
Response of Thermohaline Circulation to Changes

in Precipitation

Yuki Yasuda

October 1, 2013

1 Introduction

The oceanic thermohaline circulation has important roles in the global
heat transport and hydrological cycle by transporting heat from low lati-
tudes to high latitudes and by transporting freshwater from high latitude
to low latitude. Especially, the marginal sea (e.g., Labrador and Greenland
Seas) is important for the thermohaline circulation, because it is one of a
few origins of the deep ocean water [4] and because waters such as Labrador
Sea water spread widely [9]. However, its dynamics is not very clear.

One method for analyzing a complicated system is to use the reduced
system in which the degree of freedom is lower than in the original system.
[8] proposed the idealized two-dimensional dynamical system (DS) for the
thermohaline circulation, i.e., two-box model. In this model, the exchange
between the boxes is due to the mean flow directly driven by the pressure
gradient. However, large-scale flow in the ocean is approximately geostroph-
ically balanced, and hence, the assumption used for the two-box model is
not valid.

[5, 7] derived the new two-dimensional DS. He considered the idealized
marginal sea (Fig. 1). The boundary current is geostrophically balanced,
which flows along the topographic contours because of the potential vorticity
conservation and the pressure gradient between the boundary current and
the interior region. On the other hand, in the interior region, the sea water
is cooled by the atmosphere and becomes fresh by the precipitation. Thus, it
is considered that baroclinic instability occurs due to the density difference
between the boundary current (warm and salty) and the interior region (cold
and fresh). The heat and salt transports are driven by these baroclinic
eddies.
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Figure 1: Schematic picture of the idealized marginal sea.

It is easy to understand the physics in the reduced DS, however, it is not
clear whether this DS describes the correct physics inherent in the original
system. [5, 7] compared the steady-state solutions obtained by the DS with
those obtained by the numerical model in which mesoscale eddies are ex-
plicitly resolved. He showed that the derived DS well predicts the behaviors
of the numerical model for the steady states.

In this study, we extend the DS proposed by [7] to the case with time-
dependent precipitation and examine its behavior. After that, in order to
confirm the validity of the DS, results by the DS are compared with those
by the numerical model.

The structure of this report is as follows. In Section 2, we extend the
DS and review its properties under the steady precipitation. In Section
3, the DS with periodic precipitation is examined. It is shown that there
are three kinds of limit cycle. In Section 4, the results obtained by the
DS in Section 3 are compared with results of the numerical model. It is
shown that the DS qualitatively well describes the behaviors of the numerical
model. In Section 5, the DS with step function precipitation is examined,
and especially, transition time between the fixed points is analyzed. In
Section 6, it is shown that the DS qualitatively well describes the behaviors
of the numerical model also in the case of the step function precipitation.
In Section 7, causes for the quantitative disagreement between the DS and
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the numerical model are discussed. In Section 8, summary is made.

2 Two-dimensional non-autonomous dynamical sys-
tem

2.1 Governing equations

The most important quantities for the idealized marginal sea (Fig. 1)
are temperature and salinity, because the other quantities (e.g., baroclinic
velocity and strength of the meridional overturning circulation) can be de-
duced from them. Thus, we consider the following fundamental equations
for temperature and salinity:

∂T

∂t
+ ∇ · (uT ) = −∇(u′T ′) +QT , (1)

∂S

∂t
+ ∇ · (uS) = −∇(u′S′) +QS , (2)

where a bar represents the time average, and QT and QS represent non-
conservative forcings (e.g, atmospheric cooling and precipitation). In the
marginal sea, the time scale of baroclinic eddy is determined mainly by the
relaxation time of the atmospheric cooling, because eddies are considered
to run away from the baroclinic region. In this case, it is enough to take
three-month average.

Four assumptions are made following [7] for deriving the reduced DS:

1. Temperature T1 and salinity S1 of the boundary current are constant.

2. Interior region is well-mixed, and temperature T and salinity S are
constant there.

3. The magnitude of eddy flux is much larger than that of mean flux.

4. Integrated eddy fluxes are parametrized as follows:∫
u′T ′ dS = αV∆T = αβ|∆T −∆S|∆T , and∫
u′S′ dS = αV∆S = αβ|∆T −∆S|∆S.

The first assumption is made for simplicity. The second assumption is based
on the fact that the interior region is well-mixed when the deep convection
occurs there. The third assumption is based on the fact that the mean
boundary current flows approximately along the topographic contours. The
fourth assumption is made for closing the governing equations. In the above
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parameterization, α and β are the constants given by the characteristic
values of topography, Coriolis parameter, basic density, and thermal and
haline expansion coefficients [7]. ∆T and ∆S are the differences of mean
temperature and mean salinity between in the boundary current and in the
interior region.

The two-dimensional non-autonomous DS is obtained from (1) and (2)
as follows:

d∆T

dt
= −∆T |∆T −∆S|+ 2µ

ε
(1−∆T ), (3)

d∆S

dt
= −∆S |∆T −∆S| − γ0

4ε
− γ′(t)

4ε
, (4)

where each quantity is non-dimensionalized and the non-dimensional num-
bers (ε, µ and γ0) are introduced following [7]. The first terms in the right
hand sides (RHS) of (3) and (4) represent the baroclinic eddy fluxes which
are down gradient. The second term in the RHS of (3) represents the atmo-
spheric cooling, which forces ∆T to be 1. The relaxation time is determined
by µ1. The second and the third terms in the RHS of (4) represent the con-
stant basic and the time-dependent nets evaporation minus precipitation,
respectively. Precipitation is basically dominant at high latitudes, meaning
the negative γ0. In this study, ε = 0.15, µ

ε = 0.05, and γ0
ε = −0.1 are taken

unless otherwise specified. These values are considered to be close to those
for Labrador Sea [7].

It should be emphasized here that the first assumption is not critical and
can be removed easily by adding the tendencies of T1 and S1 to the RHS
of (3) and (4), respectively. Especially, γ′ can be considered to contain the
tendency of S1, i.e., dS1

dt .
The system (3) and (4) can be regard as the following three-dimensional

“autonomous” DS:

d∆T

dt
= −∆T |∆T −∆S|+ 2µ

ε
(1−∆T ), (5)

d∆S

dt
= −∆S |∆T −∆S| − γ

4ε
− γ′(Θ)

4ε
, (6)

dΘ

dt
= ω. (7)

Note that the phase space is R2 × S1. We treat the two-dimensional non-
autonomous DS unless otherwise specified.

1ε is the geometrical parameter, and hence, is not related to the thermodynamical
properties of the ocean.
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2.2 General properties

It can be shown that ∆T and ∆S are not divergent in time when γ′(t)
is finite. In other words, the trajectory remains in the finite region of the
phase space. d∆T

dt is positive at ∆T = 0 and negative at ∆T = 1. This
means that 0 < ∆T < 1 when the initial value of ∆T is between 0 and 1.
Note that taking the initial value between 0 and 1 is physically reasonable,
and if it is taken outside this region, ∆T enters (0, 1) quickly. The same
argument can be made for ∆S. Note that the volume of the above finite
region in the phase space depends on the maximum and the minimum of
γ′(t).

At almost all positions, the volume in the phase space is contracted,
because the divergence of the velocity (d∆T

dt ,
d∆S

dt ) is negative. This fact
suggests that phase points asymptotically reach a set whose volume is zero.
In other words, there are not repelling fixed points or repelling closed orbits.
All fixed points are sinks or saddles, and all closed orbits are stable or
saddle-like. Therefore, phase points are considered to be attracted to either
fixed points, limit cycles, tori or strange attractors. Note that the above
statements related to contraction are not mathematically exact, because
the velocity (d∆T

dt ,
d∆S

dt ) is not smooth on the line of ∆T = ∆S and the
divergence of the velocity can not be defined there.

2.3 Case of the steady precipitation

For preparation, we examine (3) and (4) when γ′(t) = 0. Figure 2(a)
shows the vector field in the phase space. Note that all vectors are nor-
malized at unity. The solid (dashed) curves represent the nullclines where
d∆T

dt (d∆S
dt ) = 0. It is found that there are three fixed points: stable spi-

ral (haline mode), saddle (unstable thermal mode), and stable node (stable
thermal mode).

Figure 2(b) shows the vector field in which γ0
ε = 0.1, i.e., evaporation is

stronger than precipitation. This fact is reflected in the only one fixed point
at which sea water is more salty in the interior region than in the boundary
current (i.e., ∆S is negative).

Figure 3 shows the bifurcation diagrams for ∆T and ∆S against γ0/ε.
When γ0 is positive, it is found that the saddle-node bifurcation occurs and
the (stable) thermal mode disappears at the critical value γcritical, while
the haline mode always exists. Interestingly, the bifurcation also occurs at
γ0 = 0, in which the haline mode disappears. The (stable) thermal mode
only exists when γ0 is negative.
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(a) γ/ε = -0.1 

              (precipitation is dominant)

(b) γ/ε = +0.1 

               (evaporation is dominant)
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Figure 2: Vector fields, nullclines, and fixed points in the phase space. All
vectors are normalized at unity. The solid (dashed) curves represent the
nullclines where d∆T

dt (d∆S
dt ) = 0.
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Figure 3: Bifurcation diagrams for ∆T and ∆S against γ0/ε.
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3 Examination of the case of periodic precipita-
tion by the dynamical system

In this section, we examine the DS with the periodic precipitation:
γ′(t) = A sin(ωt) where A is the “negative” constant, ω is the positive
constant. Equations (3) and (4) become

d∆T

dt
= −∆T |∆T −∆S|+ 2µ

ε
(1−∆T ), (8)

d∆S

dt
= −∆S |∆T −∆S| − 1

4ε
{γ0 +A sin(ωt)} . (9)

Here the initial values are taken to be the steady solution without the peri-
odic precipitation.

3.1 Small amplitude forcing

First, we examine the case of the small amplitude of γ′. It is expected
that the (regular) perturbation method is valid. We derived the perturbation
solution by assuming that the nonlinear terms are small enough.

The zeroth-order solution (∆T0,∆S0) is the steady solution without γ′.
The first-order solution (∆T1,∆S1) consists of sinωt and cosωt. The second-
order solution (∆T2,∆S2) consists of constant values, sin 2ωt, and cos 2ωt,
because of nonlinear terms composed of ∆T1 and ∆S1.

Figure 4(a) shows the phase differences between ∆T and γ′ (solid curves),
or ∆S and γ′ (dashed curves). For each curve, the black (red) curve repre-
sents the result obtained by numerical calculation (perturbation solution).
It is found that the phase differences are well predicted by the perturbation
theory. Figure 4(b) shows the time averaged second-order quantities. It is
found that each quantity is well predicted by the perturbation theory when
ω > 10−1, while its variation is qualitatively predicted when ω ≤ 10−1.
The value of A in Fig. 4 is −0.05, while γcritical − γ0 is −0.0615. This
fact means that the minimum of the total gamma is very close to the crit-
ical value. It should be emphasized here that the differences between the
perturbation solution and the numerical solution can hardly be recognized
when A = −0.01.

3.2 Arbitrary amplitude forcing

Figure 5 shows the ratios of the time-averaged values obtained by numer-
ical calculations to the steady solutions without the periodic precipitation
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(a) phase dependence on ω (b) second-order quantity 

                   dependence on ω 

Figure 4: (a) Phase differences divided by 2π between ∆T and γ′ (solid
curves), or ∆S and γ′ (dashed curves) plotted against ω. (b) Time av-
eraged second-order quantities plotted against ω: x2 = ∆T2; y2 = ∆S2;
xx = ∆T1 ∆T1; xy = ∆T1 ∆S1; and yy = ∆S1 ∆S1. In both figures, the
black (red) curve represents the result obtained by numerical calculation
(perturbation solution).
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(i.e., ∆T/∆T0 and ∆S/∆S0). It is found that the ratios are near unity
when the amplitude of γ′ (A) is small. This means that the perturbation
solution is valid. Interestingly, even when A is not small enough, the ratios
are near unity when ω is high enough. Actually, the perturbation solution is
also valid in this case. This is because the equations (8) and (9) are approx-
imately uncoupled when ω � max(∆T0,∆S0) and A

4ε ≤ ω ·max(∆T0,∆S0).
This fact can be shown by the scale analysis (see Appendix A).

A/ε

log
10

 ω log
10

 ω

A/ε

(b) ΔS/ΔS
0

(a) ΔT/ΔT
0

Figure 5: Ratios of the time-averaged values obtained by numerical calcu-
lations to the steady solutions without the periodic precipitation, i.e., (a)
∆T/∆T0 and (b) ∆S/∆S0.

In order to examine shapes of trajectories in the parameter region where
ω is not high enough or the perturbation solution is not valid, the magnitude
of ∆T is compared with that of ∆S. Figure 6 shows that the shapes of
trajectories can be divided into three groups: ∆T (∆S) is always greater
than ∆S (∆T ) in the blue (green) region, while trajectories pass the line of
∆T = ∆S in the red region. Note that the perturbation solution is valid in
almost all blue regions by the scale analysis (see Appendix A).

The case of low ω is discussed, in which solutions can be regarded as the
quasi-steady solutions. The behaviors of trajectories can be understood by

9



using the bifurcation diagrams (Fig. 3). In Fig. 6, the cross on the vertical
axis represents A = γcritical − γ0. At this value, the saddle-node bifurcation
occurs at the minimum of the total gamma, and hence, the state becomes
the haline mode (∆S > ∆T ) even when the initial values are in the region
of ∆T > ∆S. It is found that the border between the blue (thermal limit
cycle) and the green (haline limit cycle) regions is very close to the cross on
the vertical axis. In addition to that, the maximum of the total gamma is
zero when A/ε = γ0/ε = −0.1. At this value, the haline mode disappears,
and the thermal mode only exists (Fig. 3). This corresponds to the border
between the green and the red regions.

In the parameter region of A/ε < −0.1, i.e., red region, the phase point
passes the line of ∆T = ∆S. This is explained as follows. When the total
gamma is the critical value (γcritical), the saddle-node bifurcation occurs and
the mode changes from the thermal mode to the haline mode. After that,
the phase point moves very slowly with keeping the haline mode as the total
gamma varies. However, when the total gamma is zero, the haline mode
disappears and the mode changes to the thermal mode. After that, the
phase point moves very slowly with keeping the thermal mode as the total
gamma varies. When the total gamma is the critical value (γcritical), the
saddle-node bifurcation occurs again and the mode changes again from the
thermal mode to the haline mode. This cycle is repeated.

So far, we have discussed the cases of low and high ω. Figure 6 shows
that an interesting thing happens when ω is an intermediate value. Even
when the maximum of the total gamma is negative, the trajectory can pass
the line of ∆T = ∆S around log10 ω = −1.3. Figure 7 shows trajectories
when A/ε = −0.095 (the maximum of the total γ/ε is −0.005). It is found
that the trajectory is always in the region of ∆S > ∆T (∆T > ∆S) when ω
is quite low (high), however, the trajectory passes the line of ∆T = ∆S and
looks like “8” when log10 ω = −1.33333. As shown in the next subsection,
these three kinds of trajectories are limit cycle. Hereafter, we call the limit
cycles always in the region of ∆T > ∆S and ∆S > ∆T thermal limit cycle
(TLC) and haline limit cycle (HLC), respectively. The other limit cycle is
called mixed limit cycle (MLC). The parameter region, in which each limit
cycle exists, corresponds to the region in Fig. 6 as follows: TLC to blue;
HLC to green; and MLC to red.

3.3 Limit cycles

In this subsection, we examine TLC, HLC, and MLC. It is confirmed that
these three trajectories are limit cycles by calculating Floquet multipliers [2].
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Figure 6: Parameter regions where three kinds of limit cycle exist. The cross
on the vertical axis represents A = γcritical − γ0.
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Figure 7: Trajectories when A/ε = −0.095 (the maximum of the total γ/ε
is −0.005). Crosses represent the initial positions.
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In other words, these trajectories attract nearby points exponentially.
Figure 8 shows time cross-sections for TLC: ∆T (solid); ∆S (long dashed);

∆T −∆S (short dashed); and γ′ (thick dashed-dotted). Note that γ′ is only
normalized. Figure 8(a) (ω is quite low) shows that the phase difference
between ∆T (∆S) and γ′ is about 180◦, while that between ∆T −∆S and
γ′ is about 0◦. Figure 8(b) (ω is quite high) shows that the phase difference
between ∆T and γ′ is about 0◦, while that between ∆S and γ′ is about
−90◦. The sea water becomes fresh by the strong precipitation behind 90◦.
This leads to reduce the baroclinicity, and hence reduce the eddy flux of
temperature. Thus, the sea water becomes cold by the atmospheric cooling
more behind 90◦. This process occurs nearly simultaneously when the pre-
cipitation period is very long (Fig. 8(a)), while it occurs in order when the
period is not very long (Fig. 8(b)).

This phase relation can also be understood by using the following first-
order equations for high ω:

d∆T1

dt
≈ ∆T0∆S1 =

∆T0

4ωε
A cosωt, (10)

d∆S1

dt
≈ −γ

′(t)

4ε
= − 1

4ε
A sinωt. (11)

Here the leading terms are only left. It is clear that the magnitudes of
time-derivative terms become large as ω increases. This means that the
amplitudes of ∆T1 and ∆S1 decrease as ω increases. This fact is reflected
in decreasing the second-order quantities (Fig. 4(b)) and high accuracy of
the perturbation solution when ω is high enough and A is not small enough
(Figs. 5 and 6).

Figure 9 shows time cross-section for HLC: ∆T (solid); ∆S (long dashed);
∆T −∆S (short dashed); and γ′ (thick dashed-dotted). Note that γ′ is only
normalized. Each parameter is the same as in Fig. 8. Figure 9(a) (ω is quite
low) shows that the phase difference between ∆T (∆S) and γ′ is about 0◦,
while that between γ′ and the “magnitude” of ∆T −∆S (= |∆T −∆S|) is
about 180◦. Note that |∆T −∆S| is maximum when γ′ is minimum. These
phase relations mean that the sea water is warm and salty when precipi-
tation is strong, because of the strong eddy flux (i.e., large baroclinicity).
However, these relations are changed as ω increases.

Figure 9(b) (ω is quite high) shows that the phase difference between
∆T and γ′ is about 180◦, while that between ∆S and γ′ is about −90◦. In
this case, the sea water becomes “fresh” by the strong precipitation behind
90◦. This leads to increase the baroclinicity, and hence increase the eddy
flux of temperature. Thus, the sea water becomes “warm” more behind 90◦.
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Figure 8: Time cross-sections for TLC: ∆T (solid); ∆S (long dashed); ∆T −
∆S (short dashed); and γ′ (thick dashed-dotted). γ′ is only normalized.

It should be emphasized here that the effect of the fresh sea water on the
baroclinicity is opposite to the case of the TLC, in which the fresh sea water
reduces the baroclinicity, leading to reduce the eddy flux of temperature.
The reason for the difference is that the baroclinicity (the density difference)
is ∆T −∆S in the TLC, while that is ∆S −∆T in the HLC.

There is another interesting point about the phase relations between the
TLC and the HLC. Examining (9) and Figs. 8 and 9, it is found that the
dominant term in the eddy flux of salinity (−∆S|∆T − ∆S|) is different
even when its whole value is the same. For the TLC, ∆S is maximum when
|∆T−∆S| is minimum, while for the HLC, ∆S is minimum when |∆T−∆S|
is maximum. This phase-relation difference means that rotational directions
of trajectories are also different: for the TLC, the direction is clockwise,
while for the HLC, it is counter-clockwise.

The MLC is examined finally. Figure 10 shows the trajectory and the
time cross-section of each term in (8) and (9). The atmospheric cooling
and the precipitation terms are dominant when ∆T and ∆S increase, while
the eddy flux terms are dominant when ∆T and ∆S decrease. This cycle
is repeated only once for the TLC and the HLC, however, twice for the
MLC. This is because the trajectory passes the line of ∆T = ∆S and the
eddy flux terms are proportional to |∆T −∆S|. When ∆T and ∆S increase
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Figure 9: Time cross-sections for HLC: ∆T (solid); ∆S (long dashed); ∆T−
∆S (short dashed); and γ′ (thick dashed-dotted). γ′ is only normalized.

enough after passing the line of ∆T = ∆S, the eddy flux terms reduce them.
Thus, ∆T and ∆S approach the line of ∆T = ∆S again. After that, the
atmospheric cooling and the precipitation terms increase ∆T and ∆S again.
If |∆T − ∆S| is replaced with ∆T − ∆S, ∆T and ∆S are divergent. It is
considered that MLC is a limit cycle which is a mixture of the TLC and
the HLC, because the rotational direction is clockwise (counter-clockwise)
in the region ∆T > ∆S (∆S > ∆T ) as the TLC (HLC).

The existence of the MLC can be discussed from a view point of an
unstable limit cycle. Figures 2 and 3 show there are three fixed points for
the DS without the periodic precipitation. It is considered that the thermal
mode (stable node) corresponds to the TLC, while the haline mode (sta-
ble spiral) corresponds to the HLC. Thus, it is expected that an unstable
limit cycle corresponding to the “unstable” thermal mode (saddle) exists.
By using the single-point shooting method [2], it has been shown that the
unstable limit cycle exists in some parameter regions, and that all of three
limit cycles (i.e., TLC, HLC, and unstable limit cycle) expand as |A| in-
creases or ω decreases (Fig. 11). These results suggest that the unstable
limit cycle helps join the TLC to the HLC as |A| increases or ω decreases,
because it repels nearby points. However, we have not examined the exis-
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Figure 10: Top left: trajectory with the initial position (cross). Top right:
∆T (solid); ∆S (long dashed); ∆T − ∆S (short dashed); and γ′ (thick
dashed-dotted). Bottom left: ∆̇T = d∆T

dt (solid); −∆T |∆T − ∆S| (long

dashed); and 2µ
ε (1−∆T ) (short dashed). Bottom right: ∆̇S = d∆S

dt (solid);
−∆S|∆T − ∆S| (long dashed); and γ′ (thick dashed-dotted). γ′ is only
normalized.
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tence of the unstable limit cycle in the parameter region where the MLC
exists. In these parameter regions, the calculations for the unstable limit
cycles are very unstable because of too large Floquet multipliers. Thus, it
is necessary to use the multipoint shooting method [2] instead of the single
one. In addition to that, we have to discuss the closeness of the orbits in the
“three-dimensional” phase space ((5), (6), and (7)) because all of the limit
cycles are trajectories in the three-dimensional phase space. The relation
between the MLC and the unstable limit cycle is one of our future works.

ΔT

ΔS

ΔT

TLC TLC

HLC HLC

unstable
unstable

(a) A/ε = -0.01,  log
10

ω = -1.1 (b) A/ε = -0.05,  log
10

ω = -1.1

Figure 11: TLC, HLC, and unstable limit cycle in the phase space.

3.4 Dependence of limit cycles on the initial values

The dependence of TLC, HLC, and MLC on the initial values is ex-
amined. The phase constant α is introduced in the periodic precipitation:
γ′ = A sin(ωt + α). The initial values are taken to be the steady solutions
of the system (8) and (9) with t = 0. In other words, the initial values are
determined only by α. The initial values that ∆S > ∆T are excluded in
order to examine the cases where the initial states are the thermal modes.

TLC, HLC, and MLC do not depend on the initial values except for near
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the boundary between the parameter regions of the HLC and the TLC (not
shown), i.e., between the green and the blue regions in Fig. 6. This result
means that each limit cycle has the large basin. On that boundary of the
parameter space, some points are attracted to the HLC (∆S > ∆T ) even
when ∆T > ∆S initially, meaning that the basin of the HLC includes the
region of ∆T > ∆S.

3.5 Chaotic behavior

At some parameters, the DS ((8) and (9)) shows chaotic behavior. Figure
12 shows two trajectories, in which the differences between their initial values
are 10−13 for both ∆T and ∆S. Here µ

ε = 0.1, γ0
ε = −0.2, A

ε = −0.18,
ω = 0.2 and α = π/2 are taken. The bottom figures show the time cross-
sections for the differences of ∆T and ∆S. Clearly the Lyapunov exponent
is positive.

4 Examination of the case of periodic precipita-
tion by MITgcm

In order to confirm the validity of the DS with the periodic precipitation,
the oceanic circulation in the idealized marginal sea is simulated by using
the numerical model. If the validity is shown, the physical understandings
obtained by the DS in Section 3 can be applied to the more general oceanic
circulation. The numerical model used in this study is the Massachusetts
Institute of Technology General Circulation Model (MITgcm; [3]). The
configuration is the same as in [6, 7] except the periodic precipitation, in
which ε = 0.15, µ

ε = 0.05, and γ0
ε = −0.1 as in the DS. It should be

emphasized here that the MITgcm with the setting in [6, 7] explicitly resolves
mesoscale eddies.

4.1 Model setting and initial value

The model domain and the forcing are shown in Fig. 13(a). The white
contours show the height of the bottom topography. The region north of the
sill at 1200 km latitude corresponds to the marginal sea, while the region
between 1200 km and 200 km latitudes corresponds to the subpolar gyre.
The other region south of 200 km latitude corresponds to the rest of the
World Ocean [6], where the full depth restoring forces the state to be the
uniform stratification and be the constant salinity.
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Figure 12: Top figures: two trajectories, in which the differences between
their initial values are 10−13 for both ∆T and ∆S. Bottom figures: time
cross-sections for the differences of ∆T and ∆S.
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The model is run for a period of 24 years in order to obtain the initial
value which can be regarded as the steady state with the steady precipi-
tation. Figures 13(b) and 13(c) show temperature and salinity at the sea
surface. The vectors in Fig. 13(c) show the horizontal velocity at the sea
surface. It is found that there is a boundary current along the bottom
topography, however, it is fluctuated by mesoscale eddies.
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Figure 13: (a) Model domain, bottom topography (white contours; CI=300
m), wind stress (vectors), and atmospheric temperature (color). (b) Temper-
ature at the sea surface (color). (c) Salinity (color) and horizontal velocity
(vectors) at the sea surface.

After the initial spinup, the model is run with the periodic precipitation
which is only in the marginal sea. The time range of integration is taken to
be the doubled period of the precipitation.

4.2 Time evolutions of ∆T and ∆S

Figures 14(a) and 14(b) show the time cross-sections of ∆T , ∆S, and
γ′ where the periods of the precipitation are 10 and 80 years, respectively.
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Here A/ε = γ0/ε = −0.1 is taken for both cases. In each figure, dashed
curve is obtained by the DS, while solid curve is obtained by the MITgcm.
Red curves show the components having frequencies lower than or equal to
the frequencies of the precipitation. It has been confirmed that these low
frequency components are dominant by calculating the spectrum densities
of ∆T and ∆S (not shown).

It is found that the phase relations of the DS results between ∆T , ∆S,
and γ′ qualitatively well correspond to those of the MITgcm results, while
the amplitudes of ∆T and ∆S are much larger in the DS than in the MIT-
gcm. These results suggest that the DS qualitatively describes the behaviors
of the MITgcm, while it does not quantitatively.
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Figure 14: Time cross-sections of ∆T , ∆S, and γ′ where the periods of the
precipitation are (a) 10 years and (b) 80 years. In both cases, A/ε = γ0/ε =
−0.1 is taken. See text for details.

4.3 Quantitative evaluation of the dynamical system

In order to show the qualitative agreement between the behaviors of the
DS and the MITgcm, correlation coefficients between their results are calcu-
lated. Figure 15 shows the scatter plots for the phases and the amplitudes
of ∆T and ∆S. In each figure, the lateral axis shows a quantity obtained by
the DS, while the vertical axis shows that obtained by the MITgcm. Here
the phase at the initial time is defined as 0 rad. It is suggested that the DS
qualitatively well describes the behaviors of the MITgcm.
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Figure 15: Scatter plots and correlation coefficients for the phases and the
amplitudes of ∆T and ∆S.
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One of causes for the quantitative disagreement is the difference of the
transition time between in the DS and in the MITgcm. If the transition
time is much longer in the MITgcm, it may take more time to increase
(decrease) the amplitudes of ∆T and ∆S when the precipitation becomes
strong (weak). Thus, we examine the DS with the step function precipitation
in Section 5, and compare the result with that obtained by MITgcm in
Section 6.

5 Examination of the case of step function forcing
by the dynamical system

In this section, we examine the DS with the step function precipitation:

γ′(t) =

{
∆γ (t ≥ 0),

0 (t < 0).
(12)

The initial values are taken to be the steady solution without the step func-
tion precipitation. Transitions between thermal modes are only examined.

5.1 Trajectory

The fixed point instantly changes to the new one as the precipitation
changes. Figure 16(a) shows the trajectories in the phase space where the
cross (triangle) is the old (new) thermal mode. Figure 16(b) shows the
correspondent time cross-section: ∆T (solid) and ∆S (dashed). It is found
that the sea water becomes fresh and cold because the precipitation becomes
strong. On the other hand, when the precipitation becomes instantly weak,
the sea water becomes salty and warm (not shown).

5.2 Transition time

Transition times for ∆T and ∆S are defined as the minimum values t
such that |∆T (∞)−∆T (t)|

|∆T (∞)−∆T (0)| < 10−1 and |∆S(∞)−∆S(t)|
|∆S(∞)−∆S(0)| < 10−1, respectively,

where (∆T (0),∆S(0)) represents the old fixed point and (∆T (∞),∆S(∞))
represents the new one. The transition time is obtained as the average
between those for ∆T and ∆S.

Figure 17 shows the transition time plotted against ∆γ
ε . The black curve

is obtained by the numerical calculations, while the red curve is obtained
by the asymptotic solutions described below. It is found that the transition
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Figure 16: (a) Trajectory. The cross (triangle) is the old (new) thermal
mode. (b) time cross-sections of ∆T (solid) and ∆S (dashed).

time is asymmetrical about ∆γ
ε . It takes more time to transition when the

precipitation becomes instantly strong (∆γ < 0).
In order to understand the above asymmetry, the asymptotic solution

is obtained by using the renormalization group method [1]. The renormal-
ization group method is one of singular perturbation methods, which has
the following features. (i) Many singular perturbation methods for ordinary
differential equations (e.g., boundary layer method, WKB method, and mul-
tiple scale method) can be regarded as the renormalization group method.
(ii) Particular preparations, such as the proper introduction of multiple time-
scale in the multiple scale method, are not necessary. (iii) The solution is
sometimes more accurate than those obtained by using other methods such
as the boundary layer method.

The dependent variables are expanded as ∆T = ∆T0+σ∆T1+σ2∆T2 and
∆S = ∆S0+σ∆S1+σ2∆S2 where σ is considered as the small parameter and
∆γ
4ε is also considered to be O(σ). After obtaining the first-order solution, σ

is taken to be unity. It is found from Fig. 17 that the transition time by the
asymptotic solution well corresponds to that by the numerical solution when
|∆γ/ε| is small, while the asymptotic solution well represents the asymmetry
of the transition time about ∆γ in the wide range of ∆γ

ε .
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It can be found from the case of the small |∆γε | that the asymmetry of
the transition time in the asymptotic solution is due to the asymmetry of
the eigenvalues for the new thermal mode. In fact, the magnitudes of the
eigenvalues for the stable thermal mode monotonically increase as gamma
increases, i.e., the precipitation becomes weak. This means that the new
thermal mode starts attracting nearby points more strongly as ∆γ

ε increases.
From the above discussion, the asymmetry of the transition time in the

numerical solution of Fig. 17 can be explained as follows. When ∆γ
ε is posi-

tive (negative), the baroclinicity of the new thermal mode is larger (smaller)
than that of the old thermal mode because of the strong (weak) atmospheric
cooling. This fact leads that the magnitudes of the eddy fluxes increase (de-
crease) as the state approaches the new thermal modes. Thus, it takes more
time to transition in the case of the negative ∆γ

ε .

6 Examination of the case of step function forcing
by MITgcm

In order to confirm the difference between the transition times in the DS
and the MITgcm, the ocean circulation under the step function precipitation
is simulated by using the MITgcm. The setting and the initial condition are
the same as in the cases of the periodic precipitation (Section 4.1). In this
section, the time range of integration is taken to be 40 years.

6.1 Time evolutions of ∆T and ∆S

Figure 18 shows the time cross-sections of ∆T and ∆S. Red curves
are obtained by the second-degree-polynomial-curve fitting. Figures 18(a)
and 18(b) show the cases of ∆γ = 0.4γ0 < 0, and ∆γ = −0.4γ0 > 0,
respectively. It is found that the sea water becomes fresh and cold (warm
and salty) when ∆γ is negative (positive). It is seen that ∆S approaches
the new steady state, while ∆T is fluctuated. The transition time for the
MITgcm is calculated only by using the data of ∆S. Here, ∆S(∞) in the
MITgcm is considered to be the value of ∆S at 40 years (the end of the
numerical integration).

6.2 Quantitative evaluation of the dynamical system

Figure 19(a) shows the transition time against ∆γ/ε in the DS (solid
curve) and the MITgcm (dots). It is found that the dependence of the
transition time on ∆γ in the MITgcm is well described by the DS, however,
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Figure 18: Time cross-sections of ∆T and ∆S in the case of step function
precipitation. Red curves are obtained by the second-degree-polynomial-
curve fitting.

it takes more time to transition in the MITgcm. Figures 19(b) and 19(c)
show ∆T and ∆S at the end of the integration, respectively. It is clear that
the DS qualitatively well describes the behaviors of the MITgcm, while it
does not quantitatively.

7 Discussion

In this section, we discuss causes for the quantitative disagreement be-
tween the results of the DS and the MITgcm. In Sections 5 and 6, we have
compared the transition time in the DS with that in the MITgcm. As ex-
pected before, it takes more time to transition in the MITgcm. However,
this fact is not considered to be the main cause for the quantitative disagree-
ment. In the DS with the step functional case, ∆T and ∆S change to the
new equilibrium values within the “same” time-scales. Figure 19(c) shows
that ∆S in the DS is very close to that in the MITgcm when ∆γ

ε = 0.04.
Note that the transition time is shorter when ∆γ > 0. Thus, ∆T in the
DS should be also very close to that in the MITgcm, even if the transition
time in the MITgcm is longer than that in the DS. However, ∆T in the DS
is much smaller than that in the MITgcm when ∆γ

ε = 0.04. The transition
time for ∆T might be longer than that for ∆S in the MITgcm, differently
from in the DS.

At least, there are three possible causes for the quantitative disagree-
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of the integration in the DS (solid curve) and the MITgcm (dots).

28



ment:

1. Sensitivity of the DS to the parameters, i.e., ε, µ, γ0, A, ω, and ∆γ.
The determination of the parameters have a lot of uncertainty. Thus,
it may be possible to get better quantitative agreement by choosing
other parameter values within the reasonable ranges.

2. Parametric resonance for the baroclinic flow.
The parameterization in the fourth assumption of Section 2 is based
on the Eady problem. However, the parametric resonance may occur
when the basic baroclinic flow is time-periodic. Thus, the parameter-
ization used for the DS might not be valid.

3. Effect of changes in the spatial structure.
In the DS, changes in the spatial structures of the boundary current
and the eddy are ignored, resulting from the reduction of the original
system. It is possible that changes in the spatial structures affect ∆T
and ∆S obtained by the spatial integration.

One of the most important future works is to compare the eddy and
the mean fluxes in the DS with those in the MITgcm. Note that the mean
fluxes are taken to be zero in the DS by the third assumption of Section
2. Only the eddy and the mean flux are originated in the nonlinear effects,
while the atmospheric cooling and the precipitation can be regarded as the
external forcings. It is expected that we can estimate the main cause for the
quantitative disagreement by this comparison.

8 Summary

We extended the two-dimensional dynamical system (DS) for the ideal-
ized marginal sea proposed by [7] to the case with time-dependent precipi-
tation.

In the case of the periodic precipitation, the DS had three kinds of limit
cycle: thermal limit cycle (TLC), haline limit cycle (HLC), and mixed limit
cycle (MLC). The physics of the TLC and the HLC could be understood
by the regular perturbation solution. It was weakly suggested that the
existence of the MLC was related to the unstable limit cycle correspondent
to the saddle in the DS with the steady precipitation.

In the case of the step function precipitation, the transition time is asym-
metrical about the gap of the precipitation. It takes more time to transition
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when the precipitation becomes strong instantly. This asymmetry can be
explained by the asymmetry of the baroclinicity in the new equilibrium state.

By comparing with results by the numerical model simulations following
[7], it was shown that the DS qualitatively well described the behaviors of
the numerical model, while it did not quantitatively.
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A Scale analysis of the DS with the periodic pre-
cipitation

We separated ∆T and ∆S as ∆TS + ∆T ′ and ∆SS + ∆S′, respectively,
where (∆TS,∆SS) is the steady solution without the periodic precipitation.
Here we consider that ∆T > ∆S. The same scale analysis can be made for
∆S > ∆T . The DS ((8) and (9)) is transformed as follows:

d∆T ′

dt
= m∆T ′ + n∆T ′ −∆T ′

2
+ ∆T ′∆S′, (13)

d∆S′

dt
= k∆T ′ + l∆T ′ + ∆S′

2 −∆T ′∆S′ + f sinωt. (14)

Here m,n, k, l and f are the following constant numbers: m = −2∆TS +
∆SS − 2µ

ε ; n = ∆TS; k = −∆SS; l = 2∆SS −∆TS; and f = A
4ε . We rescale

time as τ = ωt, and coefficients (m,n, k, l) as (m,n, k, l) = c(M,N,K,L)
where M,N,K,L = O(1). In addition to that, we introduce the new depen-
dent variables as x ≡ c∆T ′/f and y ≡ c∆S′/f . Finally, we introduce two
non-dimensional numbers Ω = ω/c and F = f/c2. Thus, equations (13) and
(14) become

Ω
dx

dτ
= Mx+Ny − Fx2 + Fxy, (15)

Ω
dy

dτ
= Kx+ Ly + Fy2 − Fxy + sin τ. (16)

There are nine cases for Ω and F . In some cases, the leading equations
are linear as follows.

Table 1: The linearity/non-linearity of the leading equation
Ω� 1 Ω ∼ 1 Ω� 1

F � Ω linear linear linear (uncouple)

F ∼ Ω linear non-linear linear (uncouple)

F � Ω non-linear non-linear non-linear

The term “uncouple” means that the leading equations are (10) and (11).
These uncoupled cases correspond to the case where ω � max(∆TS,∆SS)
and A

4ε ≤ ω ·max(∆TS,∆SS), because of O(c) = max(∆TS,∆SS).
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