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1 Introduction

Rapidly rotating convection constitutes an interesting mathematical system, and is relevant
in geophysics and oceanography, for example, in the phenomenon of ocean deep convection.
However, the rapid rotation and strong thermal forcing found in natural systems is inac-
cessible to numerical simulations of the underlying Boussinesq equation. By applying an
asymptotic expansion one obtains reduced equations for non-hydrostatic quasi-geostrophic
dynamics that allows one to reach regimes of rapid rotation and strong thermal forcing.
Some results of numerical simulations and a model to describe those results will be pre-
sented, in particular the regime where coherent convective plumes are obtained.

1.1 Ocean deep convection

Figure 1.a presents the global thermohaline circulation on Earth. Sinking water is present
in the Atlantic, in the Antarctic that creates a global overturning which circulates around
the globe. It also raises the question of how the water gets to the top or to the bottom of
the ocean. Note that the timescale of this motion is roughly 1000 years. The intermittent
sinking takes place on very small scales and is relatively fast. Therefore, different time and
length scales are present in this problem which makes it difficult to simulate. Figure 1.b
shows zones where deep and bottom or intermediate waters form and sink and the major
broad scale upwelling zone. This circulation of waters, has a large impact on the global
climate and therefore constitutes an important topic.

1.2 Phases of deep convection

The phenomenon of deep convection [1] shows three major phases: a preconditioning phase
where a cyclonic gyre of length scales L ∼ 100 km domes isopycnals making the density
more uniform; then, there is a deep convecting phase where cooling events trigger deep
plumes of length scales L ∼ 1 km; finally these plumes organize and creating geostrophic
eddies that have scales about L ∼ 10 km. In the following discussion, plumes of length
scales L ∼ 1 km are considered.

1.3 Rotation and deep convection

Before going further, it is important to notice that the deep convection is influenced by
rotation. Indeed, it occurs in polar latitude where the Coriolis parameter f is large. Thus,
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Figure 1: (a) Schematic of a generalized model of thermohaline circulation showing the
Global Conveyor Belt. (b) Schematic of the principal zones where deep and bottom (in
purple) or intermediate waters (in blue) form and sink and the major upwelling zone (in
green).

we can define a natural Rossby number R∗0 such that

R∗0 =
Lrot

H
=

√
B

f3H2
(1)

where Lrot is the horizontal rotational scale, H the height, and B the buoyancy flux. Ob-
servations show that R∗0 ∼ 0.1− 0.4.

2 Non-hydrostatic quasi-geostrophic model

The traditional quasigeostrophic approximations result from assuming rapid rotation, strong
stable stratification, hydrostatic balance (vertical pressure gradients are balanced by grav-
ity), and geostrophy (horizontal pressure gradients are balanced by the Coriolis force). This
results in a diagnostic relation for the geostrophic velocity. By going to higher order, one
obtains a prognostic equation for the time evolution.

Here, a non-hydrostratic quasi-geostrophic model [2, 3] is considered. We start with
Boussinesq equations in a rapidly rotating regime, i.e. the Rossby number is small, R0 =
ε � 1. Usually structures in ocean and atmosphere have a large horizontal scale and a
small vertical scale. But if we now consider structures such as convective plumes, they are
tall and thin which imply Az = H/L = 1/ε� 1.

Then, a multiscale asymptotic expansion is done, assuming a large vertical scale Z =
z/Az = ε z. It also requires a slow time T defined by T = ε2 t. Then, using asymptotic
expansions, the partial derivatives in the vertical direction and time become

∂/∂z → ∂/∂z + ε ∂/∂Z and ∂/∂t→ ∂/∂t+ ε2 ∂/∂T. (2)
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Considering a Reynolds decomposition where averaging is done over the fast space and fast
time results in mean equations for the slow vertical scale and slow time

ū(Z, T ) =
∫

dx dy dz dtu(x, y, z, t, Z, T ). (3)

Define the velocity fluctuation as u′ = u − ū(Z, T ). Using asymptotic analysis both the
mean velocity and the fluctuation term are expanded in powers of ε:

ū = ū0 + ε ū1 + ... and u′ = u′0 + εu′1 + ... (4)

The vertical momentum equation gives the leading balances for the first-order terms:

∂p̄0

∂Z
= Γθ̄0 (5)

which says that the mean state hydrostatic at lower order, where p is the pressure, θ is
the temperature, Γ the non-dimensional buoyancy frequency defined by: Γ = B L/U2. The
horizontal momentum equation to lowest order is

ū0 = 0 and ẑ× u′0 = −∇p′1. (6)

Therefore, at lowest order, the mean velocity is zero and the fluctuation of the velocity field
is in geostrophic balance.

These lowest order equations lead to some implications. Geostrophy implies horizontal
non-divergence, ∇⊥ ·u′0⊥ = 0 and then the vertical velocity is independent of z, ∂w′0/∂z = 0.
In a traditional QG model, this leads to w′0 = 0 since layer is thin and w0 = 0 on boundaries.
But here, because of the multiple length scales, we just have no fast z derivatives, so w′0 6= 0
remains possible provided it only depends on slow Z. Thus, the lowest order velocity can
have a slow vertical scale dependence: w′0 = w′0(x, y, Z). As a results, the first order
fluctuations are non-hydrostatic.

To write the equations of motion, we use the usual toroidal and poloidal decomposition
through the streamfunctions Ψ and φ which are defined by

u′ = −∇×Ψ ẑ−∇×∇× φ ẑ. (7)

We therefore can write

u′0 =



−∂Ψ0/∂y
∂Ψ0/∂x
∇2
⊥ φ0


 (8)

where φ0 = φ0(x, y, Z) and has no fast z variation. The first two terms are given by the
function Ψ in the usual way and the last terms, ∇2

⊥ φ0 gives a non-hydrostatic vertical
velocity that shows the difference with the classical quasi-geostrophic model.
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3 Rotating Rayleigh-Bénard convection

3.1 Non-dimensional parameters

The length scale is chosen such that the Reynolds number is unity, Re = 1. The remaining
parameters describing the problem are the scaled Rayleigh number: R̃a = E4/3Ra, which
defines the strength of the buoyancy frequency, where E is the Ekman number defined by
E = ν/(2 ΩH2), and the Prandtl number σ which represents the ratio of momentum to
heat diffusion. This scaling of E and Ra is based on the critical Rayleigh number for the
initial instability in the presence of rotation. In the following sections, numbers indicating
order are dropped but the lowest order in all cases are kept.

3.2 Reduced equation

The vertical velocity equation is:

∂w

∂t
+ J(Ψ, w) +

∂Ψ
∂Z

=
R̃a

σ
θ′ +∇2

⊥w (9)

where θ′ is the temperature fluctuation, and J is the Jacobian defined by

J(A,B) =
∂A

∂x

∂B

∂y
− ∂A

∂x

∂B

∂x
. (10)

In this equation, ∂w/∂t is the vertical velocity tendency, J(Ψ, w) represents the horizontal
advection of vertical velocity. Note that there is no vertical advection. The term ∂Ψ/∂Z
is the unbalanced vertical pressure gradient which forces vertical velocity, R̃a θ′ /σ is the
buoyancy forcing term and finally ∇2

⊥w is the horizontal dissipation.

The equation for the vertical vorticity defined by ω = ∇2
⊥Ψ is:

∂ω

∂t
+ J(Ψ, ω)− ∂w

∂Z
= ∇2

⊥ω (11)

Here, ∂ω/∂t is the vertical vorticity tendency, J(Ψ, ω) the usual horizontal advection of
vertical vorticity, −∂ω/∂Z represents a stretching term where vertical velocity gradients on
large scales spin up vorticity and implies an ageostrophic horizontal divergence, and lastly
∇2
⊥ω stands for the horizontal dissipation.

We can also write the temperature fluctuation equation:

∂θ′

∂t
+ J(Ψ, θ′) + ω

∂θ̄

∂Z
=

1
σ
∇2
⊥θ (12)

where ∂θ′/∂t is the temperature fluctuation tendency, J(Ψ, θ′) is the horizontal advection
of temperature, ω∂θ̄/∂Z is the vertical advection of the mean temperature gradient (this
is the only mean quantity which comes into this equation) and 1/σ∇2

⊥θ is the horizontal
diffusion of temperature fluctuation.

Finally, the mean temperature evolves on a slow time:

∂θ̄

∂T
+
∂θ′ ω′

∂Z
=

1
σ

∂2θ̄

∂Z2
(13)
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where ∂θ̄/∂T represents the mean temperature tendency on the slow time, ∂θ′ ω′/∂Z is the
large scale divergence of the eddy temperature flux and the overline denotes the horizontal
average and average over fast time. Finally 1/σ ∂2θ̄/∂Z2 is the dissipation.

4 Numerical simulations

Numerical simulations [3, 4] have been performed with periodic boundary conditions using
the Galerkin-Fourier approach in (x, y) direction and Chebyshev polynomials in the vertical
direction z. The simulations have been done for a range of scaled Rayleigh numbers R̃a
and Prandtl numbers σ. The resolution has been varied with the scaled Rayleigh number
R̃a. A semi-implicit Runge-Kutta time stepping is used. The boundary conditions are
impenetrable, fixed temperature, stress-free boundaries. Mathematically, it can be written
as θ̄ = 1 at z = 0, θ̄ = 0 at z = 1, and w = 0, ∂zΨ = 0, θ′ = 0 at z = 0 and z = 1.
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Figure 1. Volume renders of θ for σ = 7 and varying fRa (left) and fRa = 160 and varying σ (right).

Figure 2: Temperature fluctuations for various Rayleigh numbers and Prandtl numbers.
From [4].
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4.1 Observations

Figure 2 shows snapshot of the simulations for various Rayleigh and Prandtl numbers. The
left column is for Prandtl number σ = 7 and the Rayleigh numbers increases from top to
bottom. We see that we first have the presence of columns at low Rayleigh number, R̃a = 20,
here we are going to focus on this regime. Then, the Rayleigh number R̃a increases and the
columns start breaking up leading to a more turbulent regime. The right columns shows
a fixed Rayleigh number, R̃a = 160, with increasing Prandtl number going down. We see
that increasing the Prandtl number leads to the appearance of columns. Note that there is
no exact correspondence between varying the Prandtl and the Rayleigh number.

In summary, for rotating convection, columns are present for small Rayleigh number
and/or large Prandtl number. In the following we are going to focus on this particular
regime.

4.2 Convective Taylor Column regime

We consider the regime of convective Taylor columns. The simulation parameters are R̃a =
E4/3Ra = 40, σ = 7 and the grid resolution in this case is 192 × 192 × 97. Starting with
arbitrary initial conditions, the temperature fluctuations relatively quickly organize into 2D
convective columns. Hot plumes and cold plumes are present and the columns have nearly
zero circulation. As a result they don’t significantly advect each other in the horizontal
direction. Moreover, the vorticity shows that fluid flows in opposite directions at the top
and bottom with ring of vorticity around the center of the column. Also note that vorticity
goes to zero at the mid-plane owing to symmetry.

4.3 Model of convective Taylor columns

To build a model of this convective Taylor columns, we seek steady nonlinear solution with
axisymmetric structures [5]. It is also assumed that all the heat flux is carried by columns
(this can be relaxed). Then we define cf as the number of columns per units area and the
Nusselt number by Nu = −∂z θ̄(z = 0). Then, the set of equations for a single column
become

∂2φ

∂Z2
+∇2

r

(
R̃a

∂θ̄

∂Z
+∇4

r

)
φ = 0 (14)

∂θ̄

∂Z
+

Nu

1 + cf σ < (∂rφ)2 >
= 0 (15)

where <> denotes the horizontal integral over column and ∇2
r is the radial component of

the Laplacian.

4.4 Convective Taylor columns

The simplest solution of the set of equations (14)-(15) is a separable solution between the
vertical and horizontal directions. First, consider horizontal Bessel function of first kind,
φ(r, Z) = φ̂(Z) J0(k r). The problem with this first solution is that there is an infinite heat
flux and infinite circulation, we therefore need a cutoff. Moreover, another problem is that
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this model fails to match numerical solution as the radial decay is too slow compared to the
numerical simulations.

Therefore, we can improve the model by looking at Hankel functions, which are complex
Bessel function defined by H0(kr) = J0(kr) + i Y0(kr). Then the solution can be written as

φ(r, Z) =
(

π

8σ2 cf

)1/2

φ(Z)H0(kr) + c.c (16)

where c.c. denotes the complex conjugate. In this case the integral quantities (mass flux,
heat flux, circulation) are finite, although there is a singularity at r = 0 which will be
neglected because the integrated physical quantities are finite. If we take this ansatz in
the equations (14)-(15), the vertical amplitude function φ(Z) is solution of an eigenvalue
problem.

We can compare the analytical solutions to numerical simulations (see figure 3). We
see that the solution based on Bessel functions (red curve) oscillates long after the actual
structures goes to zero. The solution based on Hankel functions (blue curve) matches well
with the numerical results for the radial solution. However for the axial profile, the Bessel
functions gives a better results than Hankel functions. The horizontal oscillation is better
captured by the Hankel solution than the Bessel functions.

Simulation 
Hankel 

Bessel 

Figure 3: Radial and vertical (inset) profiles of the vertical velocity w(z = 1/2, r), the vor-
ticity ω(z = 1/96, r) and the temperature fluctuation θ(z = 1/96, r) solid line are the results
of numerical simulations, blue dashed line is the solution based on Hankel function, and red
dotted line the solution based on Bessel function. Note that the logarithmic singularity is
present but nearly invisible. From [5].

5 Conclusion

We have seen that the non-hydrostatic quasi-geostrophic equations describe rapidly rotating
convection. The numerical simulations show that there are several regimes of rotating
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convection. Here, the focus is on the moderate forcing regime which has convective Taylor
columns. The horizontal structure of these columns is well-described by an analytical model
based on Hankel functions.

Ongoing work on the topic include the study of the turbulent regime and understanding
the Lagrangian transport, which has implications for how how tracers such as CO2 are
transported from surface to the deep ocean, and to construct a census to measure the
population statistics of the columns.
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