy unstable direction). This is done in Appendix A.

Before considering each of the three cases in turn, we first solve the deterministic be-
haviour within D.
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Figure 4: Sketch of the dynamics through the domain D about the origin with entry point
zk and leaving point wk.

2.1 Deterministic origin dynamics

When a trajectory enters D for the kth occasion, at time t = t0, we have (x1, x2) = (δ, zk),
see Figure 4. The trajectory then satisfies

x1 = δe−µ(t−t0), (11)

x2 = zke
λ(t−t0). (12)

The trajectory then leaves D when (x1, x2) = (wk, δ), which occurs after a time interval

tk ≡ tleave − t0 =
1

λ
log

(
δ

zk

)
, (13)

from which we can obtain wn, the x1 position at time of exit,

wk = δ1−µ/λz
µ/λ
k . (14)

We then make the assumption that the dynamics outside of D act as a linear mapping
between the point at which D is left for the kth time to the point at which D is entered for
the (k + 1)th time, as did Shilnikov [13], i.e. that

zk+1 = αwk + c = αδ1−µ/λz
µ/λ
k + c, (15)

where c = 0 when there exists a homoclinic orbit.
Since zk < δ < 1, we see that when µ/λ > 1, we have the limit zk → c as k → ∞. We

can also solve for the time intervals between entering events. First note that

tk+1 = − 1

λ
log
(zk+1

δ

)
= − 1

λ
log(αδ−µ/λz

µ/λ
k + c/δ) = − 1

λ
log(αe−µtk + c/δ). (16)



Assuming that the time between exit and re-entrance of D is T , the time interval between
entering events ∆k = T + tk satisfies

∆k+1 = T − 1

λ
log(αe−µ∆keµT + c/δ). (17)

When there exists a homoclinic orbit, c = 0, and so

∆k+1 = T − log(α)

λ
− µT

λ
+
µ

λ
∆k, (18)

and so if µ/λ > 1, we have the limit ∆k → ∞ as n → ∞, and so the homoclinic orbit is
attracting.

2.2 Noisy origin, ξ = 0 outside D

The analysis in this section is a summary of the work of Stone and Holmes [17] and their
approach to determining the dynamics for noise near the origin. In Appendix A we adopt
the same approach as Stone and Holmes to investigate the effect of noise near the origin
only in either the stable or unstable direction of the saddle. We wish to solve the stochastic
differential equations

ẋ1 = −µx1 + εξx1 , (19)

ẋ2 = λx2 + εξx2 , (20)

where λ and −µ are the unstable and stable eigenvalues at the origin.
First, we define the Gaussian function for the normal probability density function

Nx(a, σ2) ≡ 1√
2πσ2

exp

[
−(x− a)2

2σ2

]
. (21)

Then, the known solutions to the Ornstein–Uhlenbeck processes (19-20), given an initial
known position are

ρ(x1, t|δ, 0) = Nx1
(
δe−µt,

ε2

2µ
(1− e−2µt)

)
(22)

ρ(x2, t|zn, 0) = Nx2
(
zke

λt,
ε2

2λ
(e2λt − 1)

)
(23)

Observe that the means satisfy the equations

d

dt
〈x1〉 = −µ〈x1〉 (24)

d

dt
〈x2〉 = λ〈x2〉, (25)

and so we might expect that if the deterministic system spends a large amount of time in
D, then so will the stochastic system. This allows us to make the approximation that the
x1-process becomes stationary before exiting D, i.e. that e−µt � 1, and so we have

ρ(x1, t|δ, 0) ∼ N
(

0,
ε2

2µ

)
as t→∞, (26)



and so the leaving point wk has a distribution independent of zk,

ρ(wk) = N
(

0,
ε2

2µ

)
. (27)

After leaving D, the motion is deterministic, and so we recall the linear mapping

zk+1 = αwk + c, (28)

giving the density of return points zk+1,

ρ(zk+1|zk) = ρ(zk+1) = N
(
c,
ε2α2

2µ

)
, (29)

using standard results for linear combinations of normally distributed random variables.
To find the timings tk, we need to solve the unstable Y process. It is also known that the

solution to the Ornstein–Uhlenbeck process (20) given an initial known normal distribution
is

ρ(x2, t|N (x0
2, σ

2), 0) = N
(
x0

2e
λt, σ2e2λt +

ε2

2λ
(e2λt − 1)

)
, (30)

and so, we see that

ρ

(
x2, t

∣∣∣∣N (ceλt, ε2α2

2µ

)
, 0

)
= N

(
ceλt,

ε2α2

2µ
e2λt +

ε2

2λ
(e2λt − 1)

)
(31)

= N
(
ceλt,

ε2

2λ
(e2λs − 1)

)
(32)

≡ ρ(x2, s|s = 0), (33)

where s = t+ t′ and

t′ =
1

2λ
log

(
1 +

α2λ

µ

)
. (34)

Then, the mean passage time E(tk) satisfies

E(tk) =

∫ ∞
0

P(tk > t) dt (35)

=

∫ ∞
t′

P(tk > s) ds (36)

=

∫ ∞
t′

∫ δ

−δ
ρ(x2, s|s = 0) dx2 ds (37)

∼

{
1
λ log

(
δ
ε

)
for c� ε� δ � 1,

1
λ log

(
δ
c

)
for ε� c� δ � 1.

(38)

The main result here is that for nearly homoclinic conditions in which c� ε, noise acts
to effectively push a trajectory away from the stable axis to a distance ε, after which the
mean trajectory is essentially deterministic, whereas far from homoclinicity in which ε� c,
noise is unimportant, and the mean trajectory is identical to its deterministic version. The



extra condition that ε, c � δ ensures that trajectories remain in D for a long time, and so
the assumption e−µtk � 1 is valid.

Parameter values considered by Stone and Holmes [17] are γ = 0.08, β = 0.1 and
ε = 0.0006. Using these values, we can compare the results above to a numerical solution
of the stochastic differential equations with ξ = 0 outside of D, defined by δ = 0.1. Figure
5 shows a comparison of the distributions for ρ(wk) and the distributions for ρ(zk) for both
a numerical integration of the SDEs and the derived results (27,29) given by Stone and
Holmes [17] with c = 0. There is a clear discrepancy in these results, and so we also plot
the sum of two normal distributions with means ±δ exp(−µE(tk)) for wn where E(tn) is
taken from the numerical integration, and an approximate offset c = ±2.763× 10−4 for zn
taken from the numerical integration. The mean time through D for the numerical solution
is 5.767 and the mean time according to (38) with c � ε is 5.325. There remains an error
in the comparison of the results for ρ(wk), likely due to the fact that the approximation for
ρ(wk) is independent of zk.

We note that we can break from the approach of Stone and Holmes in this section and
Appendix A. Rather than making approximation about long residency times to simplify
the relevant probability densities, we can instead keep the exact solutions to the Ornstein–
Uhlenbeck processes and iteratively produce a sample trajectory. To obtain zk+1 from zk,
we choose a tk and wk from the relevant densities, and then map wk to zk+1 using the linear
mapping assumption. This would give a reliable, if low-tech way of producing the correct
comparisons to the SDEs.
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Figure 5: Probability density of leave points wn (left) and return (right) points zn to D
with δ = 0.1 and noise strength ε = 0.0006 acting only outside D, for parameters γ = 0.08
and β = 0.1 for a direct numerical simulation with 7500 returns to D (blue histogram), the
approximate solution (27,29) from Stone and Holmes [17] (red line), and the sum of two
normal distributions with means ±δ exp(−µE(tn)) for wn and ±2.763×10−4 for zn (orange
line).



2.3 Deterministic origin, ξ 6= 0 outside D

Consider the equation
ẍ = x− x3 − εγẋ+ εβx2ẋ+ εξ(t) (39)

outside the domain D ≈ {|ẋ+x| ≤ δ, |ẋ−x| ≤ δ}. Write the solution as x = x0+εx1+O(ε2).
Then, at O(1) we have

ẍ0 = x0 − x3
0, (40)

which has first integral
1

2
ẋ2

0 =
1

2
x2

0 −
1

4
x4

0 + E, (41)

where we can interpret the constant of integration E as an energy parameter. The case
E = 0 gives the homoclinic orbits

x0 = ±
√

2sech(t− t0) (42)

for some t0. We will concentrate on the positive solution, x0 =
√

2sech(t− t0).
Next, at O(ε) we obtain

ẍ1 − x1 + 3x2
0x1 = −γẋ0 + βx2

0ẋ0 + ξ(t). (43)

Multiply through by ẋ0 and integrate to get

[
ẋ0ẋ1 − x0x1 + x3

0x1

]tb
ta

= −γ
∫ tb

ta

ẋ2
0 dt+ β

∫ tb

ta

x2
0ẋ

2
0 dt+

∫ tb

ta

ξ(t)ẋ0 dt, (44)

where ta and tb are defined respectively by

ẋ+ x =
√

2δ, (45)

ẋ− x = −
√

2δ. (46)

For ε � δ � 1, we have x0 ≈ 2
√

2e−|t̂|, where t̂ = t − t0. This then gives ẋ0 ≈
−2
√

2 sgn(t̂)e−|t̂|, and so the leading order condition on ∂D determines ta and tb, namely

ẋ0(ta) = x0(ta) =

√
2δ

2
, (47)

ẋ0(tb) = −x0(tb) = −
√

2δ

2
, (48)

tb = −ta = log

(
4

δ

)
. (49)

At second order we obtain

ẋ1(ta) = −x1(ta), (50)

ẋ1(tb) = x1(tb), (51)

and so [
ẋ0ẋ1 − x0x1 + x3

0x1

]tb
ta

=
√

2δ(x1(ta)− x1(tb)) + O(δ3). (52)



We also have the exact relations

−γ
∫ ∞
−∞

ẋ2
0 = −4γ

3
, (53)

β

∫ ∞
−∞

x2
0ẋ

2
0 dt =

16β

15
, (54)

and so, given that −ta, tb � 1, the deterministic orbit is homoclinic at leading order if these
two integrals are equal, i.e. β = 5γ/4. Assuming homoclinic conditions, we obtain

√
2δ(x1(ta)− x1(tb)) =

∫ ∞
−∞

ξ(t)ẋ0 dt. (55)

It is a known result [6] that for deterministic functions of time f(t),∫ b

a
f(t)ξ(t) dt ∼ N

(
0,

∫ b

a
f(t)2 dt

)
. (56)

We can use this result to deduce that

x1(tb) ∼ N
(
x1(ta),

1

2δ2

∫ ∞
−∞

ẋ2
0 dt

)
(57)

= N
(
x1(ta),

2

3δ2

)
. (58)

The leading order return map to D for this stochastic Duffing equation in homoclinic
conditions is then,

zk+1 =
ẋ+ x√

2

∣∣∣∣
tb

(59)

=
√

2εx1(tb) (60)

= N
(√

2εx1(ta),
4ε2

3δ2

)
(61)

= N
(
wk,

4ε2

3δ2

)
(62)

= sgn(zk)δ
1−µ/λ|zk|µ/λ +

ε

δ

√
4

3
ηk, (63)

where ηk ∼ N (0, 1) is a zero mean, unit variance, Gaussian random variable. Hence,

m = E(zk+1|zk) = sgn(zk)δ
1−µ/λ|zn|µ/λ (64)

E((zk+1 −m)2|zk) =
4ε2

3δ2
. (65)

Recall that the variance in the re-entry point for noise only within D scaled as ε2. Given
ε� δ � 1, we see that the variance associated with this outer flow is much larger.



We then have the transition density

ρ(zk+1|zk) = N
(

sgn(zk)δ
1−µ/λ|zk|µ/λ,

4ε2

3δ2

)
, (66)

and so

ρ(zk+1) =

∫ ∞
−∞

ρ(zk+1|zk)ρ(zk)dzk. (67)

We can look for the stationary distribution ρ(zk) = ρs(z) that the mapping approaches
as n→∞. This is given by the integral equation

ρs(z) =

∫ ∞
−∞

δ

ε

√
3

8π
exp

[
−3δ2(z − sgn(s)δ1−µ/λ|s|µ/λ)2

8ε2

]
ρs(s) ds. (68)

Figure 6 shows the return distribution for noise outside of D only and noise uniformly
everywhere in the system respectively. Also shown is the mapping (63). For noise outside
of D we also plot the estimated stationary distribution via the method described below,
and for the ‘noise everywhere’ calculation we also plot the result from Stone and Holmes.
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Figure 6: Left: Probability density of return points to D with δ = 0.1 and noise strength
ε = 0.0006 acting only outside D, for parameters γ = 0.08 and β = 0.1 for a direct numerical
simulation with 3000 returns to D (blue histogram), the return map (63) iterated 105 times
(red line) and the asymptotic approximation to the stationary distribution of the return
map (63) (black line). Right: Noise strength ε = 0.0006 acting everywhere, and the result
of Stone and Holmes [17] (black line).

Before computing additional properties of this solution, we need some results about
stationary distributions about stable fixed points of maps.



2.4 Weak noise estimation of stationary distributions

We can estimate stationary distributions for stochastic mappings with stable deterministic
fixed points or periodic orbits [10]. Suppose that we have the stochatic mapping

zn+1 = f(zn) + εηn, (69)

where ηn ∼ N (0, 1). Then we know that

ρ(zn+1|zn) = N (f(zn), ε2), (70)

and so the stationary distribution statisfies

ρs(z) =

∫
ρ(z|s)ρs(s) ds. (71)

Suppose in addition that (for the simplest possible case) the deterministic part of the
mapping has a singe stable fixed point, f(z∗) = z∗ with |f ′∗| ≡ |f ′(z∗)| < 1. Then we might
suppose that for small noise strength ε, the stationary distribution is centred about z∗ with
some variance σ2 which in general is different from, but related to, ε, and should depend
on the local rate of contraction of f(z) about the fixed point.

To this end, try the ansatz

ρs(z) =
1√

2πσ2
exp

[
−(z − z∗)2

2σ2

]
(72)

=

∫
1

2πεσ
exp

[
−(z − f(s))2

2ε2
− (s− z∗)2

2σ2

]
ds (73)

Now let s = z∗ + εS and z = z∗ + εZ = f(z∗) + εZ. Then, defining α2 = ε2/σ2, we obtain

ρs(z) =

∫
1

2πσ
exp

[
−(Z − f ′∗S)2

2
− α2S2

2

]
dS (74)

≡
∫

1

2πσ
exp(φ(S)) dS. (75)

Now, the function φ(S) has a minima at

S = S0 =
f ′∗

α2 + f ′2∗
Z, (76)

and we may approximate

φ(S) = φ(S0) +
(S − S0)2

2
φ′′(S) (77)

= − α2

α2 + f ′2∗

Z2

2
− (f ′2∗ + α2)

(S − S0)2

2
. (78)



Substituting this back into the integral and evaluating the resulting Gaussian, we obtain

ρs(z) =
1

2πσ

√
2π

f ′2∗ + α2
exp

[
− α2

α2 + f ′2∗

Z2

2

]
(79)

=
1√

2πσ2(f ′2∗ + α2)
exp

[
− α2

α2 + f ′2∗

(z − z∗)2

2ε2

]
, (80)

which is consistent with the original ansatz if σ2 = ε2/(1− f ′2∗ ), and this modified variance
σ2 is positive provided that the fixed point is stable. Hence, an approximate solution is

ρs(z) =
1√

2πε2/(1− f ′2∗ )
exp

[
− (z − z∗)2

2ε2/(1− f ′2∗ )

]
. (81)

Now consider a stable N -cycle {zi}Ni=1 distinct points with f(zi) = zi+1. Define f ′i =
f ′(zi). Then, we pose the ansatz for the stationary distribution

ρs(z) =
N∑
i=1

ai√
2πσ2

i

exp

[
−(z − zi)2

2σ2
i

]
, (82)

with ai > 0 and
∑
ai = 1 so that this represents a probability distribution. An analogous

calculation to the one above gives

ρs(z) =
N∑
i=1

ai√
2πσ2

i (f
′2
i + α2)

exp

[
− α2

i

α2
i + f ′2i

(z − zi)2

2ε2

]
, (83)

where α2
i = ε2/σ2

i .
One of the compatibility conditions gives ai = ai+1, and so ai = 1/N . The other

compatibility condition gives

σ2
i = ε2

1 +
∑N−1

k=1

∏k
j=1 f

′2
i−j

1−
∏N
j=1 f

′2
j

, (84)

where the subscripts are taken modulo N , which reduces to the fixed point case if N = 1.
For the Duffing equation considered above in homoclinic conditions, we have z∗ = 0

and f ′∗ = 0, and so the estimated variance of the stationary distribution is the same as
that for the noise term in the equation. This estimate is plotted in Figure 6 along with
the numerical simulation of the full system, and the map iterated a large number of times
(105). The agreement is not particularly good, but this is due to the fact that z∗ 6= 0 for
the parameter values chosen by Stone and Holmes [17]. We fix this later.

2.5 Timing map for deterministic origin, ξ 6= 0 outside D

We can also compute the time between pulses, or equivalently the time between re-entries
of D. The total flight time is the sum of the time taken to pass through the origin plus the
time taken between leaving and returning to D,

∆n = Torigin + Tflight =
1

λ
log

(
δ

|zn|

)
+ 2tb =

1

λ
log

(
δ

|zn|

)
+ 2 log

(
4

δ

)
. (85)



The timing map should then be independent of δ. Substituting ∆n into the return map
(63) we obtain

e−λ∆n+1 = δ2(λ−µ)16µ−λe−µ∆n +
δ2λ−2ε

16λ

√
4

3
ηn (86)

= e−µ∆n +
ε

16

√
4

3
ηn, (87)

at leading order, since λ, µ = 1 ± εγ/2, and so δ drops out. Note however that we must
keep λ and µ different from one in the exponentials as contraction is necessary for bounded
solutions. This can be seen be noting that if λ = µ = 1 in the return map (63), then zn
satisfies a Wiener process with variance growing linearly with the number of iterations.

We can also demonstrate that the timing map has exponential tails. To see this, recall
that the return map (63) has a stable fixed point at zn = 0 and so the approximations of
the previous section imply that we have the stationary distribution

ρz(z) ≈ N
(

0,
4ε2

3δ2

)
. (88)

Then, the change of variables to ∆ gives

ρ∆(∆) ≈ 16λ

√
3

2π

δ2−2λe−λ∆

ε
exp

[
−δ4−4λ 96

ε2
e−2λ∆

]
(89)

≈ 16λ

√
3

2π

e−λ∆

ε
exp

[
−96

ε2
e−2λ∆

]
(90)

∼ 16λ

√
3

2π

e−λ∆

ε
as ∆→∞ (91)

In Figure 7 we plot the distribution of the times between maxima for the same numerical
simulation as for the return points plotted in 6 along with the estimate above, both with
and without making the approximation δ1−λ = 1. In each case the exponential decay is
correct, but the density without the assumption is more accurate. This is likely due to the
fact that for these parameter values, λ and µ are in fact significantly different from one.
Additionally, for this range of λ and µ, the excursion time away from the origin is not quite
2 log(4/δ), providing an additional source of error. All of these approximation are fixed in
the next section, where we generalise the homoclinic pulse expansion technique of ODE of
Balmforth et al. [4] to stochastic systems.

In addition, we can estimate the expected time between maxima as

E(∆) ≈
∫ ∞

0
16λ

√
3

2π

∆e−λ∆

ε
exp

[
−96

ε2
e−2λ∆

]
d∆ (92)

=

∫ √96/ε

0
16

√
3

2π

1√
96λ

log

(√
96

εs

)
e−s

2
ds (93)

∼ 1

λ
log

(√
96

ε

)
as ε→ 0. (94)
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Figure 7: Probability density of times between maxima to with noise strength ε = 0.0006
acting only outside D, for parameters γ = 0.08 and β = 0.1 for a direct numerical simulation
with 3000 returns to D (blue histogram), the estimated solution with δ1−λ = 1 (red line)
and the estimated solution with δ1−λ 6= 1 (black line).

For the numerical data shown in Figure 7 we have E(∆) = 10.695, and the formula
above with ε = 0.0006 gives E(∆) = 10.097. To compare to the work of Stone and Holmes,
recall that the mean time through the origin was

E(tn) =
1

λ
log

(
δ

ε

)
, (95)

and so the mean flight time is

τ = E(tn) + 2tb (96)

=
1

λ
log

(
δ

ε

)
+ 2 log

(
4

δ

)
(97)

=
1

λ
log

(
δ1−2λ42λ

ε

)
(98)

≈ 1

λ
log

(
16

εδ

)
, (99)

which, in addition to depending explicitly on δ, takes the value 13.003 for the parameters
used here, which is clearly not a good approximation.

2.6 Homoclinic pulse expansion for the stochastic Duffing system

To move away from the assumption that γ, β = O(ε), and to correct the discrepancy with
the timing map distribution requiring δ1−λ = 1, consider the equation

ẍ− x+ x3 + γẋ− βx2ẋ = εσξ(t). (100)



Let γ = γ0(β) be the parameter set for which there exists a homoclinic orbit, and write
γ = γ0 + εγ1. To consider ξ 6= 0 everywhere, we instead make the ansatz for the full solution
as

x(t) =
∑
k

θkH(t− tk) + εR ≡
∑

θkHk + εR, (101)

where H(t) is the homoclinic solution, the sequence of times {tk} are sufficiently widely
seperated so that HkHk±1 = O(ε), the polarity θk = ±1 accounts for the symmetry x 7→ −x,
and εR is the error made in making this assumption. This is the singular perturbation
method for finding timing between homoclinic pulses of ODEs of Balmforth et al. [4], but
here we can generalise it to stochastic systems.

In order to begin the asymptotic expansion, we need to explain what is meant by O(ε)
interaction of neighbouring homoclinic orbits. Most importantly, we need to have an ex-
pansion for the nonlinear terms in (100). For correctly chosen times {tk} we have(∑

k

θkHk

)3

=
∑
k

θkH
3
k + 3

∑
k

H2
k(θk+1Hk+1 + θk−1Hk−1) + O(ε2), (102)

for the cubic term, where the second term is O(ε). The term βx2ẋ may be treated similarly.
The O(ε0) equation is satisfied automatically, and the O(ε) equation in the vicinity of

tk gives

JkR = −3

ε
H2
k(θk+1Hk+1 + θk−1Hk−1) +

β

ε

d

dt
[H2

k(θk+1Hk+1 + θk−1Hk−1)] + σξ − γ1θkḢk

(103)
for each k, where

Jk = L+ 3H2
k − β

d

dt
H2
k . (104)

We note that the correct operator acting on R should involved the sum over all k to include
all pulses, but we note that this sum is highly peaked about each homlinic trajectory, and so
we may approximate by splitting the sum up, and requiring R to satisfy a simpler equation
for each k. The error made in this approximation is of higher order in ε and so we employ
it here [4].

Next, define Nk 6= 0 by
J †kNk = 0. (105)

Then, multiply through by Nk and integrate to obtain

0 =

∫ ∞
−∞

Nk

[
− 3

ε
H2
k(θk+1Hk+1 + θk−1Hk−1)

+
β

ε

d

dt
[H2

k(θk+1Hk+1 + θk−1Hk−1)] + σξ − γ1θkHk

]
dt (106)

=

∫ ∞
−∞

[
− 3Nk + βṄk

ε
H2
k(θk+1Hk+1 + θk−1Hk−1) +Nk(σξ − γ1θkḢk)

]
dt (107)

We have that

Hk−1 ∼ h∞eµ(t−tk−1) as t− tk−1 →∞ (108)

Hk+1 ∼ h0e
λ(t−tk+1) as t− tk+1 → −∞, (109)



and so although strictly speaking we should only integrate the equations over the k-th pulse,
we can approximate the neighbouring pulses in the integral, and integrate over the whole
real line and obtain∫ ∞

−∞
(3Nk + βṄk)H

2
kHk+1 dt ≈

∫ ∞
−∞

(3Nk + βṄk)H
2
kh0e

λ(t−tk+1) dt (110)

= h0e
−λ(tk+1−tk)

∫ ∞
−∞

(3Nk + βṄk)H
2
ke
λ(t−tk) dt (111)

= h0e
−λ(tk+1−tk)

∫ ∞
−∞

(3N + βṄ)H2eλt dt (112)

≡ Ae−λ∆k+1 , (113)

where ∆k = tk − tk−1, and similarly,∫ ∞
−∞

(3Nk+βṄk)H
2
kHk−1 dt ≈ h∞e−µ(tk−tk−1)

∫ ∞
−∞

(3N+βṄ)H2e−µt dt ≡ Be−µ∆k . (114)

We are then left with the timing map

θk+1e
−λ∆k+1 = θkεC + θk−1De

−µ∆k + εσMηk, (115)

where ηk ∼ N (0, 1), C = −C0/A, D = −B/A, M = −M0/A, and

C0 =

∫ ∞
−∞

γ1NḢ dt (116)

M2
0 =

∫ ∞
−∞

N2dt. (117)

We can convert the timing map (115) into a return-like map through the change of
variables zk = θkθk−1 exp(−λ∆k), which gives

zk+1 = εC + sgn(zk)D|zk|µ/λ + εσMηk. (118)

For small ε this equation has a deterministic fixed point z = z∗ = O(ε) with 0 < |f ′∗| . O(1)
when λ and µ are not far from one. Hence, we can approximate the stationary distribution
for zk by

ρzk(z) =
1√

2πε2σ2M2/(1− f ′2∗ )
exp

[
− (z − z∗)2

2ε2σ2M2/(1− f ′2∗ )

]
, (119)

and so the stationary distribution for the timings ∆k is given approximately by

ρ∆k
(∆) =

λe−λ∆√
2πε2σ2M2/(1− f ′2∗ )

(
exp

[
− (e−λ∆ − z∗)2

2ε2σ2M2/(1− f ′2∗ )

]
+ exp

[
− (e−λ∆ + z∗)

2

2ε2σ2M2/(1− f ′2∗ )

])
(120)

∼ 2λe−λ∆√
2πε2σ2M2/(1− f ′2∗ )

exp

[
− z2

∗
2ε2σ2M2/(1− f ′2∗ )

]
as ∆→∞, (121)



and so we obtain an exponential decay of the timing probability density function.
For the parameters γ = 0.08 and β = 0.01 with noise strength εσ = 0.0006, as used by

Stone and Holmes [17], we have εC = −1.362 × 10−6 with fixed point z∗ = −2.576 × 10−6

and f ′∗ = 0.511. Figure 8 shows the estimated densities ρz(z) and ρ∆(∆) respectively, along
with a numerical iteration of the timing map (115).
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Figure 8: Left: Probability density of zk, for parameters γ = 0.08 and β = 0.1 with noise
strength εσ = 0.0006 for the derived asymptotic map (blue histogram), and the estimated
solution with (red line). Right: Probability density of ∆n, for parameters γ = 0.08 and
β = 0.1 with noise strength εσ = 0.0006 for the derived asymptotic map (blue histogram),
the estimated solution with (red line), and its large ∆ exponential decay (black line).

We can also approximate the mean spacing E(∆) from

E(∆) =

∫ ∞
0

∆ρ∆k
(∆) d∆, (122)

which takes different forms in the two cases |z∗| � a� 1 and a� |z∗| � 1, where

a2 = ε2σ2M2/(1− f ′2∗ ), (123)

which is the effective variance of the zn stationary distribution.
First, we look at a� |z∗| � 1, which we would expect to correspond to the case where

noise is not strong enough to change E(∆) from its deterministic value. We have that the
first exponential in the integral for E(∆) takes its maximum at y = e−λ∆ = z∗, which is well
separated from the lower limit of integration, and the second exponential is asymptotically
small. Hence,

E(∆) ∼ 1√
2πa2

1

λ
log

(
1

z∗

)∫ ∞
−∞

e−(y−z∗)2/2a2 dy (124)

=
1

λ
log

(
1

z∗

)
, (125)



which is the deterministic value, as expected.
Next, for |z∗| � a� 1, we expect that the fixed point z∗ does not greatly influence E(∆),

and that the mean spacing should depend instead on a. In this limit, the two exponentials
are comparible, and we may set z∗ = 0 (though not f ′2∗ = f ′20 = 0), so that a remains
unchanged. We then obtain

E(∆) ∼ 2√
2πa2

∫ 1

0

1

λ
log

(
1

y

)
e−y

2/2a2 dy (126)

∼ 2√
π

∫ ∞
0

1

λ
log

(
1

as
√

2

)
e−s

2
ds (127)

=
1

λ
log

(
1

a

)
+

1

2λ
(γe + log 2) (128)

∼ 1

λ
log

(
1

a

)
, (129)

where γe is Euler’s gamma constant.
Figure 9 shows the mean spacing E(∆) as a function of noise strength εσ for the param-

eters γ = 0.08 and β = 0.1, for the timing map (115) and the original stochastic differential
equation. Also plotted are the two asymptotic estimates above, for a � |z∗| � 1 and
|z∗| � a. For the second case, |z∗| � a, we have (γe + log(2))/2λ ≈ 0.661, which is around
5% of the typical mean spacing in this range. For this reason, we plot both the leading order
asymptotic result, and its correction. It is clear that the first correction is needed in this
case. There are also plotted dashed lines at the two locations σε = z∗ and a = a(εσ) = z∗.
A first guess might be that the transition in behaviour occurs when the strength of the
noise εσ is comparable with z∗, but we have shown above that it is in fact the effective noise
strength a that controls the change in behaviour. The figure clearly shows this.

We see also in Figure 9 that the asymptotic approximation (129) begins to break down
as εσ increases from 10−3. This is to be expected eventually since we require a(ε) � 1
for the Laplace approximation of the integral for E(∆) to be valid. Additionally, as E(∆)
decreases, it eventually approaches the flight time taken along the homoclinic orbit, and so
the assumption of well spaced pulses breaks down.

This generalised homoclinic pulse expansion technique has is clearly able to accurately
reproduce the results of the full stochastic differential equations. In stark contrast to the
results of Stone and Holmes [17], we have been able to fully characterise the effect of noise
on the system. It is clear that the results for the noise away from the origin problem and
the noise everywhere case are essentially the same and the the noise near the origin case
of Stone and Holmes is significantly different (see Figures 6 and 8). The dynamics can
be reduced to a simple stochastic one dimensional map of the form zk+1 = f(zk) + σηk
which can be interpreted as the system obeying the deterministic dynamics f(zk) except
for a random ‘kick’ upon re-entry to the origin, which depends on the sensitivity of the
homoclinic solution to noise perturbations along its whole length. The system is controlled
most closely by this kick upon re-entry, and is a fully nonlinear phenomena of the coupling
between noise and nonlinear dynamics.

In the following sections we use the same technique to investigate the two other homo-
clinic systems, and find in each case the simple reduction to a stochastic mapping of the
same form.
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Figure 9: Mean spacing E(∆) as a function of noise strength εσ, for parameters γ = 0.08 and
β = 0.1 for the derived asymptotic map (blue line), and the original stochastic differential
equation (blue dots). Also plotted is the asymptotic result for a� |z∗| � 1 (red line), the
leading asymptotic result for |z∗| � a (orange line) and its correction (solid black line). The
leftmost dashed line shows εσ = z∗ and the rightmost dashed line shows a = a(εσ) = z∗.

3 Stochastic Shimizu–Murayama Model

The deterministic Shimizu–Murayama system [14] models the Lorenz equations at high
Rayleigh number, and for a range of parameters exhibits near homoclinic behaviour [12].
The three-dimensional stochastic system is

ẋ = y + εσξx (130)

ẏ = x(1− z)− λy + εσξy (131)

ż = −α(z − x2) + εσξz, (132)

or equivalently,
d

dt
x = Ax+ f(x) + εσξ, (133)

where x = (x, y, z), ξ = (ξx, ξy, ξz), the matrix A is

A =

0 1 0
1 −λ 0
0 0 −α

 =

0 1 0
1 −λ0 0
0 0 −α

+ ε

0 0 0
0 −λ1 0
0 0 0

 ≡ A0 + εA1, (134)

where λ = λ0 +ελ1 and λ0(α) are the parameter values at which there is a homoclinic orbit,
and the vector f(x) is

f(x) =

 0
−xz
αx2

 . (135)



We will consider cases with α, λ > 0. A sample trajectory with α = 0.4 and λ = 1.1954 is
shown in Figure 2 along with its nearby homoclinic orbit at λ ≈ 1.2054.

This system has fixed points at (0, 0, 0) and (±1, 0, 1). The second of these is either a
stable sink or unstable source. We are interested in the cases for which the origin is a saddle
with two stable directions and one unstable directions. The eigenvalues and eigenvectors at
the origin are

−α :

0
0
1

 stable, (136)

−µ− = (−λ−
√

4 + λ2)/2 :

(λ−
√

4 + λ2)/2
1
0

 stable, (137)

µ+ = (−λ+
√

4 + λ2)/2 :

(λ+
√

4 + λ2)/2
1
0

 unstable. (138)

Let H = (Hx, Hy, Hz) be the homoclinic orbit that leaves the origin with x > 0. This
system has the symmetry (x, y, z) 7→ (−x,−y, z), and so define φH = (θHx, θHy, Hz) for
the polarity θ = ±1. We then pose a solution of the form

x =
∑
k

φkHk + εR, (139)

where Hk = H(t − tk) and the times tk are well-separated so that Hk ·Hk±1 = O(ε).
Then, at O(ε0) we find the homoclinic solution, and at O(ε) we obtain

LφkR =
1

ε
f ′(φkHk) · (φk+1Hk+1 + φk−1Hk−1) +A1Hk + σξ, (140)

where

Lφk =
d

dt
−A0 − f ′(φkHk), (141)

and

f ′(φH) =

 0 0 0
−Hz 0 −θHx

2αθHx 0 0

 (142)

is the Jacobian matrix of the nonlinear part of the differential equations.
Now define L†φk by

L†φk = − d

dt
−A†0 − f

′(φkHk)
†, (143)

and define Nφk 6= 0 by

L†φkNφk = 0. (144)

Note that the equation satisfied by N− is related to that satisfied by N+ through a symme-
try, so that if N+ = (Nx, Ny, N z), then N− = (Nx, Ny,−N z). To this end, write instead
Nφk = ψkNk = (Nx

k , N
y
k , θkN

z
k ) and Nk satisfies

L†+(k)Nk = 0. (145)



Now we may take the dot product of the equation satisfied by R with ψkNk and
integrate to obtain

0 =

∫ [
1

ε
ψkNk · f ′(φkHk) · (φk+1Hk+1 + φk−1Hk−1) + ψkNk · (A1φkHk + σξ)

]
dt.

(146)
In order to estimate the interaction integrals, we note that

H ∼

hx0hy0
0

 eµ+t as t→ −∞ (147)

H ∼

hx∞hy∞
0

 e−µ−t +

 0
0
hz∞

 e−αt as t→∞, (148)

but µ− > α and so we may approximate

H ∼

 0
0
hz∞

 e−αt as t→∞, (149)

which is equivalent to assuming a strong contraction in one of the stable directions, and so
trajectories essentially become two-dimensional when passing nearby to the origin.

We may now approximate each of the interaction integrals to obtain∫
ψkNk·f ′(φkHk) · φk+1Hk+1 dt (150)

=

∫  Nx
k

Ny
k

θkN
z
k

 ·

 0 0 0
−Hz

k 0 −θkHx
k

2αθkH
x
k 0 0

 ·

θk+1h
x
0

θk+1h
y
0

0

 eµ+(t−tk+1) dt (151)

= hx0e
−µ+(tk+1−tk)θk+1

∫
(2αHxN z −HzNy)eµ+t dt (152)

≡ θk+1e
−µ+∆k+1A, (153)

where ∆k = tk − tk−1, and similarly,∫
ψkNk·f ′(φkHk) · φk−1Hk−1 dt (154)

= −hz∞e−α(tk−tk−1)θk

∫
HxNye−αt dt (155)

≡ −θke−α∆kB0. (156)

Putting this together, we obtain the timing map

θk+1e
−µ+∆k+1 = εθkC + θkBe

−α∆k + εσMηk, (157)



where ηk ∼ N (0, 1) and B = B0/A, C = C0/A and M = M0/A, where

C0 =

∫
λ1N

yHy dt, (158)

M2
0 =

∫
N ·N dt. (159)

Figure 10: Timings for the Shimizu–Morioka system with no noise, σ = 0, and parameters
α = 0.4 and λ = 1.1954. Numerical simulation (red), and iterates of the derived timing
map (blue).

Figure 10 shows a comparison between the above timing map and a numerical simulation
of the system for no noise, σ = 0, α = 0.4 and λ = 1.1954. The agreement is very good,
and so we now concentrate only on the map, rather than the numerical simulations.

Figure 11 shows iterations of the derived timing map for noise strengths εσ = 0, 10−4,
10−3 and 4 × 10−3 with α = 0.4 and λ = 1.1954. We see that as the noise strength is
increased, the deterministic structure is gradually broadened and smoothed out, before
eventually being destroyed altogether. However, the shape of the probability distributions
is largely unchanged, and are similar to the Duffing distributions for all noise strengths, as
shown in Figure 12. Only at large noise strengths is there an appreciable shift in the peak
of the distribution and a broadening of the tails.

4 A Stochastic Shilnikov System

Consider the ODE
...
x + γẍ+ ẋ− cx+ x3 = 0, (160)

which is the normal form of a co-dimension three bifurcation [2] with the symmetry x 7→ −x.
Consider a stochastic equivalent of this equation

...
x + γẍ+ ẋ− cx+ x3 + εσξ(t) = 0, (161)



Figure 11: Timings for the Shimizu–Morioka system calculated from the derived map with
noise strengths εσ = 0, 10−4, 10−3 and 4× 10−3 for parameters α = 0.4 and λ = 1.1954.
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Figure 12: Probability density ρ∆(∆) of timings for the Shimizu–Morioka system calculated
from the iterates derived map with noise strengths εσ = 0, 10−4, 10−3 and 4 × 10−3 for
parameters α = 0.4 and λ = 1.1954.

where ξ(t) is a white noise forcing, and σ is an O(1) constant.
When σ = 0, this system has an unstable saddle at the origin, with a one-dimensional

unstable direction and a two-dimensional unstable direction in which the dynamics are a
focus. A sample trajectory for γ = 0.7 and c = 1.108 is shown in Figure 3 along with the
nearby homoclinic orbit with c ≈ 1.107887 which we label H(t), and the time origin is such



that H(t) takes its maxima at t = 0. We label the parameter values at which there exits a
homoclinic orbit as c = c0(γ).

We again make the ansatz

x =
∑
k

θkH(t− tk) + εR, (162)

along with c = c0(γ) + εc1, for some sequence of widely separated times {tk} so that
HkHk±1 = O(ε) and the polarity θk = ±1 accounts for the symmetry x 7→ −x.

The O(ε0) equation is satisfied automatically, and the O(ε) equation is

LkR = c1θkHk −
3

ε
H2
k(θk+1Hk+1 + θk−1Hk−1)− σξ(t), (163)

where

Lk =
d3

dt3
+ γ

d2

dt2
+

d

dt
− c0 + 3H2

k . (164)

Now define the adjoint operator to Lk,

L†k = − d3

dt3
+ γ

d2

dt2
− d

dt
− c0 + 3H2

k , (165)

and the null adjoint solution Nk(t) 6= 0 by

L†kNk = 0. (166)

Multiply the equation for R through by Nk(t) and integrate to obtain

0 = c1θkA−
3

ε

∫ ∞
−∞

NkH
2
k(θk+1Hk+1 + θk−1Hk−1) dt− σ

∫ ∞
−∞

Nkξ dt, (167)

where

A =

∫ ∞
−∞

c1NkHk dt. (168)

We know that

H ∼

{
h0e

λt as t→ −∞,
h∞e

−µt cos(ωt+ φ) as t→∞,
(169)

where λ is the unstable eigenvalue of the origin, and −µ ± iω is the stable eigenvalue, for
some h0, h∞ and φ.

Since the pulse train of homoclinic orbits are widely separated, we have that

3

∫ ∞
−∞

NkH
2
kHk+1 dt ∼

∫ ∞
−∞

NkH
2
kh0e

λ(t−tk+1) dt (170)

= 3h0e
λ(tk−tk+1)

∫ ∞
−∞

NkH
2
ke
λ(t−tk) dt (171)

= 3h0e
−λ(tk+1−tk)

∫ ∞
−∞

NH2eλt dt (172)

≡ e−λ(tk+1−tk)D (173)



and also

3

∫ ∞
−∞

NkH
2
kHk−1 dt ∼

∫ ∞
−∞

NkH
2
kh∞e

−µ(t−tk−1) cos(ω(t− tk−1) + φ) dt (174)

= 3h∞e
−µ(tk−tk−1)

[
cos(ω(tk − tk−1) + φ)

∫ ∞
−∞

NH2e−µt cos(ωt) dt

− sin(ω(tk − tk−1) + φ)

∫ ∞
−∞

NH2e−µt sin(ωt) dt

]
(175)

≡ e−µ(tk−tk−1) cos(ω(tk − tk−1) + Φ)B (176)

Defining the time interval between pulses ∆k ≡ tk − tk−1, we obtain

θk+1e
−λ∆k+1 = εθkC + θk−1Ee

−µ∆k cos(ω∆k + Φ) + εσMηk, (177)

where ηk ∼ N (0, 1), and

C =
A

D
, (178)

E = −B
D
, (179)

M2 =

(
1

D

)2 ∫ ∞
−∞

N2 dt. (180)

Figure 13: Times between pulses for the deterministic timing map (177) iterated 106 times
(blue) and a full numerical simulation with 5500 pulses (red) for c = 1.108 and γ = 0.7.

To verify that we have obtained the correct timing map, we first remove the noise term,
setting σ = 0. Figure 13 shows a comparison of the times between pulses for a full numerical
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Figure 14: Probability density of times between pulses for the timing map (177) iterated
106 times (blue) and a full numerical simulation with 560 000 pulses (red) for c = 1.108 and
γ = 0.7 with noise strength εσ = 10−6.
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simulation of (161) and the derived timing map (177) iterated 106 times for c = 1.108 and
γ = 0.7. The agreement is excellent.

Figure 14 shows a comparison of the probability density of timings ρ(∆) for noise
strength εσ = 10−6 for the timing map (177) iterated 106 times and a direct numerical



computation of (161) for 560 000 pulses. The agreement is excellent, and so we now deal
only with the map.

Figure 15 shows the probability density of timings ρ(∆) for a range of noise strengths,
as well as the deterministic invariant measure normalised to be a probability density. For
very small noise strengths, the peaks of the invariant measure are simply rounded off. For
larger noise strengths, the peaks in the invariant measure are fully homogenised, and a new
smooth peak begins to arise at smaller ∆. Appendix B shows images of the stationary
distribution for a large range of εc1 and εσ. The main features are that as noise strength is
increased, it affects large ∆ and small c1 first. We see clearly that attractors with high ∆
are rapidly smoothed out, and the densities begin to be centered around attractors at lower
∆. There is also evidence of exponential tails at large ∆. This is to be expected, since

ρ∆(∆) = λe−λ∆ρz(e
−λ∆) ∼ λe−λ∆ρz(0) as ∆→∞, (181)

and so we obtain exponential tails provided that ρz(0) is bounded. We can demonstrate
this by observing that

ρz(0) =
1√

2πa2

∫
e−[f(s)]2/2a2ρz(s) ds ≤ 1√

2πa2

∫
ρz(s) ds =

1√
2πa2

. (182)

Figure 16: Times between pulses for the timing map (177) iterated 106 times for noise
strength εσ = 10−6 (purple), 10−5 (yellow), 10−4 (red) and 4× 10−4 (blue) and the deter-
ministic timing map (177) (black lines).

To investigate the emergence of the new peak in the probability density ρ(∆), in Figure
16 we plot iterates of the timing map (177) for various noise strengths εσ along with the full
deterministic map. For the deterministic case, iterates of this map reside in the attracting
set which has ∆ & 15, see Figure 13. For very weak noise, the attracting set remains much



the same, but is simply smoothed out a little. Larger noise strengths blur the deterministic
attracting set completely, but in addition begin to realise, and are attracted to, parts of
the deterministic map at smaller ∆. Such phenomena have been observed by numerous
authors, and are often referred to as ‘noise induced boundary crises’ [11, 8].

There is also a noise threshold beyond which a significant number of trajectories are
attracted to the peak in the deterministic map just to the left of ∆ = 10 beyond which the
map breaks down, and iterates diverge to −∞. This can be rationalised by noticing that
the time of flight for H(t) is approximately 10, and so ∆ < 10 represents solutions that do
not visit the origin at all, and the assumption of widely spaced pulses is no longer valid.

5 Conclusions

Through generalising the singular perturbation analysis of homoclinic pulse dynamics in
ODEs [4] to stochastic systems, we have demonstrated that for a large class of near-
homoclinic dynamical systems, the most significant effect of noise on the timing between
homoclinic pulses and on the position of return of trajectories to the origin is due to a
cumulative effect of noise on the trajectory away from the origin, rather than the details of
the dynamics near to the origin as originally conjectured by Stone and Holmes [17]. This cu-
mulative effect may be interpreted as providing a random kick sampled from a well-defined
normal distribution to a deterministic trajectory just as it enters any domain of interest
centred around and close to the origin, and that this kick is asymptotically large when
compared to the effect of noise within this domain, in which its role is simply to provide a
buffer region of size O(ε) about the stable manifold from which the stochastic trajectory is
ejected, preventing trajectories from remaining within the domain.

We are able to make good analytical progress in the two-dimensional Duffing system
since the resulting return map has a stable fixed point that we can expand around. For
sufficiently small amplitude noise, the dynamics are controlled by the distance from ho-
moclinicity, whilst for sufficiently large amplitude noise, the dynamics is controlled by the
noise by creating an effective distance from homoclinicity based on the standard deviation
of the resulting stationary distribution of the return map.

The derived maps for the Shimizu–Morioka model have nearly the same functional form
as the Duffing system, but the parameter values here allow chaotic solutions. In this system
we demonstrated that the singular perturbation analysis is easily generalisable to inherently
multidimensional dynamics.

The derived maps for Shilnikov system have a rich and varied behaviour, as shown in
Appendix B. Noise acts to smooth out the deterministic system, first at small deviations
from homoclinicity and large spacings, and eventually at all parameter values as the noise
amplitude is increased from zero. We also see noise induced boundary crises [11, 8] in which
the presence of noise causes the stationary distribution to no longer be centered around
the large spacing deterministic attractor, but to swap to another deterministic attractor at
smaller spacing.

In all systems we observe exponential tails in the distribution of timing spacings as in
Stone and Holmes [18], but note that this phenomenon is simply a manifestation of a change
of variables from return points to timings.



We have developed a toolbox for investigating the effects of noise on homoclinic trajec-
tories and have applied it to the two canonical homoclinic bifurcation scenarios, Lorenz and
Shilnikov. Looking forward, we are now in a position to investigate more exotic systems
like heteroclinic networks, bifocal orbits and excitable systems.

We also wish to apply the ideas contained withing this report to PDEs that contain
traveling wave solutions that are of homoclinic or heteroclinic type. Near-homoclinic pulses
can be interpreted as coherent structures in a number of physically relevant PDEs with
traveling wave solutions [3]. A canonical example would be the real Ginzburg–Landau
equation which has ‘kink’ solutions that connect two equilibria. It is know that an initial
distribution of kinks that connect back and forth between the two equilibria will evolve in
time to collide and annihilate each other in finite exponential time [3]. Given the results
presented here, it seems likely that for stochastic dynamics, these annihilations will still
occur, but instead because the kinks will begin to behave like Brownian random walkers.
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A Separating the directions of noise near the Duffing saddle

A.1 Noisy stable direction, ξx1 6= 0 in D

In this case, the deterministic results for x2 still hold, and so the nth residence time tn still
satisfies

tn =
1

λ
log

(
δ

zn

)
, (183)

provided that zn is known. Since we know that upon entrance we have x1 = δ, we wish to
solve the Ornstein-Uhlenbeck process for x1 for the transition probability density

ρ(x1, tn|δ, 0). (184)

The known solution to for x1 is

ρ(x1, tn|δ, 0) = Nx1
(
δe−µtn ,

ε2

2µ
(1− e−2µtn)

)
(185)

= Nx1
(
δ1−µ/λzµ/λn ,

ε2

2µ
(1− δ−2µ/λz2µ/λ

n )

)
(186)

This transition probability density is the the probability density of the exit points wn.
Recalling the linear mapping

zn+1 = αwn + c, (187)

along with standard results for linear combinations of normally distributed random vari-
ables, we see that

ρ(zn+1|zn) = Nz
(
αδ1−µ/λzµ/λn + c,

α2ε2

2µ
(1− δ−2µ/λz2µ/λ

n )

)
. (188)

Finally, since tn = − log(zn/δ)/λ, we have

ρ(tn+1|tn) ≈

λe
−λtNe−λt

(
αe−µtn + c/δ, α

2ε2

2µδ2
(1− e−2µtn)

)
for δ � c� ε,

2λe−λtNe−λt
(
αe−µtn , α

2ε2

2µδ2
(1− e−2µtn)

)
for c� ε.

(189)

For long residency times with µtn � 1, which is valid for δ small enough such that the
deterministic trajectories are very close to the homoclinic orbit, we can make the approx-
imation e−µtn ≈ 0. This is formally equivalent to assuming that trajectories through D
attain a statistically steady state before leaving D. In this case, we obtain

ρs(wn) = Nw
(

0,
ε2

2µ

)
, (190)

ρs(zn) = Nz
(
c,
α2ε2

2µ

)
, (191)

ρs(tn) =

λe
−λtNe−λt

(
c
δ ,

α2ε2

2µδ2

)
for δ � c� ε,

2λe−λtNe−λt
(

0, α
2ε2

2µδ2

)
for c� ε.

(192)



In particular, Es(wn) and Es(zn) are the same as the deterministic result either under the
assumption that µtn � 1 or in the limit n→∞.

Also, for ε� c� δ � 1 we have

Es(tn) =

∫ ∞
0

λte−λt√
πα2ε2/µδ2

exp

[
−(e−λt − c/δ)2

α2ε2/µδ2

]
dt (193)

∼ 1√
πα2ε2/µδ2

∫ ∞
−∞

λt∗e
−λt∗e−λ

2c2µ(t−t∗)2/α2ε2dt (194)

∼ αε
√
πt∗e

−λt∗

c
√
µπα2ε2/µδ2

(195)

∼ 1

λ
log

(
δ

c

)
, (196)

which matches the deterministic result for c 6= 0, where t∗ = log(δ/c)/λ is the stationary
point of the term in the second exponential, and we have employed Laplace’s method for
approximating integrals, with large parameter δ2/ε2.

For c� ε we have

Es(tn) =

∫ ∞
0

2λte−λt√
πα2ε2/µδ2

exp

[
− e−2λt

α2ε2/µδ2

]
dt (197)

=

∫ 1

0

2

λ
√
πα2ε2/µδ2

log

(
1

y

)
exp

[
− y2

α2ε2/µδ2

]
dy (198)

=

∫ δ
√
µ/αε

0

2

λ
√
π

log

(
δ
√
µ

αεs

)
e−s

2
ds (199)

∼
∫ ∞

0

2

λ
√
π

log

(
δ
√
µ

αεs

)
e−s

2
ds (200)

=

∫ ∞
0

2

λ
√
π

log

(
δ

ε

)
e−s

2
ds+

∫ ∞
0

2

λ
√
π

log

(√
µ

αs

)
e−s

2
ds (201)

∼ 1

λ
log

(
δ

ε

)
, (202)

since the second integral in (201) is just some O(1) number. This is the same result as for
noise uniformly every within D.

Figure 17 shows a comparison between a direct numerical simulation for the return
and leave probability densities ρ(zn) and ρ(wn) respectively, and their long residency time
asymptotic stationary limit for γ = 0.08, β = 0.01, δ = 0.1, ε = 0.0006, α = 1 and c = 0.
There is clearly a very good match. The mean of tn = log(δ/|zn|)/λ is 6.264, and the value
of its asymptotic result log(δ/ε)/λ is 5.325.

A.2 Noisy unstable direction, ξx2 6= 0 in D

In this case we have x1 = δe−µt and x2 satisfies the unstable Ornstein-Uhlenbeck process
with transition density

ρ(x2, t|zn, 0) = Nx2
(
zne

λt,
ε2

2λ
(e2λt − 1)

)
(203)
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Figure 17: Left: Probability density of return points zk to D with δ = 0.1 and noise strength
ε = 0.0006 acting only in the stable direction of the saddle, for parameters γ = 0.08 and
β = 0.1 for a direct numerical simulation with 2250 returns to D (blue histogram) and the
long residency time asymptotic stationary distribution (191) with α = 1 and c = 0 (red
line). Right: Leave points wk.

In the case of large times, λt� 1 we get

ρ(x2, t|zn, 0) ∼ N
(
zne

λt,
ε2

2λ
e2λt

)
(204)

In this limit we also have wn ≈ 0, and so zn+1 ∼ c provided that c is not too small.
In order to find the exit point wn we need a distribution for the time taken for x2 to

leave D. We have by definition

P(tn > t) =

∫ δ

−δ
ρ(x2, t|zn, 0) dx2 (205)

=

∫ δ

−δ

√
λ

πε2(e2λt − 1)
exp

[
−λ(z − zneλt)2

ε2(e2λt − 1)

]
dz (206)

=
1

2

[
erf

(
δ − zneλt

σ(t)

)
+ erf

(
δ + zne

λt

σ(t)

)]
, (207)

where σ(t)2 = ε2(e2λt − 1)/λ ∼ ε2e2λt/λ. Note that under the assumption that zn ∼ c, the
error functions have widely different expansions in all the cases c � ε � δ, ε � c � δ,
ε � δe−λt and c � δe−λt, due to the exponential expansion casing rapid reordering of
terms.



Define b±(t) = (δ ± zneλt)/σ(t). Then,

ρ(tn|zn) =
d

dt
(1− P(tn > t)) (208)

= − 1√
π

[
b′+e
−b2+ + b′−e

−b2−
]

(209)

=

√
λ3

πε2(e2λt − 1)3

[
(δe2λt + zne

λt) exp

(
−λ(δ + zne

λt)2

ε2(e2λt − 1)

)
+ (δe2λt − zneλt) exp

(
−λ(δ − zneλt)2

ε2(e2λt − 1)

)]
(210)

=

√
λ3

πε2(1− e−2λt)3

[
(δe−λt + zne

−2λt) exp

(
−λ(δe−λt + zn)2

ε2(1− e−2λt)

)
+ (δe−λt − zne−2λt) exp

(
−λ(δe−λt − zn)2

ε2(1− e−2λt)

)]
(211)

Then, since wn = δe−µtn , we have

ρ(wn|zn) =
1

2µwn

√
λ3

πε2(1− (wn/δ)2λ/µ)3[
(δ(wn/δ)

λ/µ + zn(wn/δ)
2λ/µ) exp

(
−λ(δ(wn/δ)

λ/µ + zn)2

ε2(1− (wn/δ)2λ/µ)

)

+ (δ(wn/δ)
λ/µ − zn(wn/δ)

2λ/µ) exp

(
−λ(δ(wn/δ)

λ/µ − zn)2

ε2(1− (wn/δ)2λ/µ)

)]
. (212)

Finally, since zn+1 = αwn + c, we obtain the transtion density

ρ(zn+1|zn) =
1

2µ(zn+1 − c)

√
λ3

πε2(1− ((zn+1 − c)/αδ)2λ/µ)3[
(δ((zn+1 − c)/αδ)λ/µ + zn((zn+1 − c)/αδ)2λ/µ)

exp

(
−λ(δ((zn+1 − c)/αδ)λ/µ + zn)2

ε2(1− ((zn+1 − c)/αδ)2λ/µ)

)
+ (δ((zn+1 − c)/αδ)λ/µ − zn(zn+1 − c)/αδ)2λ/µ)

exp

(
−λ(δ((zn+1 − c)/αδ)λ/µ − zn)2

ε2(1− ((zn+1 − c)/αδ)2λ/µ)

)]
. (213)

Note that unless λ/µ = 1, these distributions are not Gaussian, since for example,
ρ(wn = 0|zn) =∞. In general, we have λ/µ = 1− εγ + O(ε2).

We can approximately find stationary distriubtions by the relation

ρs(z) =

∫ ∞
−∞

ρ(z|s)ρs(s) ds = limn→∞
1

n

n∑
i=1

ρ(z|zi), (214)



where zi is some predetermined sequence of known values of the stochastic process. For
this, we can use DNS of the equations of motion to produce a sequence {zi}n1 for some large
n, and estimate ρs.
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Figure 18: Probability density of return points zk to D with δ = 0.1 and noise strength
ε = 0.0006 acting only in the unstable direction of the saddle, for parameters γ = 0.08 and
β = 0.1 for a direct numerical simulation with 2250 returns to D (blue histogram) and the
long residency time asymptotic stationary distribution approximation (214) with α = 1 and
c = 0 (red line). Right: leave points wk.

Figure 18 shows a comparison between a direct numerical simulation for the return and
leave probability densities ρ(zn) and ρ(wn) respectively, and their stationary approximations
using (214) for γ = 0.08, β = 0.01, δ = 0.1, ε = 0.0006, α = 1 and c = 0. Plotted also is the
Gaussian distribution for noise in the stable direction only. The leaving distribution ρ(wn) is
well approximated by the result here, and is clearly non-Gaussian. The return distribution
ρ(zn) is more closely Gaussian, and suggests that the linear approximation zn+1 = αzn + c
is not completely valid.



B Stationary probability densities ρ∆(∆) for the Shilnikov
system

B.1 εσ = 0

Figure 19: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 0. Color from blue to yellow represents low to high values.
Scale is arbitrary. White lines show regions plotted in Figures 20 and 21.

Figure 20: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 0. Color from blue to yellow represents low to high values.
Scale is arbitrary. White lines show region plotted in Figure 21.



Figure 21: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 0. Color from blue to yellow represents low to high values.
Scale is arbitrary.

B.2 εσ = 10−8

Figure 22: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−8. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show regions plotted in Figures 23 and 24.



Figure 23: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−8. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show region plotted in Figure 24.

Figure 24: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−8. Color from blue to yellow represents low to high
values. Scale is arbitrary.



B.3 εσ = 10−7

Figure 25: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−7. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show regions plotted in Figures 26 and 27.

Figure 26: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−7. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show region plotted in Figure 27.



Figure 27: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−7. Color from blue to yellow represents low to high
values. Scale is arbitrary.

B.4 εσ = 10−6

Figure 28: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−6. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show regions plotted in Figures 29 and 30.



Figure 29: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−6. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show region plotted in Figure 30.

Figure 30: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−6. Color from blue to yellow represents low to high
values. Scale is arbitrary.



B.5 εσ = 10−5

Figure 31: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−5. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show regions plotted in Figures 32 and 33.

Figure 32: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−5. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show region plotted in Figure 33.



Figure 33: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−5. Color from blue to yellow represents low to high
values. Scale is arbitrary.

B.6 εσ = 10−4

Figure 34: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−4. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show regions plotted in Figures 35 and 36.



Figure 35: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−4. Color from blue to yellow represents low to high
values. Scale is arbitrary. White lines show region plotted in Figure 36.

Figure 36: Stationary probability density ρ∆(∆) of the timing map (177) for the Shilnikov
system for noise strength εσ = 10−4. Color from blue to yellow represents low to high
values. Scale is arbitrary.


