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1 Introduction

Turbulent plumes from a point source can be observed at various scale. Eruption of a vol-
cano, smoke from a chimney, and seafloor vents are good examples. Such kind of plumes
are called axisymmetric turbulent plumes. The presence of ambient rotation and/or strat-
ification affects the behavior of axisymmetric turbulent plumes, and various experiments
were carried out (see Table 1 of Bush and Woods (1999) for a summary).

Fernando, Chen, and Ayotte (1998; FCA hereafter) investigated the development of
a single axisymmetric turbulent plume in a homogeneous, rotating fluid. They showed
experimentally that the rotational effects become important after the plume descends a
vertical distance zf ≈ 3.3(F0/Ω3)

1
4 for a time 0.75Tf . Here F0 is the buoyancy flux, Ω

the angular velocity of background rotation, and Tf = π/Ω the inertial period. They also

showed that the plume’s front descends as z ≈ 1.7F
1
4
0 t

3
4 for t ≤ 0.75Tf and z ≈ 1.8F

1
4
0 t

3
4 for

t > 0.75Tf .
Meanwhile, the coalescence of axisymmetric turbulent plumes to form a single plume is

an interesting problem. Kaye and Linden (2004; KL hereafter) investigated this problem in
a non-rotating, homogeneous fluid. They introduced a theoretical model for merging height
of two coalescing axisymmetric turbulent plumes in a homogenous fluid. They considered
both equal and unequal plumes’ cases. Their theory for equal plumes found that the rela-
tion between the separation length x0 and the merging height zm is zm ≈ (0.44/α)x0, where
α is the entrainment constant. They also carried out laboratory experiments and showed
that their model is qualitatively correct but over predicts the merging height slightly. How-
ever, they mentioned that a quantitative prediction is highly dependent on the value of
entrainment constant.

In this study, we investigate the behavior of two coalescing plumes in a homogeneous,
rotating fluid. During my project at the GFD Summer School, three kinds of experiments
were carried out: a filling tank experiment (Baines and Turner, 1969), two plumes experi-
ments without rotation (KL), and two plumes experiments with rotation. The filling tank
experiment was carried out to determine the values of the virtual origin height and the
entrainment constant; this is explained in appendix A. The derivation of the theory of KL
is explained in appendix B.
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Figure 1: Schematic illustration of the dye attenuation technique.

2 Experimental set up

A transparent tank which has 60 × 60 cm2 cross section was used. Fresh water (1.0 g/cm3)
was filled up to 45 cm depth for the ambient fluid, and dyed sea water (1.25 g/cm3) was
used for the fluid of the axisymmetric turbulent plume. The plume was generated by 5 mm
diameter Cooper nozzle which was positioned just below the surface, and its constant flow
rate was 1.7 cm3/s, namely the buoyancy flux was F0 = 41 cm4/s3.

A dye attenuation technique was used to visualize the plumes’ behavior. Figure 1
shows a schematic illustration of this technique. A sequence of dye images were captured
with side-view video recordings and the background image was subtracted from them using
Digiflow. The color tone of the subtracted images shows the snapshots of distribution of
dye concentration (i.e. distribution of buoyancy). This is because the intensity of the
light recorded is associated with the dye concentration. Then the sequence of subtracted
images were averaged to obtain the image of average distribution of buoyancy. The time
interval between dye images is shown in table 1. The averaging period was 2 minutes for the
non-rotating cases and 0.25Tf for the rotating cases. See KL for details of this technique.

For accuracy, we wrote and used an algorithm to determine the merging height. Our
algorithm works as follows.

1. Smooths horizontally the time averaged image by box averaging every 7 pixels (if
x0 > 6 cm, 13 pixels) to remove noise.

2. Finds a large slope of concentration (dc/dx > δ; c is concentration) starting from the
left.
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f = 2Ω (s−1) time interval (s)
0 (x0 < 6 cm) 1
0 (x0 > 6 cm) 0.25

0.05 1
0.1 0.5
0.25 0.25
0.5 0.1
0.75 0.1
1 0.1

Table 1: Time interval between dye images.

3. From this point, finds the location where the slope is negative (dc/dx < 0), and defines
this point as x1.

4. Finds a large slope of concentration (dc/dx < −δ) starting from the right.

5. From this point, finds the location where the slope is positive (dc/dx > 0), and defines
this point as x2.

6. Comparers x1 with x2 at every height, then x1 > x2 indicates that plumes are merged,
x1 < x2 indicates that plumes are not merged.

In order to visualize the vortices generated by the plumes in the rotating experiments,
the free surface was colored with powder dyes. The evolution of the resulting vortices were
recorded with top-view video recordings. Note that it is reasonable to consider that the
vortices are barotropic, because of the absence of stratification.

For the non-rotating cases, 23 experiments were carried out, and the separation length
x0 varied between 2.4 and 10.3 cm.

For the rotating cases, the Coriolis parameter f = 2Ω, where Ω is the angular velocity
of the background rotation, and the separation length x0 are important parameters. We
carried out rotating experiments with combinations of f = 0.05, 0.1, 0.25, 0.5, 0.75, 1.0 s−1

and x0 ≈ 3, 5, 8, 10 cm.

3 Experimental results

3.1 Without rotation

A summary of the two plumes experiments without rotation is shown in figure 2. The
solid line and dashed line in figure 2 are the linear fit of our experimental data and the
theoretical prediction, zm = (0.44/α)x0, from the model of KL, respectively. Note that zm

is the merging height measured from the virtual origin. The virtual origin height zV = 1.0
cm and the entrainment constant α = 0.12 were determined by the filling tank experiment
(Baines and Turner, 1969); see appendix A for details.
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Figure 2: Plume merging height zm plotted against the initial separation length x0. The
solid line is the linear fit of experimental data and the dashed line is the theoretical predic-
tion, zm ≈ (0.44/α)x0, from the model of Kaye and Linden (2004).

Our experimental results show the linear relationship between x0 and zm, which is
in agreement with the theoretical prediction. However it should be mentioned that the
prediction zm = (0.44/α)x0 is highly dependent on the value of α.

3.2 With rotation

Figure 3 shows the evolution of two plumes and the single vortex induced by the plumes for
x0 = 5 cm, f = 0.25 s−1. It was observed that the axes of the plumes tilted off the vertical
and a single vortex was generated at the center of two plumes for t > 0.8Tf . Figure 4 shows
a similar sequence for x0 = 5 cm, f = 1 s−1. In this case, two vortices are generated, one
from each plume. After t ∼ 3Tf the vortices started shedding from the sources (not shown).

In all cases, the plumes did not reach a steady state, because they were advected by the
vortex/vortices which was/were generated by the plumes themselves. These processes are
so complicated that, in this study, we do not consider the plumes after rotation dominates
the dynamics but focus on the vortex/vortices generated by the plumes.

Types of vortex/vortices generated by the plumes for each case are shown in table 2.
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t = 0.4Tf 0.6Tf 0.8Tf 1.0Tf 1.2Tf

Figure 3: Evolution of two plumes with separation x0 = 5 cm, rotation f = 0.25 s−1. Upper
pictures are snapshots of side-view dye concentration, and lower pictures are snapshots of
top view. Tf = 2π/f is the inertial period.

t = 0.4Tf 0.6Tf 0.8Tf 1.0Tf 1.2Tf

Figure 4: Same as figure 3 but for rotation f = 1 s−1.
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x0 (cm)
3 5 8 10

0.05 1 1 1 1
0.1 1 1 1 1
0.25 1 1 1 2

f(s−1) 0.5 1 1 2 2
0.75 1 2 2 2
1 2 2 2 2

Table 2: Types of vortices generated by the plumes. Number 1 denotes that a single vortex
was generated at the center of two plumes, and 2 denotes that two vortices were generated,
one from each plume.

4 Quantitative analysis

4.1 Merging height

Figure 5 shows the relation between zm and x0 for 0.5Tf < t < 0.75Tf for the rotating cases.
It is shown that, in this time range, the two plumes do not feel the effect of rotation, so the
merging height is same as in the non-rotating cases. In cases of (f, x0) = (0.05, 10), (0.25,
3), and (0.5, 3), zm obtained for 0.5Tf < t < 0.75Tf are far from the theoretical prediction,
but those obtained for 0.25Tf < t < 0.5Tf agree well with the prediction. For (f, x0) =
(0.05, 10), this is because the averaging time interval was so long that zm was affected by
dyed water filling up the tank from the bottom. For (f, x0) = (0.25, 3) and (0.5, 3), the
effect of rotation may have appeared earlier.

Figure 6 shows the relation between zm and x0 for 0.75Tf < t < Tf for the rotating
cases. For this averaging time interval, zm is affected by rotation, and there is not a clear
relation between zm and x0. The scatter S defined as

S =

√∑N
i (ztheory

m,i − zexperiment
m,i )2

N
, (1)

where N is the number of experiments, ztheory
m,i the theoretical prediction of the merging

height, zexperiment
m,i the experimental merging height, for the non-rotation experiments, ro-

tating experiments for 0.5Tf < t < 0.75Tf , and for 0.75Tf < t < Tf is 1.85, 2.89, and 10.98
cm, respectively.

From the above results, we deduce that the effect of rotation becomes important after
t > 0.75Tf , in agreement with the result of FCA. Our experimental results also show that
the merging height for t < 0.75Tf agrees with the theoretical model for no rotation.

4.2 Vortex generated by the plumes

The process of generating a single or two vortices can be described as follows. When the
separation length is small and the rotation rate is low, the plumes feel the effects of rotation
after they merged and a single vortex will be generated by the resulting single plume. On
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Figure 5: Plume merging height zm plotted against the separation length x0 for 0.5Tf <
t < 0.75Tf (filled square), where Tf is the inertial period. Asterisks denote the results of
experiments without rotation, solid line denotes the theoretical prediction for no rotation,
zm = (0.44/α)x0. Open squares are zm for 0.25Tf < t < 0.5Tf .
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Figure 6: Same as figure 5 but for 0.75Tf < t < Tf .
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Figure 7: Schematic illustration of the two plumes generating a single vortex after merging
(left) and two vortices before merging (right).

the other hand, when the separation length is large and the rotation rate is high, the plumes
feel the effects of rotation before merging and two vortices are generated, one by each plume
(figure 7).

Considering the process described above, we can predict the number of vortices generated
by the two plumes using the results of FCA for the development of a single plume in a
homogeneous, rotating fluid, and the theory of KL for the merging height in a non-rotating
fluid. FCA showed experimentally that a single axisymmetric turbulent plume’s front in a
homogeneous, rotating fluid descends as

z ≈ 1.7F
1
4
0 t

3
4 for t ≤ 0.75Tf , (2)

z ≈ 1.8F
1
4
0 t

3
4 for t > 0.75Tf . (3)

We measured the plume’s front descent in the rotating and non-rotating experiments (figure
8). Our experimental results agree well with FCA.

Figures 5, 6, and 8 show that the time when rotational effects become important and
the descent of the plume’s front in our experiments agree with FCA. Therefore, the depth
zf where plumes feel rotation can be written as

zf ≈ 1.7F
1
4
0 (0.75Tf )

3
4 ≈ 5.5F

1
4
0 f− 3

4 . (4)

Remember that the theoretical prediction of the merging height

zm ≈ 0.44
α

x0, (5)

can be applied to rotating cases for t < 0.75Tf . Therefore, we can predict that a single
vortex will be generated if zf > zm, and two vortices will be generated if zf < zm. Figure 9
shows the number of generated vortices in the zm-zf plane. Our experimental results agree
well with the prediction described above. Therefore, we can predict the number of vortices
generated by the two plumes from the values of the entrainment constant (α), separation
length (x0), Coriolis parameter (f), and buoyancy flux (F0).
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Figure 8: Depth of the plume’s front as a function of time. Black lines are experimental

results for various rotation rates and the red line is z ≈ 1.7F
1
4
0 t

3
4 (Fernando, Chen, and

Ayotte, 1998).
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Figure 9: Number of vortices generated by the plumes, in the zm-zf plane. Blue circles
denote single vortex and red squares denote two vortices. Solid line denotes zf = zm. The
results for f = 0.05, 0.1 s−1 are not shown.
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5 Summary

Laboratory experiments on two coalescing axisymmetric turbulent plumes in a homoge-
neous, non-rotating and rotating fluids were carried out. The merging height zm is defined
as the height from the virtual origin where the time averaged horizontal buoyancy profile
has a single local maximum. The values of the virtual origin height zV = 1.0 cm and en-
trainment constant α = 0.12 were determined by the filling tank experiment (Baines and
Turner, 1969).

For the non-rotating experiments, our experimental results (figure 2) agree well with the
theory of Kaye and Linden (2004) predicting a merging height zm ≈ (0.44/α)x0, where x0

is an initial separation length of the two plumes’ sources. However, as mentioned in Kaye
and Linden (2004), this prediction is highly dependent on the value of α.

For the rotating experiments, our experimental results show that the merging height
zm agrees with the theory of Kaye and Linden (2004) for no rotation, for t < 0.75Tf

(figure 5). However, for t > 0.75Tf , the plumes were not steady and zm did not agree with
the theory (figure 6). Namely, the effects of rotation became important after t > 0.75Tf ;
this is in agreement with the experimental results of Fernando, Chen, and Ayotte (1998)
who studied the development of a single axisymmetric turbulent plume in a homogeneous,
rotating fluid. Fernando, Chen, and Ayotte (1998) also obtained experimentally the height

of the plume’s front as a function of time t as z ≈ 1.7F
1
4
0 t

3
4 , and our results are in agreement

with this expression (figure 8).
In the rotating experiments, vortices were generated by the plumes. Two types of

vortices were observed: a single vortex generated at the center of the two plumes, and two
vortices generated, one from each plume. We showed that the number of vortices can be
predicted using the theory for the merging height zm ≈ (0.44/α)x0 and the experimental

prediction for the height where the plumes start feeling rotation zf ≈ 5.5F
1
4
0 f− 3

4 . When
zf > zm, a single vortex is generated, and when zf < zm, two vortices are generated (figure
9).

Acknowledgments

I would like to thank Claudia Cenedese for her dedicated guidance and advise. I also
thank Colm-cille P. Caulfield for his useful comments, and all the other staff and fellows of
the Geophysical Fluid Dynamics Program at the Woods Hole Oceanographic Institution in
2009. I participated in this program with a financial support from the Center for Planetary
Science.

Appendices

A Filling tank experiment

In order to determine the values of the virtual origin height and the entrainment constant
a filling tank experiment was carried out. Theoretically, the origin of an axisymmetric
turbulent plume is assumed to be a point. However, in laboratory experiments, the real
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Figure 10: Schematic illustration of virtual origin.

origin of the plume (i.e. Cooper nozzle) has a finite cross section, so it is assumed that
there is a virtual origin which is considered to be a point source of the plume (figure 10).

Turbulent plumes entrain the ambient fluid by turbulent mixing, and the horizontal
velocity of the entrained flow ue is assumed to be ue = −αw, where α is the entrainment
constant and w is the vertical velocity. This assumption is called the entrainment assump-
tion, and it is a good approximation (Turner, 1973). However the value of α has to be
determined experimentally.

The filling tank experiment is a good method to determine both the virtual origin height
and the entrainment constant.

A.1 Theory of the filling tank experiment

In this section, the theory of the filling tank experiment (Baines and Turner, 1969) is ex-
plained. First, some general properties of an axisymmetric turbulent plume are derived.
Then the method for determining both the virtual origin height and the entrainment con-
stant is explained.

A.1.1 General properties of an axisymmetric turbulent plume

It is assumed that the profiles of vertical velocity w and buoyancy g′ of the plume are of
Gaussian form,

w(r, z) = W (z) exp
(
− r2

b(z)2

)
, (6)

g′(r, z) = g

(
ρA − ρP (r, z)

ρR

)
= G′(z) exp

(
− r2

b(z)2

)
. (7)

Here z is the vertical coordinate, r the radial distance from the axis of the plume, g the
gravitational acceleration , W (z) = w(z, 0), and G′(z) = g′(z, 0). Then ρA and ρP are the
densities of the ambient fluid and the plume, respectively, ρR is the reference density for
the system. Note that b(z) is the radius where buoyancy and vertical velocity are reduced
by a factor 1/e from those on the plume’s axis.
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Volume flux Q of the axisymmetric turbulent Gaussian plume is

Q =
∫ 2π

0

∫ ∞

0
wrdrdθ = πb2W, (8)

where θ is the angular coordinate.
The momentum flux M is

M =
∫ 2π

0

∫ ∞

0
w2rdrdθ =

π

2
b2W 2. (9)

Then b can be written as
b =

1√
2
π− 1

2
Q

M
1
2

. (10)

The buoyancy flux F is

F =
∫ 2π

0

∫ ∞

0
g′wrdrdθ =

G′

2
Q. (11)

The velocity of the entrained flow, ue, is now assumed to be horizontal,

ue = −αW, (12)

where α is the entrainment constant.
The volume flux Q increases with z, because of the entrained flow, so

∂Q

∂z
= −2πbue, (13)

= 2παbW, (14)

= 2
√

2π
1
2 αM

1
2 . (15)

Because the plume is accelerated by buoyancy, the momentum flux changes with z as

∂M

∂z
= πb2G′, (16)

=
(πG′b2W )/2 · πb2W

(πb2W 2)/2
, (17)

=
FQ

M
. (18)

We can set F = F0 (constant) because the entrainment not only decrease the buoyancy
g′ but also increase the flow flux Q. Therefore, equation (18) can be written as

∂M

∂z
=

F0Q

M
. (19)

Now, we assume that Q and M can be expressed as

Q = Q0(z + zV )q, (20)
M = M0(z + zV )m, (21)
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where zV is the height of virtual origin, and Q0, M0 are constants. This assumption implies
that the radius of the plume, b, increases linearly from 0 at its virtual origin z = −zV . Then
(15) and (19) become

Q0q(z + zV )q−1 = 2
√

2π
1
2 αM

1
2
0 (z + zV )

m
2 , (22)

M0m(z + zV )m−1 =
F0Q0

M0
(z + zV )q−m. (23)

From the above equations, we obtain

q =
5
3
, (24)

m =
4
3
. (25)

Substituting (24) and (25) into (22) and (23), with some algebra, we obtain

M0 =

(
9
√

2π
1
2 αF0

10

) 2
3

, (26)

Q0 =
6π

1
2 α

5

(
18π

1
2 αF0

5

) 1
3

. (27)

Eventually, the volume flux Q and the momentum flux M are written in the buoyancy flux
F0 and the entrainment constant α.

A.1.2 Method to determine the virtual origin height and the entrainment con-
stant

We consider a tank of cross section AC filled with ambient fluid, and an axisymmetric
turbulent plume which is denser than the ambient fluid and is dyed, descending from the
top of the tank (z = 0), as in figure 11. After the front of the plume reaches bottom of the
tank, a layer of dyed fluid forms at the bottom of the tank and starts filling up the tank.
We set the time t = 0 when zF (t) = zF0, where zF is the height of the dyed fluid’s front
which comes up from the bottom. It is convenient to choose zF0 as the height where we
can measure zF accurately enough.

Considering the balance of the volume flux of the dyed fluid at z = zF , the time derivative
of (zF (t) + zV ) can be written as

∂

∂t
(zF (t) + zV ) ≈ −Q(zF )

AC
,

= −Q0

AC
(zF + zV )

5
3 . (28)

Here it is assumed that the cross section of the plume is negligible. Integrating (28), we
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Figure 11: Schematic illustration of the filling tank experiment.

obtain
∫ zF

zF0

(zF + zV )−
5
3 d(zF + zV ) = −Q0

AC

∫ t

0
dt, (29)

−3
2

[
(zF + zV )−

2
3 − (zF0 + zV )−

2
3

]
= −Q0

AC
t, (30)

(zF + zV )−
2
3 =

2
3

Q0

AC
t + (zF0 + zV )−

2
3 . (31)

In other words, there is a linear relation between (zF + zV )−
2
3 and t.

We can measure zF and t from the experiment, so we can determine the value of zV

which produce a straight line in the plot of (zF + zV )−
2
3 against t. After determining zV ,

we can estimate the value of α by choosing the value that makes fit equation (31) best to
the experimental data with the determined zV .

A.2 Experimental set up

Experimental equipments and their settings are the same as those explained in section 2,
but the depth of the fresh water was 40 cm. We captured the digital images every minute
and determined zF by looking at the the horizontally averaged (excluding the region of the
plume) height where the value of concentration of the dye is that of the interface between
fresh water and dyed water.

A.3 Experimental results

Figure 12 shows measured values of (zF +zV )−
2
3 against t for various values of zV . From this

figure we can determine zV = 1.0 cm, because this value gives the highest R2 for the linear
fit to the data, where R2 is the coefficient of determination. Figure 13 shows the measured
values of (zF + zV )−

2
3 against t with zV = 1.0 cm, and the theoretical lines calculated from

equation (31) with various values of α. From this figure we can estimate that the value
α = 0.12 fit best the experimental data.
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y = 1.3589x + 1095.1
R2 = 0.99834

Figure 12: Measured values of (zF + zV )−
2
3 against t for various values of zV . Solid lines

are linear fits of each data set. This figure shows that the best linear fit (highest value of
R2) occurs for zV = 1.0 cm.

 = 0.10
 = 0.11
 = 0.12
 = 0.13

(cm)

(cm)

time (sec)

(z
F
+

z V
)-2

/3
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4  
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m
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/3
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zV = 0 (cm)
zV = 1.0 (cm)
theory zV = 1.0 (cm),  = 0.12

Figure 13: Measured values of (zF + zV )−
2
3 against t for zV = 1.0 cm. Thick solid lines are

theoretical lines calculated from equation (31) with various values of α. This figure shows
that the value of α = 0.12 fit best the experimental data.
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Figure 14: Merging Gaussian functions for a unit sources separation. (Kaye and Linden,
2004)

B Theory of coalescing axisymmetric turbulent equal plumes

In this section the theory of Kaye and Linden (2004) for equal plumes is summarized.
First, we define dimensionless variables as followings,

λ =
z

x0
, φ =

x

x0
, γ =

b

x
, (32)

where z is the height above the point plume sources (i.e. including the virtual origin), x0

the separation of the plume sources, x the separation of the plume axes at any given height,
and b the plume radius.

Consider two equal plumes with origins at the same height. The average buoyancy
profile of a single turbulent plume can be taken as Gaussian, with a radius given by

b =
6
5
αz, (33)

where α is the entrainment constant. Assuming that the plumes do not interact, the buoy-
ancy profile function is given by

g′(r, z) ∼ G′(z)E(r), (34)

E(r) = exp

[
−(r − 1

2x0)2

b2

]
+ exp

[
−(r + 1

2x0)2

b2

]
. (35)

Here r is the distance from the center of the two plumes and g′ is the buoyancy.
The function (34) is plotted in figure 14 for 1 < λ < 8 and x0 = 1. Clearly the two

Gaussians coalesce when λ is large enough. We define the merging height to be the height
where the trough in the buoyancy profile disappears, that is,

d2E

dr2
= 0 at r = 0. (36)
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For non-interacting plumes (i.e. x(z) = x0), (36) is easily solved to give

x0 =
√

2bm. (37)

Here the subscript m denotes the value at the point where plumes merge. Dividing (37) by
x, we obtain

γm =
1√
2
, (38)

so, in terms of the non-dimensional height we obtain

λ̂m =
1√
2

5
6α

. (39)

Here (̂·) denotes the upper bound on the value. As shown by Bjorn and Neilsen (1995) this
estimate of λm is poor. In order to model the drawing together of two equal plumes we
need to consider the entrainment of one plume by another.

Based on experimental results (e.g. Rouse, Yih, and Humpherys, 1952) it is reasonable
to take the velocity field outside the plumes, created by entrainment, as horizontal. The
mean entrainment velocity field, over a horizontal plane across the two plumes, may be
approximated by two sinks of strength −m(z) placed at (−1

2x, z) and (1
2x, z). The complex

velocity potential in this horizontal plane is given by

Ψ = − m

2π

[
ln
(

Z +
1
2
x

)
+ ln

(
Z − 1

2
x

)]
, (40)

where Z is the complex variable reiθ. The velocity field is given by

U =
∂Ψ
∂Z

= − m

2π

(
1

Z + 1
2x

+
1

Z − 1
2x

)
. (41)

The sink strength of the plume is

m =
∫ 2π

0
bαwdθ. (42)

Along the line joining the sources of the plume (θ = 0) the velocity is given by

Uθ=0 = −bαw

(
1

r + 1
2x

+
1

r − 1
2x

)
. (43)

On the plume axis (r = −1
2x, 1

2x), the value of horizontal entrained velocity due to that
plume is zero, and only the term resulting from the other plume needs to be considered.
Therefore, (43) gives an expression for the mean horizontal velocity u on the plume axis

u = −bαw

x
. (44)
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Assuming that each plume is passively advected by the entrainment field of the other, the
rate of change of the plumes’ separation with height is given by the ratio of the vertical and
horizontal velocities at the plume axis. As both plumes are deflected equally, the rate is

dx

dz
= −2

1
w

αbw

x
. (45)

Substituting b = 6αz/5, λ = z/x0, and φ = x/x0 gives

dφ

dλ
= −12α2

5
λ

φ
, (46)

which can be integrated to give

φ2 − φ2
0 =

12α2

5
(λ2

0 − λ2), (47)

where φ0 = 1 and λ0 = 0. Using (38) to (47) we obtain

λm =
1
α

√
25
132

≈ 0.44
α

. (48)

In other word, the merging height is predicted as

zm ≈ 0.44
α

x0. (49)

Note that the use of (38) derived for the non-interacting model is appropriate here as the
correction for drawing together of the plumes assumes that they are passively advected only.
The radial growth rate of each plume is assumed to be unaffected by this process.
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