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1 Introduction

1.1 What is a Coherent Structure?

Structures are ubiquitous in planetary atmospheres, oceans, and stars (figure 1). These
structures are of great interest because some of them have significant direct human im-
pact (e.g. hurricanes, storms, Jet Stream). In addition, studying structures can provide
insight into understanding and modeling other high-impact phenomena such as climate and
weather. For example, sub-gridscale parametrization is an important part of ocean mod-
eling; however, it has been observed that increasing resolution (and hence the accessible
Reynolds number) drastically changes the flow field and results in an ‘explosion’ in the
population of coherent vortices (figure 2).

There is no rigorous definition of a coherent structure. In general, the best way to
categorize them is based on the human brain, and employing the principle of ‘you know one
when you see one’. On the whole, structures cannot be derived from the underlying partial
differential equations: some conclusions can be drawn from these governing equations, but
in general we need experimental and numerical observations to guide a theoretical study of
structures.

In general, simple systems provide a road map for more complex physical systems on
a planetary scale, such as oceans and atmospheres. Therefore, the overall approach is to
seek the generic properties of these planetary fluids, and study simplified systems. We then
extrapolate these simple systems back to the more complex large-scale physical systems of
interest.

1.2 Properties of Coherent Structures

The term ‘coherent structure’ was first coined by [1] for vortices in a free shear layer.
Below we give some properties of coherent structures, following [2]. It should be noted that
the properties listed here are suggestions, and are probably both incomplete and overly
exclusive, such that some things we would like to include as structures are either not included
or are ruled out.

• Coherent structures are recurrent.
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(a) An oceanic eddy off the coast of Tasmania (b) Hurricane Dennis off the coast of Florida

(c) The Great Red Spot of Jupiter (d) The Jet Stream over North America

Figure 1: Examples of structures in planetary atmospheres and oceans.
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(a) 6.3 km resolution ∼ 1/12o (b) 1.6 km resolution ∼ 1/48o

Figure 2: The effect of increasing numerical resolution in a simulation of ocean gyre, taken
from [3].

• Coherent structures are spatially localized and isolated, as opposed to waves with a
single Fourier mode

”
which are not. Solitary waves, which are localized and contain

many Fourier modes are an example of a coherent structure.

• Coherent structures are a preferred state of the nonlinear dynamics: they are either
close to stationary flow configurations, or self-similarly evolving states, which are
robust to perturbations.

• Coherent structures are dynamically self-organizing, and thus not characteristic of any
forcing.

• Coherent structures are long-lived in a Lagrangian frame, meaning that the time scale
over which the structure decays is much longer than the typical Eulerian time scales
of the flow (e.g. the Eulerian rotation period of the vortex). Structures are therefore
weakly dissipative on Eulerian timescales.

1.2.1 Coherent Structures and Turbulence Theory

In traditional theories of turbulence, flows are treated as random, and a random phase
approximation in (Fourier) wavenumber space is typically used to analyze them. However,
coherent structures, as defined above, are local in physical space, and therefore a random
phase approximation will destroy the physical localization. For example, a step function in
physical space has a wide spectrum in Fourier space (Heisenberg’s uncertainty principle).

1.2.2 Recognition Algorithms

Structures can be identified by a number of different techniques. The most common ap-
proach is using subjective automated algorithms. These algorithms work by taking prede-
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fined criteria and thresholds for the various properties outlined above. Such a method has
an inherent subjectivity. A good recognition algorithm will be robust to small changes in
the criteria such as the specific values of the thresholds. Other methods include human
identification by eye, Lagrangian coherent structure theory, wavelet theory, and various
statistical procedures.

2 Two-Dimensional Fluid Dynamics

The large-scale dyynamics of planetary and oceanic flows are dominated by rotation and
stable density stratification. Such flows are charactrized with velocity scale V , length scales
L (horizontal) and H (vertical), Coriolis parameter f = 2Ω sin θ (where Ω is the frequency
of rotation and θ is the latitude), and Brunt-Väisälä frequency N . The Brunt-Väisälä
frequency describes the frequency of oscillation of a displaced parcel of fluid in a stable
stratified density field ρ(z), and is given by N2 = (−g/ρ) ∂ρ/∂z, where g is the gravitational
acceleration.

The effects of rotation are described by the Rossby number Ro, which can be thought
of as a ratio of the timescales for rotation and advection, and is given by

Ro =
U

Lf
. (1)

If Ro � 1, then the rotation timescale 1/f is much shorter than the advection timescale
L/U , and the effects of rotation dominate.

The effects of stable stratification are described by the Froude number F , which can
be thought of a ratio of the timescales for oscillation in the background stratification and
advection, and is given by

F =
U

HN
. (2)

If F � 1, then the stratification in strong.
In the limits Ro� 1 and F � 1, the system is marked by rapid rotation and strong sta-

ble stratification, which results in significant (spatial) anisotropy in the flow. In particular,
the vertical velocity w is smaller than the horizontal ones (i.e. w � u, v). If the extreme
limit of w = 0, we can consider the system as two-dimensional in the x− y plane.

2.1 2D Fluid Equations

We assume that the flow u(x, y, t) = (u, v) is incompressible

∇ · u = 0, (3)

and that the density ρ is constant. Without loss of generality, we set ρ = 1. The flow
satisfies the Navier-Stokes momentum equation,

Du

Dt
=
∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u, (4)

where p is the pressure, ν is the viscosity, and rotation is ignored for now (i.e. f = 0). We
define the vorticity ω to be

ω = ∇∧ u = ωẑ, (5)
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Due to incompressibility (3) the flow can be described by a streamfunction ψ(x, y, t) as
(u, v) = (−∂ψ/∂y, ∂ψ/∂x). With respect to this streamfunction, the vorticity is given by

ω = ∇2ψ. (6)

Taking the curl of (4) gives the vorticity equation,

Dω

Dt
=
∂ω

∂t
+ J [ψ, ω] = ν∇2ω, (7)

where the Jacobean J is given by

J [ψ, ω] =
∂ψ

∂x

∂ω

∂y
− ∂ψ

∂y

∂ω

∂x
. (8)

In the inviscid limit, ν → 0, (7) reduces to

Dω

Dt
= 0, (9)

and vorticity is conserved following the flow.
In general, the flow is described by the vorticity equation (7) and the equation relating

vorticity to the streamfunction (6). Often, in more situations beyond pure 2d flows, conser-
vation equations for ‘potential vorticity’ can be derived that are analogous to (7), but the
relationship between potential vorticity and velocity will be different to (6) (e.g. see 2.1.1).

Finally, we define the circulation ΓC around a closed curve C to be

ΓC =

∮
C
u · dl =

∫
S
ω · dS, (10)

where the closed curve C, with line element dl, contains an area S, with area element dS.

2.1.1 Effect of Rotation

In 2D fluid dynamics, if the Coriolis parameter f is a constant (the ‘f–plane approximation’),
then it can be absorbed into a modified pressure p in (4), becuase the Coriolis term f(u∧ ẑ)
can be written as a perfect gradient f∇ψ. In this case, the flow is still described by (6)
and (7). However, if f varies by latitude, e.g. as f(y) = f(yo) + βy where β = (∂f/∂y)yo
(β–plane approximation), then (7) will be replaced with an equation conserving potential
vorticity q = ω + βy (i.e. Dq/Dt = 0).

2.2 Steady Inviscid Solutions

On an f -plane, if the flow is steady and inviscid, then (7) reduces to

J [ψ, ω] = 0. (11)

Therefore, any parallel flow, in which the streamfunction is a function of x or y only, is a
solution of the equations. For example, zonal or meridional jets are solutions.

Note, however, that under a β–plane approximation (described above), meridional jets
(ψ = ψ(x)) are no longer solutions of the equations. To the degree that coherent structures
are steady-solutions of the inviscid equations, this explains why coherent jets tend to zonal
rather than meridional.
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2.3 Vortices

In polar coordinates (r, θ), the steady inviscid governing equation (11) and the vorticity (6)
can be written as

J [ψ, ω] =
1

r

(
∂ψ

∂r

∂ω

∂θ
− ∂ψ

∂θ

∂ω

∂r

)
= 0, (12)

ω = ∇2ψ =
1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2
∂2ψ

∂θ2
. (13)

Therefore, any axisymmetric flow ψ = ψ(r) satisfies the steady inviscid equations (12) and
(13). Again, to the degree that coherent structures are steady-solutions of the inviscid
equations, we expect to see axisymmetric vortices.

2.3.1 Gaussian vortex

Consider the axisymmetric vortex given by

ω(r) =
Γ

2πr20
e−r

2/2r20 , (14)

which is described by two constant parameters: the circulation Γ; and the size r0. The
velocity field is purely azimuthal u = uθeθ, and can be found from inverting the curl (13)
(analogous to the Biot-Savart law in electromagnetism). This operation gives a constant
of integration, which is chosen to ensure that the velocity is bounded at the origin. The
velocity is therefore given by

uθ(r) =
Γ

2πr

[
1− e−r

2/2r20

]
. (15)

Note that, with vortices, we often define a vorticity ω, and infer the velocity uθ. Equation
(15) shows that the velocity is zero at the origin and increases initially linearly with r. The
velocity is maximum at r0, and then decays like 1/r.

2.3.2 Point Vortex

In the limit r0 → 0, we can consider the Gaussian vortex to be a point vortex, with vorticity
ω given by

ω(x) = Γδ(x). (16)

The corresponding velocity is given by

uθ(r) =

{
Γ/2πr r 6= 0

0 r = 0
(17)

Suppose we have N point vortices, each with circulation Γi and location xi. Then the
vorticity at position x is obtained from the superposition of ωi

ω(x) =
N∑
i

Γiδ (x− xi), (18)
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(a) (b)

Figure 3: Schematic showing point vortex pairs: (a) two vortices of equal and opposite
circulation, translate without changing their separation; (b) two vortices of equal circulation,
rotate without changing their separation.

and the corresponding velocity field outside all point vortice is given by

u(x, y) =

N∑
i

Γi
2π

[
− (y − yi) x̂ + (x− xi) ŷ

(x− xi)2 + (y − yi)2

]
, (x, y) 6= (xi, yi) (19)

and the velocity at point vortex j is given by

u(xj , yj) =
N∑
i 6=j

Γi
2π

[
− (y − yi) x̂ + (x− xi) ŷ

(x− xi)2 + (y − yi)2

]
. (20)

Consider now the inviscid time-dependent governing equation,

∂ω

∂t
+ J [ψ, ω] = 0. (21)

Inserting (18) into (21), and balancing terms, gives

∂Γi
∂t

= 0, and
Dxi
Dt

= u(xi), (22)

which shows that the circulation of each vortex remains constant, and each vortex moves
with the velocity that is induced from the other vortices at that point.

Examples of the motion of two point vortices are given in figure 3. A pair of point
vortices with equal but opposite circulation separated by a distance d translates at the
speed of Γ/2πd without changing the separation. The direction of translation can be easily
inferred by finding the direction of velocity induced by one vortex on the other one. On the
other hand, a pair of vortices with equal circulation of the same sign rotates around their
centre of vorticity with a period of 2π2d2/Γ.
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