
Wave–mean-flow interaction in Oldroyd-B fluid

Amit Apte

1 Introduction

The effects of waves on the mean-flow have been extensively studied, most notably in
the studies of oceanic and atmospheric waves. But waves in non-Newtonian fluids have
not received much attention. I will be focusing here on the wave–mean-flow interaction
in Oldroyd-B fluid. This is done in a very simple flow profile to study clearly various
phenomena arising because of elasticity.

I will start by studying the linear equations in section Sec. 2. The equations for mean-
flow response are obtained after introducing zonal averaging in section Sec. 3. I discuss
and apply the Generalized Lagrangian Mean theory in section Sec. 4. The spin-up and
spin-down problem, discussed in section Sec. 5, illustrates some of the peculiar features of
the mean-flow response. I conclude with a few remarks and indicate some directions for
further studies.

2 Linear theory

The Oldroyd-B model for an incompressible fluid is given by:

∇ · u = 0 , (1)

∂u

∂t
+ u · ∇u = −∇p + ν∇2u + G∇ · A , (2)

∂A

∂t
+ u · ∇A − (∇u)T · A − A · ∇u = −1

τ
(A − I) . (3)

I have set the constant fluid density ρ = 1. The momentum equation contains the divergence
of the polymeric stress GA. This extra stress simply advects with the flow, as given by
the “upper convected derivative” [left hand side of (3)], but it also relaxes to I with a time
constant τ .

multiplying the momentum equation (2) by u· we can get the equation for energy:

(

∂

∂t
+ u · ∇

)(

1

2
u2 +

G

2
tr A

)

= ∇ · (−up + ν∇u · u + Gu · A) − ν∇u : ∇u − G

2τ
(tr A − 3) . (4)
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Thus we see that in addition to viscosity, the relaxation of polymeric stress also dissipates
energy. In most of the following, I will consider the “ideal” limit of this model: an inviscid,
relaxation-less Oldroyd-B fluid with ν = 0 and 1/τ = 0. In this limit, the energy is
conserved.

I consider the flow in an semi-infinite two dimensional domain D = {(x, y)| −∞ < x <
∞, h(x) <= y < ∞}. We can satisfy two boundary conditions at the boundary y = h(x):
the free-slip condition u · n̂ = 0, and the condition of no tangential stress n̂ × (A · n̂) = 0.
Here n̂ is the normal to the lower boundary: n̂ = (−hx(x), 1).

I will study waves on following one dimensional constant flow profile, thus avoiding
problems of critical layers:

u = (U, 0) , p = p0 , A = I , and h(x) = 0 . (5)

In the absence of relaxation, the stress A can be any constant matrix, not necessarily I.
But the above choice was made with the following in mind: The qualitative features of
the wave–mean-flow interaction do not change by assuming it to be I; Also, one of the
extensions of this problem, to be studied later, is the flow in presence of relaxation when
the stress A for the background flow must be I.

Substituting

u = (U, 0) + u′ , p = p0 + p′ , and A = I + A′ , (6)

in (1)-(3), denoting Dt := ∂/∂t + U∂/∂x, and keeping terms linear in perturbed quantities,
we get the following linear equations:

∇ · u′ = 0 , (7)

Dtu
′ = −∇p′ + G∇ · A′ , (8)

DtA
′ =

(

∇u′)T + ∇u′ . (9)

The boundary for the linear problem is chosen to be h(x) = h0 cos(kx) with a small ampli-
tude h0, i.e., a := h0k � 1 is the small parameter. The energy conservation equation for
the linear problem is the following:

Dt

(

1

2
u′2 +

G

4
tr A′2

)

= ∇ ·
(

−u′p′ + Gu′A′) . (10)

I will introduce the particle displacement associated with the perturbation flow u′ as
Dtξ

′ = u′. Then we can explicitly integrate (9) to get

A′ = (∇ξ′)T + ∇ξ′ . (11)

Using the incompressibility equation ∇ · ξ′ = 0, we get

∇ · A′ = ∇2ξ′ + ∇(∇ · ξ′) = ∇2ξ′. (12)

This reduces the momentum equation (8) to

Dtu
′ = −∇p′ + G∇2ξ′ . (13)
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By taking the divergence of the above equation, and using incompressibility, we see an
important consequence that pressure is an harmonic function:

∇2p′ = 0 (14)

The relation (11) is reminiscent of the stress-strain relation for a solid. In fact, we
will see later that the vorticity waves for this linear model are the same as elastic waves
in an incompressible linear elastic solid. The analogy fails when I consider the potential
flow and satisfy the boundary condition on tangential stress: a solid can support tangential
stresses at the boundary and these must be specified to solve the problem, while I impose
the condition that the tangential stress is zero for this ideal Oldroyd-B fluid. Thus the
only difference between a solid and this ideal limit of Oldroyd-B fluid is in the boundary
conditions.

We can find two kinds of waves from the linear equations. I begin by considering the
vorticity waves. With vorticity defined as q′ = v′x − u′

y, we get

D2
t q

′ = Dt

(

Dtv
′
x − Dtu

′
y

)

,

= Dt

((

−pxy + G∇2η′x
)

−
(

−pxy + G∇2ξ′x
))

,

= G∇2
(

Dt

(

η′x − ξ′x
))

,

which gives the vorticity wave equation:

(D2
t − G∇2)q′ = 0 . (15)

The dispersion relation for the vorticity waves [with q′ ∼ exp(ik · x − iωt)] is

ω = Uk ±
√

G|k| =: Uk + ω̂ . (16)

Here, ω̂ is the intrinsic frequency of the waves ,i.e., frequency in the frame moving with the
background flow, whereas ω is the frequency with respect to the boundary. The magnitudes
of intrinsic group and phase velocities are equal and are given by

vp = vg = ±
√

G . (17)

Stationary vorticity waves have ω = 0. Choosing U > 0 and k > 0, we see that we must
choose the lower sign in (16). Then solving for l, we get

l = ±k

√

U2

G
− 1 . (18)

This shows that for U 2 > G the waves are propagating while for U 2 < G they are evanescent.
This is also seen by writing (15) as

[(U2/G − 1)∂2
x − ∂2

y ]q′ = 0 . (19)

I note that this equation is elliptic for U 2 < G and parabolic for U 2 = G, but is hyperbolic
otherwise.
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I choose the lower sign in (18) so that these are outgoing waves (i.e., the y-component
of vpk/|k| is positive). These are pressure-less waves p′ = 0. All the other fields are given
by

ξ′ = −G
√

U2/G − 1

kU2
cos(kx + ly) , η′ = − G

kU2
cos(kx + ly) , (20)

u′ =
G
√

U2/G − 1

U
sin(kx + ly) , v′ =

G

U
sin(kx + ly) , (21)

A′
xx = −A′

yy =
2G
√

U2/G − 1

U2
sin(kx + ly) , A′

xy =
2G − U2

U2
sin(kx + ly) . (22)

The vorticity waves alone cannot satisfy both the free-slip and tangential stress-free
boundary conditions. Thus I look for the other solution of the linear problem, i.e., potential
flow. Assuming u′ = ∇φ′, i.e. q′ = 0, we get from the continuity equation that φ′ is a
harmonic function ∇2φ′ = 0. Requiring that φ′ oscillates in x, remains bounded as y → ∞,
and looking for stationary solutions (∂/∂t = 0), we get

φ′ = <U

k
ieikx−ky = −U

k
sin(kx)e−ky . (23)

Using u′ = ∇φ′, Dtξ
′ = (∂/∂t + U∂/∂x)ξ′ = U∂ξ′/∂x = u′, and A′ = (∇ξ′)T + ∇ξ′ gives

all the quantities for the potential flow:

ξ′ = −1

k
sin(kx)e−ky , η′ = −1

k
cos(kx)e−ky , (24)

u′ = −U cos(kx)e−ky , v′ = U sin(kx)e−ky , (25)

A′
xx = −A′

yy = −2 cos(kx)e−ky , A′
xy = 2 sin(kx)e−ky . (26)

The pressure for the potential flow is not zero but decays exponentially: p′ = U2 cos(kx)e−ky.
Both the above solutions are written so that the y-particle displacement is in phase with

the boundary h(x). I write the total solution as ξ ′ = αξ′(1) + βξ′(2), where ξ′(1) and ξ′(1) are
respectively the vorticity wave and potential flow solutions. The constants α and β can be
found from the two boundary conditions as follows:

u · n̂ = 0 , ⇒ v′|y=0 = Uhx(x) , ⇒ G α + U2β = −aU2 .

n̂ × (A · n̂) = 0 , ⇒ A′
xy|y=0 = 0 , ⇒ (2G − U2) α + 2U2β = 0 .

Solving the last two equations, we get

α = −2a, and β = a

(

2G

U2
− 1

)

. (27)

Thus, we see that β = 0 for U 2 = 2G, which can also be seen directly from (22), because
A′

xy = 0 in that case and the boundary condition is satisfied with the vorticity waves alone.
This specific velocity will be important again when we later consider drag.

Briefly going back to the full set of Oldroyd-B equations (1)-(3), I will get the dispersion
relation for vorticity waves with relaxation and dissipation. The linear equations in that

136



case are

∇ · u′ = 0 , (28)

Dtu
′ = −∇p′ + ν∇2u′ + G∇ · A′ , (29)

DtA
′ =

(

∇u′)T + ∇u′ − 1

τ
A′ . (30)

Then the equations for vorticity q′ = ∇× u and Ω′ := ∇× (∇ · A′) become

Dtq
′ = −1

τ
q′ + ∇2Ω′ , (31)

DtΩ
′ = ν∇2Ω′ + Gq′ . (32)

These equations give the following dispersion relation:

ω = Uk − i

2

(

1

τ
+ ν|k|2

)

±
√

G|k|
√

1 − (ντ |k|2 − 1)2

4Gτ2|k|2 . (33)

As another aside, if the background A is not equal to I but some constant symmetric
matrix M, then the dispersion relation is given by

ω̂ =
√

G
√

k · M · k . (34)

This is very much like the dispersion relation for Alfvén waves in magnetohydrodynamic
flows. This kind of analogy between non-Newtonian fluid flow and magnetohydrodynamic
has been studied in different context in [5] and exploring it in greater details will be inter-
esting.

3 Zonal averaging and small amplitude expansion

We will be interested in the effect of the waves on the mean-flow. To study this, we introduce
the concept of zonal averaging, which is defined by

f :=
1

L

∫ L

0
f(x, y, t)dx , (35)

for any function which is periodic in x with period L. I will take L to be the wavelength
2π/k of the boundary. The disturbance part is defined as f ′ := f − f . This is an exact
decomposition without any assumption about small amplitude expansion, i.e., f ′ is not
necessarily a “small” quantity.

A few properties, obtained by integrating by parts, will be very useful for further cal-
culations:

fx = (f)x =
1

L

∫ L

0
fxdx = f(L) − f(0) = 0 ; (36)

fxg =
1

L

∫ L

0
fxgdx = −fgx ; fyg = (fg)y − fgy ; (37)

AB = A B + A′B′ . (38)
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Now we will look for equations for the averaged quantities like u etc. by averaging the
Oldroyd-B equations. The continuity equation gives

ux + vy = vy = 0 ,⇒ v = 0 .

This is the first simplification obtained by introducing the concept of zonal averaging: the
average y-velocity is zero and we need to consider only the equation for u.

The averaged x-momentum equation is:

ut + uux + vuy + px = G(Axx,x + Axy,y) . (39)

The second, fourth, and fifth terms vanish while the third term reduces to average over
product of disturbance parts:

uux =
1

2

(

u2
)

x
= 0 ,

px = 0, and Axx,x = 0 ,

vuy = v uy + v′u′
y = 0 + (v′u′)y − v′yu

′ = (v′u′)y + u′
xu′ = (v′u′)y + 0 .

Thus we get the following x-momentum equation:

ut + (v′u′)y = GAxy,y . (40)

This equation shows another simplification of zonal averaging: the nonlinear terms contain
only the disturbance parts and only one component of A appears in the x-momentum
equation.

The equations for A can also be reduced to simpler form in similar fashion. Since only
the component Axy appears in the x-momentum equation, I will concentrate on the equation
for Axy:

Axy,t + (v′A′
xy)y = uyAyy + u′

yA
′
yy + v′xA′

xx (41)

Again almost all the nonlinear terms, except the first one on right hand side, contain only
the disturbance parts. In order to get a full set of equations, we will need equations for
Ayy and Axx. But, at this stage I will introduce the small-amplitude expansion to study
small-amplitude waves [which are O(a)] and their effect, accurate only up to O(a2), on the
flow. We will see later that the above equations for u and Axy form a closed set of equations
after introducing the small-amplitude expansion.

For considering the small-amplitude waves, I will expand all the physical quantities in
the following asymptotic expansion:

f = F + f1 + f2 + · · · + fn + O(an+1) , (42)

where F is the O(1) background and fn = O(an). Each term of this expansion is decomposed
into an average and a disturbance part:

fn = fn + f ′
n . (43)

By definition, the background contains no disturbance part, i.e. F ′ = 0, while the first
order quantities contain no mean part: f 1 = 0. Thus, keeping only the terms up to O(a2)
gives:

u = U + u2 ; u′ = u′
1 + u′

2 ; A = I + A2 ; A′ = A′
1 + A′

2 .
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Thus we see that (40) and (41) correct up to O(a2) are:

u2t + GA2xy,y = (v′1u
′
1)y , (44)

A2xy,t − u2y = −(v′1A
′
1xy)y + u′

1yA
′
1yy + v′1xA′

1xx . (45)

We note that only the first order part of the disturbance and second order part of the mean
appear in the above equations. This allows us to drop ( )1 from disturbances and ( )2 from
means.

The above are wave equations for the means u and Axy. Note that there are source
terms which appear as products of first order disturbances. Thus the effect on the mean-
flow of the propagating vorticity waves and evanescent potential flow travels as a wave. The
wave speed of this wave is

√
G which is greater than (l/

√
k2 + l2)

√
G =

√
G
√

1 − G/U2

that is the y-component of group velocity of O(a) vorticity waves. Thus we will distinguish
between the waves of the mean part as “fast” vs. the waves of the disturbance part as
“slow” waves.

The sources in the above equations appear only in terms of the first order disturbance
parts. If we take a particular solution of the linearized equations (as given towards the end
of Sec. 2), then we know the right hand sides of the above equations and we can solve them
explicitly for u and Axy. But at this stage, I will introduce the ideas of Lagrangian mean

averaging in contrast with the Eulerian zonal averaging ( ) that we have been using so far.
The motivation for this step is that, in many cases, the equations in terms of Lagrangian
averaged quantities are much simpler than those in terms of Eulerian means. We will soon
see that such is indeed the case here.

4 Lagrangian mean averaging

In this section, I give a very brief introduction to Generalized Lagrangian Mean theory,[1,
2, 3] before applying it to the present problem. The GML theory obtains equations in terms
of quantities averaged along the particle trajectory instead of averaging at a given spatial
point, which is the case for Eulerian averaging. Thus, one of the main quantities to be used
through-out the GLM theory is the disturbance related particle displacement field ξ(x, t).
For example, the ξ′ in (20) is the particle displacement field for the O(a) vorticity waves.

The crux of the GLM theory is in the following two requirements:

• The field ξ(x, t) is defined in such a way that x + ξ(x, t) is the actual position of the
fluid particle whose mean position at time t is x. Thus if we define Ξ = x + ξ(x, t),
then we require that Ξ = x. This is equivalent to requiring that ξ is a disturbance
quantity.

ξ(x, t) = 0 . (46)

• The other requirement is that x + ξ(x, t) gives the actual trajectory of the material
element of the fluid, i.e., the velocity of that point is the actual fluid velocity uξ at
x + ξ.

D
L
Ξ = uξ , (47)

where I have defined D
L

:= (∂/∂t + uL · ∇) .
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Any field f(x, t) is “lifted” to the actual particle position by defining

f ξ(x, t) := f [x + ξ(x, t)] . (48)

The Lagrangian-mean operator ( )
L

is then defined to be the average taken with respect
the displaced position x + ξ, i.e.,

f(x, t)
L

:= f ξ(x, t) = f [x + ξ(x, t)] . (49)

The main idea behind GLM theory is that the equations in terms of Lagrangian-averaged
quantities should be of the same form as the original equations. As an example, consider a
scalar quantity θ that is advected by the flow:

Dθ

Dt
=

(

∂

∂t
+ u · ∇

)

θ = 0 . (50)

With the above definitions and requirements, we can show that the Lagrangian-mean version
of this equation is simply

D
L
θ

L
=

(

∂

∂t
+ uL · ∇

)

θ
L

= 0 . (51)

This is much simpler than the Eulerian mean equation which contains products of distur-
bance parts from the nonlinear terms:

(

∂

∂t
+ u · ∇

)

θ = −(u′ · ∇θ′) . (52)

For a vector or tensor field that is advected by the flow, the corresponding mean field can be
defined in appropriate way so that the equation for advection remains form invariant under
Lagrangian averaging.[3] In the absence of relaxation, the symmetric tensor A satisfies the
equation

∂A

∂t
+ u · ∇A − (∇u)T · A − A · ∇u = 0 . (53)

If we define the mean stress tensor by

Âij :=

(

Aξ
mnKmiKnj

J

)

, (54)

where J is the Jacobian of the transformation x → Ξ = x + ξ(x, t):

J =

∣

∣

∣

∣

∂(Ξ)

∂(x)

∣

∣

∣

∣

= |δij + ξi,j | , (55)

and Kmn are the cofactors of the above matrix, then it can be verified that this mean vector
is advected by the Lagrangian-mean velocity field, i.e.,

∂Â

∂t
+ uL · ∇Â −

(

∇uL
)T · Â − Â · ∇uL = 0 . (56)
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Now we transform the wave equations for u and Axy into equations for the Lagrangian-
mean quantities uL and Âxy defined as follows:

uL := u + (η′u′)y ,

Âxy := Axy + (η′A′
xy)y + ξ′xξ′y + η′xη′y .

These definitions agree with the above definitions (49) and (54) up to O(a2).
The averaged equations for these Lagrangian mean quantities take very simple form as

seen by using the linear equations [(7)-(9) and ∇·ξ = 0] for the O(a) disturbance fields and
the properties (36)-(38) of the Eulerian averaging:

uL
t − GÂxy,y = (η′xp′)y =: Sy(y, t) , (57)

Âxy,t − uL
y = 0 . (58)

For example,

Âxy,t − uL
y = −(v′A′

xy)y + 2v′xξ′x + 2u′
yη

′
y

+ (v′A′
xy)y + (u′

yη
′)y + (v′xη′)y

+ u′
xξ′y + u′

yξ
′
x + v′xη′y

+ v′yη
′
x − (u′

yη
′)y − (u′η′y)y

= 0 .

A very similar, though tedious, calculation verifies the other equation. Using the previous
linear solution, we can get the source inside the fully-developed wave-front to be:

Sy(y, t) = (η′xp′)y = h0k
2Ge−ky

[

sin(ly) − cos(ly)

√

U2

G
− 1

]

. (59)

Thus we see that the source term drops off exponentially because it gets contribution only
from to the evanescent potential flow. Far enough from the boundary, these are source-
free wave equations. This is in contrast to the much more difficult situation of the wave
equations (44)-(45). The source terms for those equations get contributions from both the
potential flow and the vorticity waves and are present even far from the boundary.

5 Spin-up problem

I will present the solution of the wave equations for the fast waves with the perturbation
turned on at t = 0. The boundary condition of no tangential stress (A′

xy = 0 at the

boundary) gives the boundary condition for Âxy. I define the drag D to be GÂxy at the
boundary:

D := GÂxy|y=0 = 2Gξ′xη′x
∣

∣

y=0
=

2h2
0k

2G2

U2

√

U2

G
− 1 > 0

First I solve equations (57)-(58) dropping the source term Sy but with the boundary con-
dition

Âxy(y = 0, t) =
D

G
H(t) , (60)
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where H(t) is the Heaviside step function. This gives the following solution:

Âxy(y, t) =
D

G
H(

√
Gt − y) , (61)

uL(y, t) = − D√
G

H(
√

Gt − y) . (62)

Thus the total mean-flow (including the O(1) and O(a2) parts) is

uL =

{

U − D/
√

G if y < t
√

G ,

U if y > t
√

G .
(63)

Now solving these equations by keeping the source term ∂S(y, t)/∂y but with the boundary
condition Âxy(y = 0, t) = 0, we get the following solution:

Âxy(y, t) =
1

G

[

S(y +
√

Gt) + S(|y −
√

Gt|)
]

, (64)

uL(y, t) =
1√
G

[

S(y +
√

Gt) + S(|y −
√

Gt|)
]

. (65)

Since S(y, t) decays exponentially in y, the effect of this term is seen only locally near the
wave front. The main effect on the mean-flow is because of the drag at the boundary as
given by (62).

Now, I plot the drag as a function of Mach number M := U/
√

G in Fig. 1. We see that
the drag reduces as a function of velocity for large background velocity U . Also for a fixed
U , decreasing G leads to increasing Mach number and decreasing drag. This suggests that
there might be an interesting connection of this problem to drag reduction.

Now we look at the energy conservation for the linear equations. Averaging (10) over x
and integrating over y we get:

d

dt

∫ vgt

0

(

1

2
u

′2 +
G

4
tr(A

′2)

)

dy +

∫ ∞

0

(

v′p′ + Gu′A′
xy + Gv′A′

yy

)

y
dy

= vg

(

u′2 + v′2
)

+
(

v′p′ − Gu′A′
xy − Gv′A′

yy

)

|y=∞
y=0

= −(2h2
0k

2G2/U)
√

U2/G − 1 + UGÂxy|y=0

= −UD + UGÂxy|y=0

= 0 .

This shows that the energy at O(a2) is carried by the O(a) vorticity waves. This can be
seen from, for example, the kinetic energy term u2/2. The contribution to this term from
the O(a2) mean-flow u is only O(a4). Thus the O(a2) contribution comes only from the
O(a) disturbance solution.

The momentum balance is given by integrating the momentum equation:

d

dt

∫

√
Gt

0
uLdy −

∫ ∞

0
GÂxy,ydy −

∫ ∞

0
Sydy

=
√

GuL − GÂxy|y=∞
y=0 − S|y=∞

y=0

=
√

GuL + GÂxy|y=0

= 0 .
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0
0

1
M := U/

√
G

D
=
[

2a
2
G
√

(M
2
−

1)
]

/M
2

√
2

a2G

Figure 1: Drag on the mean-flow as a function of Mach number

Thus we see that the momentum at O(a2) is carried by the fast moving mean-flow response.
This is because momentum is linear in, for example, u and the O(a) disturbance part does
not make any contribution.

The curious difference between the speeds of propagation of the O(a) disturbance waves
and O(a2) mean-flow response gives rise to separation between energy and momentum of
the flow at O(a2). Suppose that the perturbation is kept on from t = 0 to t = T . Also
assume T to be large enough for the stationary waves to develop fully. Then, at some later
time t � T , the wavefront of the slow O(a) vorticity waves will be traveling at a speed
vs :=

√
G
√

1 − G/U2 and these are the waves that carry the energy from the boundary.
But the fast O(a2) waves (the mean-flow response), which carry the momentum from the
boundary, will be traveling at a speed

√
G. Also, the effect on the mean-flow is seen even

before the O(a) waves arrive! This is shown in Fig. 2.

6 Conclusion

We have studied the various phenomena associated with waves propagating in the inviscid
relaxation-less Oldroyd-B fluid. One of the main results is that the waves do not directly
affect the mean-flow in the sense that the region where the mean-flow is affected can be
separate from the region where the waves actually exist. The results were obtained by using
the Generalized Lagrangian Mean theory.

There are several directions in which these results can be extended. Studying the full
Oldroyd-B equations (with viscosity and relaxation) will be interesting. This might change
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uL

t
√

G

(t − T )
√

G

tvs

(t − T )vs

U − D/
√

G U

Waves

Mean-flow response

Figure 2: Mean-flow response due to the waves. Here vs is the speed of the vorticity waves,
shown by the shaded region.

the results significantly because we will need to use the no-slip boundary condition instead
of free-slip condition. The inviscid relaxation-less model can be studied in the Hamiltonian
formulation [using a non-canonical Poisson bracket and the Hamiltonian given by the left
hand side of (4)]. Such an approach is developed in [4]. Studying the Lagrangian-mean
theory in this Hamiltonian formulation can give insights into the (pseudo)energy and mo-
mentum equations. The interesting result about decrease in drag as a function of velocity
can have some implications for turbulent drag reduction!
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