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1 Introduction

Granular materials are encountered regularly in everyday life — as salt and sugar in the
kitchen, as dirt on a trail underfoot, or as sand on the beach. They are agents in destructive
and powerful events: vast avalanches of snow and ice, pyroclastic flows of hot dust and gas
down the flanks of an erupting volcano, and landslides and mass wasting on Earth and
other rocky bodies of the solar system. In human industries like the food, pharmaceutical,
and semiconductor industry, granular materials are the second most manipulated substance
after water [13].

An understanding of the mechanics of granular flows is necessary to interpret and pre-
dict their behavior in geophysical and industrial contexts. In general, granular flows can
be divided into three regimes depending on their rate of deformation: a dense, quasi-static
regime, a slowly flowing “liquid” regime, and a relatively dilute, rapidly flowing “gaseous”
regime. The quasi-static regime is characterized by slow deformation and frictional inter-
action between particles and is well-studied in the field of soil mechanics [14]. The gaseous
regime is characterized by binary collisions and can be described by a kinetic theory which
accounts for dissipation in collisions [6]. The liquid regime, which is the subject of this
work, is characterized both by collisions and enduring contacts and presents perhaps the
greatest theoretical challenge [5].

A theoretical description of the liquid regime of granular flow based on the microscopic
physics of particle interactions has proven elusive. However, empirical laws proposed rela-
tively recently which employ the principles of mass and momentum conservation in a con-
tinuum approximation – a “hydrodynamic description” – have demonstrated some success
[9, 5]. This approach decomposes the bulk stress in the granular medium into a “pressure”
(often taken to be isotropic) and a deviatoric component. For the deviatoric component a
“frictional” rheological law is proposed which is proportional to the pressure and coaxial
with the rate of strain. In addition, the coefficient of proportionality or friction coefficient
µ has a functional dependence on the “inertia number” I which is dependent on magnitude
of the rate of strain, particle diameter, pressure, and bulk density of the material. We call
this empirical rheology the “µ(I) law”.

The µ(I) law is particularly interesting because, while it uses material parameters and
has a dependence on the inertia number which is determined by shear cell and inclined
plane experiments, it has provided accurate quantitative predictions for the velocity profile
and flowing layer depth in an independent heap flow experiment [9] (for a description of the
common experimental configurations used in the study of granular flow see [10]). In this
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work, we examine whether the µ(I) law is valid for a fourth common configuration: the
rotating drum.

Granular flows in rotating drums, like flows on a heap, are surface flows in that the
flowing grains occupy a layer over a bed surface of static grains. One of the special char-
acteristics of surface flows is that they exhibit two distinct regimes of behavior depending
on the flow rate. At low flow rates, the system episodically avalanches: grains either accu-
mulate (heap flow) or rotate as a solid body (rotating drum) until a critical pile inclination
is reached at which they release in an avalanche. At high flow rates a continuously flow-
ing layer of grains forms. Flow in a rotating drum is more complicated than flow on a
heap because it is not necessarily homogeneous in the direction of flow. Nevertheless the
rotating drum configuration uses far less granular material and permits a higher volume
of experiments because grains are automatically recycled. Further, the rotating drum can
access a greater range of average surface inclinations (although the shape of the surface may
not remain flat) [10]. As a result much attention has been devoted to the rotating drum,
including investigations into the properties of the continuously flowing layer [7], avalanches
[3, 12], the transition between episodic avalanching and continuous flow [1, 4], discrete ele-
ment method simulations [17, 16], explanations for the shape of the free surface [15], and
studies that use experimental techniques such as MRI [16] and positron emission [11].

In this work we conduct a general investigation into the characteristics of flow in a rotat-
ing drum with an emphasis on applying the µ(I) rheology to describe both the continuously
flowing layer as well as the episodic avalanches. We develop separate theories for the contin-
uously flowing layer and for the episodic avalanching regime. We compare the predictions
of the theory to experiments performed in Vancouver at the University of British Columbia
as well as experiments in a second drum in the GFD lab at the Woods Hole Oceanographic
Institution. We also comment on the transition from episodic avalanching and continuous
flow, although it is not yet completely understood.

This report is organized as follows. In Section 2 we describe our experimental methods
and materials. In Section 3 we discuss representative experimental results and introduce the
main features of the flow including episodic avalanching, continuous flow, and the transition
between these regimes. In addition we present our observations of the effects of drum width
and drum radius on the relationship between flow rate and the inclination of grain pile.
In Section 4 we give a brief introduction to the theory of the liquid regime of granular
flow and the µ(I) rheology and derive two models: the “thin, shallow, slippy” (or TSS)
model for the continuously flowing layer, and a “crude inertial model”. In Section 5 we
compare the predictions of our theory with experimental observations. We find that the
TSS model appears to be valid for thin drums within a certain range of flow rates within the
continuously flowing regime. However it does not appear to be valid for the wider drums
(as expected), and underpredicts the angle of the flowing layer at both the high and low
ends of the tested flow rates. Further we are unable to fully validate the model because it
depends on material parameters which have not yet been measured. For the crude inertial
model we only attempt a qualitative comparison. We find that it can produce a flow which
resembles an avalanche and provides some basis for an explanation for why the system
might transition from episodic avalanching to continuous flow as the flow rate is increased
(but not the converse transition from continuous flow to episodic avalanching).

2



2 Experimental method and materials

Results are presented for experiments conducted in the GFD lab at the Woods Hole Oceano-
graphic Institution in Woods Hole, Massachusetts during the Program in Geophysical Fluid
Dynamics in the summer of 2013, as well as for experiments conducted earlier at the Uni-
versity of British Columbia in Vancouver, British Columbia.

2.1 Apparati

Two different drums were used for experiments: one (Vancouver) with radius 144 mm
located at the University of British Columbia in Vancouver, and another (Woods Hole)
with radius 69 mm located in the GFD Lab at the Woods Hole Oceanographic Institution
in Woods Hole, Massachusetts. An image of each is shown in Figure 1(A) and 1(B). The
exterior of both drums was composed of Perspex. The width of the Vancouver drum could
be varied by fixing a Perspex plate at the desired position. The width of the Woods Hole
drum was varied by inserting a circular piece of rigid, high density foam with a slightly
smaller diameter than the drum. The foam was stacked on top of sheets of additional foam
and Perspex against the back wall of the drum to achieve the desired width.

A B

C D

Monday, September 30, 13

Figure 1: Experimental apparati, materials, and procedure for measuring the surface in-
clination. (A) Vancouver drum with radius 144 mm; (B) the entire Woods Hole set-up
including the motor driving drum rotation. The Woods Hole drum has radius 69 mm and
here is filled with Ballotini spherical glass beads of diameter 2mm, (C) decorative aquarium
sand (left) and 3mm spherical class beads (right), (D) illustration of the image cropping
and line fitting procedure to determine the pile angle θ.

3



2.2 Materials

We performed experiments with four granular media: “Ballotini” spherical glass beads of
diameter 1.5, 2, and 3 mm, and decorative aquarium sand of irregular shape and character-
istic diameter ≈ 1 mm. An image of the decorative aquarium sand and 3mm spherical glass
beads is shown in Figure 1(C).

2.3 Method

The experimental protocol for each drum was slightly different. The Vancouver drum was
computer-controlled with an automated system for imaging the drum from the side and
calculating the slope angle instantaneously so that many thousands of images did not have
to be saved. The Woods Hole drum was controlled manually and video was taken by a
camera on a tripod and analyzed later.

Because it was possible to automate the collection of large amounts of data in the
Vancouver drum, very long “burn” runs were performed in which the glass beads were
rotated for periods of up to 8–12 hours. From these runs it appears that the inclination of
the pile does undergo a slow drift over extended runs, perhaps due to wearing of the beads
and the associated accumulation of glass powder or dust. Further, if the beads were removed
from the drum after a burn, washed to remove dust, and reinserted, a sudden change in the
measured slopes was observed. This change in measured slope after washing would then be
followed by a second slow drift in slope inclination before reaching a steady-state. A full
characterization of the wearing properties and the apparent effect of accumulated dust is
beyond the scope of this work. It is important to note, however, that all results presented
for the Vancouver drum have undergone this “burning” process, whereas in the Woods Hole
drum such a procedure would not have been practical.

For the Woods Hole drum, the rotation speed was set by a manual controller which
was characterized to relate the scale of the controller to the rotation speed of the drum.
The protocol involved starting the drum at the maximum rotation speed allowable by the
controller. The rotation speed was then decreased in small increments until the minimum
rotation speed for which the motor could drive the drum steadily (lower rotation speeds
were possible, but “skipping” and irregular movements of the motor were observed), and
then increased in small increments until the maximum rotation speed was again reached.
This allowed the transition between continuous flow and episodic avalanching to be explored
taking into account any potential hysteretic effects due to the history and past states of the
system. For each rotation speed a short video approximately 2 minutes long was recorded
for analysis.

To determine the average angle of the flowing layer from the video, a portion of each
video frame containing only the layer of beads and the dark drum background was extracted.
The surface of the grain pile was located according to an increase in grayscale intensity above
some threshold. A line was then fit to these points from which the angle of the layer was
calculated. An image of showing the cropped area of the drum image and a line fit to the
layer surface is shown in Figure 1(D).
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3 Experimental Results

3.1 Two regimes of flow

Figure 2 shows some representative time traces of the pile angle θ versus time for various
rotation rates Ω taken from the Vancouver experiments with 2 mm glass beads. From the
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Monday, September 30, 13Figure 2: Representative time traces of θ at various rotation rates Ω measured in the
Vancouver drum with 2 mm glass beads. At the lowest rotation rate (Ω = 0.019 rad/sec)
the system exhibits episodic avalanching. At the highest rotation rate (Ω = 0.079 rad/sec)
the system exhibits continuous flow. At intermediate flow rates the system exhibits both
regimes in varying proportion.

time traces we extract the local maxima and local minima, and from these we calculate the
average local maximum θmax and average local minimum θmin. We also calculate the total
time average θ which we denote 〈θ〉.

The data shows the signature of the two regimes of granular flow. At the lowest rotation
rate (Ω = 0.019rad/sec) the system exhibits pure avalanching with no regions of continuous
flow. At the highest rotation rate (Ω = 0.079 rad/sec) the system exhibits pure continuous
flow with no avalanching. And at all intermediate rotation rates shown in Figure 2, the
system intermittently transitions between avalanching and continuous flow.

In the episodic avalanching regime the mass of beads rotates as a solid body with the
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drum until the pile reaches a critical angle θstart, at which an avalanching layer of beads
starts to flow. The avalanche stops when the angle of the pile reaches a second, lower critical
angle θstop. These critical angles are reflected in the distinct and well-defined maximum
and minimum pile angles θmax and θmin. We observe that θmax and θmin are independent of
flow rate far from the transition to continuous flow for both the sand and the 3 mm glass
beads.

In the continuous flow regime there is a continuously flowing layer of beads on the surface
of the bead pile supported by the static, solidly rotating bulk. Far from the transition
between episodic avalanching and continuous flow, the angle of the surface of the flowing
layer remains relatively constant and stable in time, and the average angle of the pile
increases as the flow rate increases. At low rotation rates which are just above the transition
between episodic avalanching regime, the shape of the surface is almost linear. As the
rotation rate increases, however, the surface begins to take on an “S” shape. This effect is
pronounced for thinner drums and there is good reason to believe it is due to the friction
exerted on the flowing layer by the walls [15].

3.2 The transition between regimes: hysteresis and intermittency

Figure 3 shows plots of θmin, 〈θ〉, and θmax against the flow rate Q = 1
2ΩR2 for (A) 3 mm

glass beads and (B) decorative aquarium sand. When the flow rate is very small or very
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Figure 3: θmax, 〈θ〉, and θmin for 3mm glass beads (left) and decorative aquarium sand (right)
in the Vancouver drum for W = 17 mm. Both materials exhibit episodic avalanching at low
flow rates and continuous flow at high flow rates. (Left) the 3mm beads exhibit intermittent
transition between avalanching and continuous flow for intermediate flow rates. (Right) the
decorative aquarium sand exhibits hysteresis near the transition between avalanching and
continuous flow, and no intermittency. The hysteric region was characterized thoroughly
which is why there are more data points near transition.

large, the two materials exhibit qualitatively similar behavior. Overall, the sand has a
significantly larger pile angle, which reflects its greater effective internal friction coefficients
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and may be due to both to the irregular shape of the sand particles and greater interparticle
friction forces. Both the glass beads and the sand exhibit two distinct regimes of granular
flow: episodic avalanching at low flow rates, and continuous flow at high flow rates. When
the pile angle θ is plotted against the flow rate Q, the signature of the avalanching regime
is the widely disparate θmin, 〈θ〉, and θmax. Far from the transition between avalanching
and continuous flow these are independent of flow rate.

Close to the transition between episodic avalanching and continuous flow, however, the
two materials exhibit qualitatively different behavior. For sand, there appears to be a sharp
transition in θ between the continuous flow and avalanching regime. Furthermore, there is
a range of flow rates for which both episodic avalanching and continuous flow is observed.
In this regime we observe hysteresis; when the flow rate is increased from the avalanching
regime, the system will remain in the avalanching regime until some critical maximum flow
rate, and conversely for decreasing flow rate while in the continuous flow regime. Also,
near the transition between the two regimes, the maximum θ for sand increases. This is
because at high rotation speeds the pile angle continues to increase past θstart even after
the avalanche has been initiated. The same phenomenon is observed in θmin.

For glass beads the transition between regimes exhibits smooth trends in θmin, 〈θ〉,
and θmax. This is consequence of the existence of intermittent transitions between episodic
avalanching and continuous flow in this regime. These intermittent transitions are visible in
the time traces plotted in Figure 2 for all but the largest and smallest rotation rates shown.
The persistence time of either state before transition is dependent on the flow rate: when
the flow rate is increased, the fraction of time that the system occupies the continuous flow
state increases until the avalanching regime disappears altogether. Thus a smooth transition
in pile angle is observed [4].

3.3 The importance of width

The pile angle is sensitive to the width of the drum when the width of the drum is smaller
than the radius (W/R � 1). We observe a width dependence in the average pile angle for
both the continuously flowing regime and avalanching regimes, as well as in critical angles
θstart and θstop for the avalanching regime. Figure 4 plots the average pile angle in the
Vancouver drum for five different widths and compares the results. In the Vancouver drum
we see that when W ≥ 110 mm the width is no longer important.

3.4 Comparison of Woods Hole and Vancouver

Figure 5 compares the results from the Woods Hole and Vancouver drums with 3 mm glass
spheres for various widths. We see that when the results for 〈θ〉 collapse for the Woods
Hole and Vancouver drums for three widths when plotted against the flow rate Q = 1

2ΩR2.
It appears therefore that even to W/R ≈ 1 the inclination of the surface is controlled by
the drum width. We note that the narrowest width in the Woods Hole drum was measured
closer to 18 mm, but despite this slight difference between Woods Hole and Vancouver the
data collapses impressively.
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Figure 4: Average pile angle for five different widths in the Vancouver drum (R = 144mm).
(?, blue) W = 17 mm, (�, red) W = 31 mm, (©, green), W = 56 mm, (×, black) W =
110 mm, (4, magenta) W = 205 mm. The pile angle decreases as the width increases for
small W/R. When W is comparable to R the pile angle appears to saturate and the width
is no longer important.

4 Theory

We now attempt to develop a theoretical explanation for the observed behavior of the
system. Our ultimate hope is to develop an explanation for the transition between episodic
avalanching and continuous flow. We start by developing a model for the continuously
flowing layer in narrow drums which relies on the fact that the width of the drum is the
controlling parameter. The basis of our description is the continuum assumption and the
conservation of mass and momentum for an incompressible granular fluid,

∇ · u = 0, (1)

ρ
Du

Dt
= −∇p+∇ · τ + ρg, (2)

where u = {u, v, w} is the velocity of the granular material, ρ is the bulk density, p is
an isotropic pressure, τ (τij in indicial notation) is the deviatoric stress tensor, and g is
gravitational acceleration. To relate the state of the system to the internal deviatoric stress
τij we employ the empirical “µ(I)” law, where µ(I) is an effective friction coefficient of
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Figure 5: Comparison of the average pile angle for Woods Hole (R = 69mm) and Vancouver
(R = 144 mm) drums for three widths W . (?, blue) Vancouver with W = 17 mm, (5, blue)
Woods Hole with W = 18 mm, (�, red) Vancouver with W = 31 mm, (�, red) Woods Hole
with W = 31 mm. (©, green) Vancouver with W = 56 mm, (4, green) Woods Hole with
W = 56 mm. We see the observed pile angles appear to be controlled by the width of the
drum even to when W/R ≈ 1 (for the Woods Hole drum with W = 56 mm): the pile angles
collapse for Woods Hole and Vancouver when plotted against flow rate Q = 1

2ΩR2.

proportionality between the deviatoric stress and the pressure, or normal force such that
[9],

τij = µ(I)p
γ̇ij
|γ̇| , (3)

where γ̇ij is the rate of strain tensor and I is the “inertia number”. The inertia number is
defined

I =
|γ̇|d√
p/ρ

, (4)

where |γ̇| =
√

1
2 γ̇ij γ̇ij is the second invariant of γ̇ij and d is particle diameter. The inertia

number can be interpreted as the ratio of two characteristic timescales in the relative motion
of two grain layers: kinematic Tkin and mechanical Tmech [10]. The kinematic timescale is a
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characteristic timescale for the relative motion of the grain layers,

Tkin =
d

Vkin
=

d

d|γ̇| =
1

|γ̇| , (5)

where Vkin is the relative velocity of the grain layers. The mechanical timescale is a char-
acteristic timescale for the acceleration of the layers amech due to mechanical forces exerted
on the layer,

Tmech =

√
d

amech
=

√
d

F/m
=

√
d
ρdA

pA
= d

√
ρ

p
, (6)

where A is the area of the layer, F = pdL is the normal force exerted on the layer due to
the pressure p, and m = ρd2L is the mass of the layer. The ratio of these timescales is the
inertia number,

I =
Tmech

Tkin
=
|γ̇|d√
p/ρ

. (7)

When the inertia number is large, the rate of deformation of the granular medium is fast
relative to the rate of displacement of the medium due to mechanical forces. Experiments
in shear cells and on inclined planes show that the effective friction coefficient µ collapses
to a single curve when plotted against I [5]. We see that the effective coefficient has some
finite value µ1 at I = 0 and asymptotes to a second limiting value µ2 as I →∞. To capture
this dependence we use the formula [9]

µ(I) = µ1 + (µ2 − µ1)
I

I + I0
, (8)

where I0 is a material parameter which characterizes how quickly µ(I) transitions between
its lower and upper values with increasing I. These equations serve as a starting point for
the derivation of approximate models for granular flow in the rotating drum.

4.1 Thin, Shallow, Slippy

For our first attempt to model the flowing layer we reduce the full conservation equations
greatly through a series of approximations and assumptions. We assume that the width and
depth of the flow are much smaller than it’s length, that we can neglect inertia, and that the
internal friction coefficient µ(I) and the friction coefficient between the flowing beads and
the wall are small. With these assumptions we are able to derive a single partial differential
equation for the height profile of the flowing layer which is easily solved numerically. The
derived model, which we call the “thin, shallow, slippy’ model, or “TSS” then represents
the leading order system of equations in a formal asymptotic expansion. The derivation of
the model from the full detailed conservation laws illustrates clearly its approximations and
limitations.

4.1.1 The momentum equation

We start by defining the characteristic dimensions for the flow: length R, depth H, and
width W . A schematic of the drum, the flowing layer, and coordinate system is shown
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Figure 4
Different flow configurations: (a) plane shear, (b) Couette cell, (c) silo, (d ) flows down an
inclined plane, (e) flows on a pile, and ( f ) flows in a rotating drum.

important to notice that there are two ways of shearing the material. The first is to
impose the pressure P on the top plate. In this case the upper plate is free to move
vertically, and the volume fraction ! typically decreases with increasing shear rate.
The second is to impose the volume fraction by fixing the distance between the plates.
In this case, the pressure on the top plate typically increases with shear rate. These
configurations give different results for the shear stress as a function of shear rate, but
both are fully equivalent, as shown by da Cruz et al. (2005). We begin our discussion
by considering the constant pressure case.

Friction and dilatancy laws. A crucial observation raised by da Cruz et al. (2005)
and Lois et al. (2005) is that, in the simple sheared configuration for infinitely rigid
particles, dimensional analysis strongly constrains the stress/shear rate relations. For
large systems (i.e., when the distance between the plates plays no role), the system is
controlled by a single dimensionless parameter called the inertial number:

I = γ̇ d
√

P/ρp
. (1)
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Figure 6: A schematic of the drum illustrating the characteristic dimensions and showing
the coordinate system. The radius of the drum is R, the (average or characteristic) depth
of the flowing layer is H, and the width of the drum is W . The surface of the flowing layer
is defined at z = h(x) and the yield surface dividing the flowing layer and the static bed of
grains beneath is defined at z = Y (x). The coordinate system is tilted at an angle θ with
respect to the vertical as defined by the direction of gravity.

in Figure 6. We assume that the flow is thin and shallow such that ε = H/R � 1 and
∆ = W/H � 1. These yield scalings for u, v, and w through the mass conservation
equation, and from these we find scalings for γ̇ij and τij . If we substitute

x = Rx′, y = Wy′, z = Hz′, u = Uu′, v = V v′, w = Ww′, (9)

where U , V , and W are characteristic velocities and the primes denote a non-dimensional
quantity. The mass conservation equation (1) then becomes

(
U

R

)
∂u

∂x′

′
+

(
V

W

)
∂v

∂y′

′
+

(
W
H

)
∂w

∂z′

′
= 0. (10)

For each term to be of comparable magnitude, we must have that V ∼ ε∆U and W ∼ εU .
Next we need to non-dimensionalize the pressure and deviatoric stress tensor. We assume
that the pressure is hydrostatic, which implies that

p = ρgHp′. (11)

The deviatoric stress tensor is defined as τij = µ(I)pγ̇ij/|γ̇|, so we need to analyze the rate
of strain tensor γ̇ij in order to non-dimensionalize it properly. The rate of strain tensor is
defined as

γ̇ij =




2ux uy + vx uz + wz
uy + vx 2vy vz + wy
uz + wz vz + wy 2wz


 , (12)
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where we are using the shorthand ux = ∂u/∂x here for compactness. Introducing our
scalings we find

γ̇ij =
U

H




2εux
1
∆uy + ε2∆vx uz + ε2wz

1
∆uy + ε2∆vx 2εvy ε∆vz + ε

∆wy
uz + ε2wz ε∆vz + ε

∆wy 2εwz


 . (13)

We see therefore that in order for the flow to be two-dimensional at leading order, we need
to assume that the y-dependence in the velocity is at most a correction at order ∆2, or that

u(x, y, z, t) = u(0)(x, z, t) + ∆2u(2)(x, y, z, t). (14)

If we assume this then we find for γ̇ij ,

γ̇ij =
U

H




2εux ∆uy + ε2∆vx uz + ε2wz
∆uy + ε2∆vx 2ε∆2vy ε∆vz + ε∆wy
uz + ε2wz ε∆vz + ε∆wy 2εwz


 . (15)

Keeping in mind that the second invariant is |γ̇| =
√

1
2 γ̇ij γ̇ij we then non-dimensionalize

each component of τij ,

(τxx, τzz) = µ̂ρgHε
(
τ ′xx, τ

′
zz

)
, τyy = µ̂ρgHε∆2τ ′yy, (16)

τxy = µ̂ρgH∆τ ′xy τyz,= µ̂ρgε∆τ ′yz, τxz = µ̂ρgHτ ′xz, (17)

where we have substituted µ(I) = µ̂µ′ so that µ̂ represented the magnitude of µ(I). Inserting
these scalings into the momentum conservation equations yields

Fr
Du

Dt
= −ε ∂p

∂x
+ sin θ + µ̂

(
ε2
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
, (18)

ε∆Fr
Dv

Dt
= −∂p

∂y
+ µ̂

(
ε
∂τxy
∂x

+ ε∆
∂τyy
∂y

+ ε
∂τyz
∂z

)
, (19)

εFr
Dw

Dt
= −∂p

∂z
− cos θ + µ̂

(
ε
∂τxz
∂x

+ ε
∂τyz
∂y

+ ε
∂τzz
∂z

)
, (20)

where we have defined the Froude number Fr = U2/gH. If we assume that inertia is
negligible such that Fr � 1 and {µ̂, θ} = O(ε) (a fair assumption for many materials for
which µ(I) ≈ 0.2–0.4), the leading order equations with dimensionality restored are

0 = −∂p
∂x

+ ρg sin θ +
∂τxy
∂y

+
∂τxz
∂z

, (21)

0 = −∂p
∂y
, (22)

0 = −∂p
∂z
− ρg cos θ. (23)

In other words, we have that the pressure is hydrostatic, and that the x–momentum is a
balance between lateral and vertical shear-induced friction, gravity, and the pressure which
will come in to the equations as a shallow-water-like term dependent on the height of the
flowing layer.
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4.1.2 Boundary conditions

To proceed with the model we need boundary conditions at the sidewalls, at the material free
surface forming the upper boundary of the flowing layer, and at the yield surface forming
the lower boundary. The stress at the sidewalls is modeled as an effective friction force
which opposites the velocity of the flowing layer there,

τ · n = µwp
uêx + wêz√
u2 + w2

(n · êy) , (24)

where µw is the effective friction coefficient between the flowing beads and the wall and n is
the surface normal which points into the flowing layer. At the confining sidewalls at y = 0
and y = W we therefore have that

τxy
∣∣
y=0

= µwp sgn(u) and τxy
∣∣
y=W

= −µwp sgn(u). (25)

It was observed by de Ryck and Louisnard [2] that in the case of very rough walls with a
large friction coefficient we would expect to find a stationary monolayer of beads adjacent
to the wall such that the effective friction coefficient between the flowing layer and the wall
would simply be µ1. This implies that µw has the constraint µw ≤ µ1.

At the top of the flowing layer we define the material free surface as z = h(x). Here we
assume that the same free surface boundary conditions used for common fluids like water
are applicable, or that,

p
∣∣
z=h

= 0 and τxz
∣∣
z=h

= 0. (26)

The base of the layer is a yield surface which we define as z = Y (x). At this boundary the
velocity of the beads equals the velocity of the beads in the static layer which rotate with
the drum, or that

u
∣∣
z=Y

= u
θ̃
ê
θ̃
, (27)

where θ̃ is the angle associated with the coordinate (x, Y ) in the rotated coordinate frame.
The tangential velocity u

θ̃
is simply Ωr, where Ω is the rotation rate of the drum and r is

the radial position. We therefore have

u
∣∣
z=Y

= u
θ̃

sin θ̃ = ΩY, (28)

w
∣∣
z=Y

= u
θ̃

cos θ̃ = −Ωx. (29)

If we non-dimensionalize each velocity at the boundary with ΩR such that u = ΩRu′ and
Y = HY ′ we find

u′
∣∣
z=Y

= εY ′, (30)

and so in our leading order approximation the boundary conditions at the yield surface
z = Y (x) are

u
∣∣
z=Y

= 0 and w
∣∣
z=Y

= −Ωx. (31)

13



4.1.3 Depth-averaged mass conservation equation

We can simplify our system of equations further by using the depth-averaged mass conser-
vation equation commonly used for thin layers. To find this equation we first average the
continuity equation across the width of the drum. Using our assumption that the flow is
two-dimensional to leading order in ∆ (14) and impermeability at the drum walls, we find

0 =
1

W

∫ W

0

[
∂u

∂x
+
∂v

∂y
+
∂w

∂z

]
dy,

=
∂u

∂x
+
∂w

∂z
+

1

W

(
v
∣∣
y=W

− v
∣∣
y=0

)
,

=
∂u

∂x
+
∂w

∂z
.

(32)

We then integrate in z from the yield surface at z = Y (x) to the upper material free surface
at z = h(x), ∫ h

Y

[
∂u

∂x
+
∂w

∂z

]
dz = 0. (33)

At z = Y we have that u = 0 and w = −Ωx. At z = h, which is a material surface, we have
the kinematic condition which requires

w
∣∣
z=h

=
∂h

∂t
+ u

∣∣
z=h

∂h

∂x
. (34)

We use Leibnitz’s rule and the boundary condition at z = Y to identify

∫ h

Y

∂u

∂x
dz =

∂

∂x

∫ h

Y
udz − ∂h

∂x
u
∣∣
z=h

+
∂Y

∂x
u
∣∣
z=Y

=
∂

∂x

∫ h

Y
udz − ∂h

∂x
u
∣∣
z=h

. (35)

Noting that
∫ h
Y udz = Q(x) is the width-specific flux, we find

0 =
∂

∂x

∫ h

Y
udz − ∂h

∂x
u(z = h) +

∂Y

∂x
u(z = Y ) + w(z = h)− w(z = Y ),

=
∂h

∂t
+
∂Q

∂x
+ Ωx,

(36)

which we write
∂h

∂t
+
∂Q

∂x
= −Ωx. (37)

Furthermore, we place the origin of the coordinate system at the center of the drum. When
the drum is half-filled and we neglect any changes in volume fraction of the flowing grains,
the total conservation of granular material along with our choice of origin implies that

∫ R

−R
h(x) dx = 0. (38)

Another way to state this condition is that the addition of material in one part of the drum
requires a subtraction of material elsewhere.
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4.1.4 Width-averaged momentum equation

To simplify the x–momentum equation further we observe that our “2D” assumption that
the y−dependence of u is at most a correction of O(∆2) permits us to average the x–
momentum equation in y. This leaves all terms unchanged except for ∂τxy/∂y, which
is replaced by the boundary conditions at either bounding wall. Because the velocity is
unidirectional we find

1

W
=

∫ W

0

∂τxy
∂y

dy =
1

W

(
τxy
∣∣
y=W

− τxy
∣∣
y=0

)
= −2δp, (39)

where we have defined the wall friction parameter δ = µw/W is the friction coefficient
between the flowing bead layer and the sidewall. The other terms in the x-momentum
equation are unchanged and so it becomes

0 = −∂p
∂x

+ ρg sin θ − 2δp+
∂τxz
∂z

. (40)

4.1.5 A note on θ

In the theory, we have defined θ as the inclination of our coordinate system, while in the
experiments θ is defined by a linear fit to its surface in the cropped region of the image in
Figure 1(D). In the solution of the model, we found that is was slightly more convenient
to define the inclination of the coordinate system as the average inclination of the slope,
rather than the inclination of the slope over some region of the surface in the center of the
drum. Despite the confusion caused by the different definitions, it seems that these θ are
nevertheless approximately the same. The definition that θ in the model is the average
slope of the surface implies that h(x) must satisfy

1

2R

∫ R

−R

∂h

∂x
dx =

1

2R
(h(R)− h(−R)) = 0. (41)

4.2 Solution of TSS

To solve the TSS model we first observe that Equation (23) implies that pressure is hydro-
static, or

p = ρg cos θ(h− z), (42)

where we have applied the boundary condition p |z=h = 0. Inserting this into the width-
averaged x–momentum equation (40) yields

0 = −ρg cos θ
∂h

∂x
+ ρg sin θ − 2δρg cos θ(h− z) +

∂τxz
∂z

. (43)

Rearranging and integrating from z to h yields

τxz = −ρg cos θ(h− z) [hx − tan θ + δ(h− z)] . (44)

We note that to leading order τxz = µ(I)p = µ(I)ρg cos θ(h− z), which implies

µ(I) = −hx + tan θ − δ(h− z). (45)
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The definition of µ(I) is

µ(I) = µ1 + (µ2 + µ1)
I

I + I0
, (46)

and substitution this into Equation (45) and solving for I yields

I = I0

[
tan θ − µ1 − hx − δ(h− z)
µ2 − tan θ + hx + δ(h− z)

]
. (47)

We can write this in a simpler way in terms of the yield surface z = Y . In order for the
granular material to flow we must have that the shear stress exceeds µ1p, or that

τxz > µ1p. (48)

This implies that in the flowing layer we have

−hx + tan θ − δ(h− z) > µ1, (49)

and that the yield surface z = Y is defined by

Y = h− tan θ − µ1 − hx
δ

. (50)

We can therefore rewrite the relation for I as

I = I0

[
δ(z − Y )

∆µ− δ(z − Y )

]
, (51)

where we have defined ∆µ = µ2 − µ1. To leading order we have

I =
|γ̇|d√
p/ρ

=
uzd√

g cos θ(h− z)
, (52)

and combining this with (51) and rearranging provides an equation for ∂u/∂z,

∂u

∂z
=
δI0
√
g cos θ

d∆µ

[√
h− z(z − Y )

1− δ
∆µ(z − Y )

]
. (53)

With this equation we are then able to calculate the flow rate Q and are then in a position
to solve the depth-averaged momentum equation. To calculate Q =

∫
udz, we first observe

that through integration by parts,

∫ h

Y
(h− z)∂u

∂z
dz = u(h− z)

∣∣∣
h

Y
+

∫ h

Y
udz = Q, (54)

which means that we have to calculate only one integral for Q,

Q =
δI0
√
g cos θ

d

∫ h

Y

(h− z)3/2 (z − Y )

∆µ− δ(z − Y )
dz. (55)

16



This integral can be calculated analytically. We find

Q =
2I0
√
g cos θ

d

(
∆µ

δ

)5/2

q

(
tan θ − µ1 − hx

∆µ

)
, (56)

where

q(s) = (1− s)
[√

1− s tan−1

(√
s

1− s

)
−√s+

1

3
s3/2

]
+

2

15
s5/2. (57)

Note that

q(s→ 0) ≈ 2

35
s7/2 +O

(
s9/2

)
. (58)

From the expression for q(s) we see that s cannot be greater than 1, or that tan θ − hx
cannot be greater than µ2. This reflects our assumption that inertia is negligible and the
flow is not accelerating. If tan θ − hx > µ2, then the pile is too steep for friction forces to
balance gravitational forces and the flow must accelerate. Further, we can easily calculate
that q(s = 1) = 2/15, which implies that

dΩR2

4I0
√
g cos θ

(
δ

∆µ

)5/2

<
2

15
, (59)

for the existence of a solution without taking into account inertial terms.
This expression for Q yields a partial differential equation for h(x, t) when inserted into

the depth-averaged mass conservation equation (37). The steady solution satisfies

∂Q

∂x
= −Ωx. (60)

The impermeability boundary condition at the boundaries of the drum require that u |x=±R =
0, which implies that

Q
∣∣
x=±R = 0. (61)

Integrating Equation (60) from x = −R to x yields

Q =
1

2
Ω
(
R2 − x2

)
=

ΩR2

2

(
1−

( x
R

)2
)
. (62)

The general steady problem is then to solve the nonlinear ordinary differential equation

q

(
tan θ − µ1 − hx

∆µ

)
=

ΩR2d

4I0
√
g cos θ

(
δ

∆µ

)5/2(
1−

( x
R

)2
)
, (63)

under the constraint that ∫ R

−R
h(x) dx = 0. (64)
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4.2.1 The “low-flux” limit

The problem is simplified in the limit when s = 1
∆µ (tan θ − µ1 − hx) in q(s) is small. We

have q(s→ 0) = (2/35)s7/2 +O(s9/2), which means that

2

35

(
tan θ − µ1 − hx

∆µ

)7/2

=
ΩR2d

4I0
√
g cos θ

(
δ

∆µ

)5/2(
1−

( x
R

)2
)
. (65)

Solving for hx, we find,

∂h

∂x
= tan θ − µ1 −∆µ

(
35ΩR2d

8I0
√
g cos θ

)2/7(
δ

∆µ

)5/7(
1−

( x
R

)2
)2/7

. (66)

A single integration yields h(x),

h(x)− h(−R) = tan θ − µ1 (x+R)

−∆µ

(
35ΩR2d

8I0
√
g cos θ

)2/7(
δ

∆µ

)5/7 ∫ x

−R

(
1−

(
x′

R

)2
)2/7

dx′,
(67)

where h(−R) is determined by the total conservation of mass expressed by Equation (64).

4.2.2 General solution

The function q(s) cannot be inverted analytically, which means that without approximation
we cannot find a closed-form expression for ∂h/∂x. Thus we must turn to numerics. We
can express the general problem given by Equation (63) by writing

q(s) = C

(
1−

( x
R

)2
)
. (68)

Our strategy is to map q(s) as a function of s, invert the mapping, and then integrate the
inverted mapping to find h(x). If we substitute a function x∗(s) for x in (68), we can write

x = ±R
√

1− 1

C
q(s). (69)

We then find numerically the x which correspond to all valid s, and therefore also s(x) as
a function of x. Formally then,

q−1

(
C

[
1−

( x
R

)2
])

= s(x) =
1

∆µ

(
tan θ − µ1 −

∂h

∂x

)
, (70)

so

h(x)− h(−R) = (tan θ − µ1) (x+R)−∆µ

∫ x

−R
s(x) dx′, (71)

where condition (64) then yields h(−R). In practice, we use MATLAB’s cumtrapz to
calculate the integral in (71) using the mapping between s and x and find the difference
h(x)− h(−R). Integrating this difference yields h(−R), since (64) implies

h(−R) = − 1

2R

∫ R

−R
h(x)− h(−R) dx. (72)
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Finally, after finding h(x) for this initial choice of θ, we must iterate until the condition (41)
is met. An example of h(x) is shown in Figure 7 in the rotated frame (A) and lab frame
(B).
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⌦

Monday, September 30, 13

Figure 7: An example of the geometry of a predicted grain layer as defined by the upper
free surface h(x) and the lower yield surface Y (x). (Left) the calculated geometry of the
grain layer, shaded in blue, in the rotated frame with an exaggerated vertical dimension.
(Right) the calculated geometry of the grain layer, shaded in blue, as it looks in the lab
frame inserted into the drum.

4.3 Crude inertial model for avalanches

By neglecting inertial terms in the momentum equation, we preclude the possibility for
avalanches, despite the fact that we might still consider time-dependent behavior by retain-
ing the time-derivative in the depth-averaged continuity equation (37). More on why...

To consider inertia, we could solve the full equations, but this would involve significant
computational effort. Instead we develop a crude “depth-averaged model” which, upon
assuming a functional form for the velocity profile u(z) that does not change in time or along

the layer, yields a partial differential equation for the average velocity U(x, t) = 1
h−Y

∫ h
Y udz,

and the height of the layer h(x, t). If we use the same scaling as for the “thin, shallow, slippy”
model, we still find from the z-momentum equation that pressure is hydrostatic,

p = ρg cos θ(h− z). (73)

However this time we retain all terms in the (y-averaged) x-momentum equation. Using
the continuity equation we have the identity

∂

∂x

(
u2
)

+
∂

∂z
(uw) = u

∂u

∂x
+ u

∂w

∂z
+ u

(
∂u

∂x
+
∂w

∂z

)
= u

∂u

∂x
+ u

∂w

∂z
, (74)

which means that the y-averaged x-momentum equation can be written

ρ

(
∂u

∂t
+

∂

∂x

(
u2
)

+
∂

∂z
(uw)

)
= −px + ρg sin θ − 2δp+

∂τxz
∂z

. (75)
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Inserting hydrostatic pressure yields

ρ

(
∂u

∂t
+

∂

∂x

(
u2
)

+
∂

∂z
(uw)

)
= ρg cos θ (tan θ − hx − 2δ(h− z)) +

∂τxz
∂z

. (76)

Integrating in z from z = Y to z = h and applying Leibniz’s rule to remove derivatives
from integrals yields

ρ

[
∂

∂t

∫ h

b
u dz − ∂h

∂t
u(z = h) +

∂Y

∂t
u(z = b)

]
+ ρ

[
∂

∂x

∫ h

Y
u2 dz − ∂h

∂x
u2(z = h) +

∂Y

∂x
u2(z = Y )

]
· · ·

+ ρuw
∣∣∣
z=h
− ρuw

∣∣∣
z=Y

= ρg(h− Y ) cos θ [tan θ − hx − δ(h− Y )] + τxz

∣∣∣
z=h
− τxz

∣∣∣
z=Y

.

(77)

Using the kinematic condition for w at z = h and applying τxz = 0 at z = h, u = 0 at
z = Y , and τxz

∣∣
z=Y

= µ1ρgD cos θ where D = h − Y is the depth of the layer, yields the
depth-averaged momentum equation

∂

∂t

∫ h

Y
udz +

∂

∂x

∫ h

Y
u2 dz = gD cos θ

(
−∂h
∂x

+ tan θ − δD − µ1

)
, (78)

At this stage we need to assume a form for the velocity profile u(z) in order to proceed.
We derive our velocity profile from the Thin, Shallow, Slippy model, which is undoubtedly
a crude approximation, but perhaps slightly less crude than assuming either a constant or
a linear velocity profile. In this model we find a relation for the gradient ∂u/∂z,

∂u

∂z
=
δI0
√
g cos θ

d∆µ

[√
h− z(z − Y )

1− δ
∆µ(z − Y )

]
. (79)

The “low flux” assumption, or the assumption that Ω (and therefore Q = 1
2ΩR2) is small

is equivalent to assuming that the depth of the layer is small, and therefore z − Y � 1. If
we assume this we find a simpler relation for ∂u/∂z,

∂u

∂z
=
δI0
√
g cos θ

d∆µ

√
h− z(z − Y ), (80)

from which we can obtain a well-behaved velocity profile u(z),

u(z) =
δI0
√
g cos θ

d∆µ

{
4

15

[
(h− Y )5/2 − (h− z)5/2

]
− 2

3
(z − Y )(h− z)3/2

}
, (81)

which, upon integration, yields a unique relation between the average velocity U and the
depth of the layer D,

∫ h

Y
udz =

4

35

δI0
√
g cos θ

d∆µ
D7/2 =⇒ U =

1

D

∫ h

Y
udz =

4

35

δI0
√
g cos θ

d∆µ
D5/2. (82)

We also have ∫ h

Y
u2 dz =

11

525

(
δI0
√
g cos θ

d∆µ

)2

D6. (83)
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Inserting this into the depth-average x-momentum equation yields

∂U

∂t
+

11

4
U
∂U

∂x
=

5

7
g cos θ

(
−∂h
∂x

+ tan θ − δ
(

35d∆µ

4δI0
√
g cos θ

)2/5

U2/5 − µ1

)
, (84)

which forms a system of equations with the depth-average continuity equation, which, rec-
ognizing the flux as Q = UD, is

∂h

∂t
+

7

5

(
35d∆µ

4δI0
√
g cos θ

)2/5

U2/5∂U

∂x
= −Ωx. (85)

4.3.1 Modeling the avalanching regime

While the crude depth-averaged model includes inertia and can accommodate unsteady
solutions, it contains no ingredients which can predict the critical angle θstart at which
avalanches start. Because of this the model is not fully predictive and θstart is a parameter
(depending in general on drum width, drum radius, and granular material) which we must
measure in a rotating drum experiment. To capture the full dynamics of the episodic
avalanching regime, we insert a condition into our model which specifies that if the total
flow across the layer is 0 (the grain pile is at rest) then it cannot flow again until solid
body rotation causes the pile angle to reach θstart. At this point the flow is released, which
develops into an avalanche. If the rotation rate is slow enough, the avalanche then proceeds
until the depth of the layer shrinks to zero first at the toe of the avalanche, and then
propagating upwards to the front. The minimum angle of the pile which is achieved when
there is no flow corresponds to θstop. A series of images depicting an avalanche are shown
in Figure 8.

5 Comparison with experiment

5.1 Continuous flow and “thin, shallow, slippy”

The thin shallow slippy model yields a prediction for the free surface h(x), and therefore
for the average inclination of the flowing layer 〈θ〉. Further, the form of the predicted flux
Q,

Q =
2I0
√
g cos θ

d

(
∆µ

δ

)5/2

q

(
tan θ − µ1 − hx

∆µ

)
, (86)

implies that scaling Q with W 5/2 eliminates the drum width from the problem (recall
δ = µwall/W ). To test this prediction of the model we plot of the average angle of the
flowing layer 〈θ〉 against the Q/W 5/2 in Figure 9. We observe what appears to be a collapse
of the data for widths narrower than W = 56 mm. Further, the prediction of the TSS
model corresponds well to a portion of the experimental data with the material parameters
θ1 = tan−1 µ1 = 24.5◦, θ2 = tan−1 µ2 = 40◦, and µwall = 0.38µ1. In this case, we have
used the material parameters like fitting parameters and chosen those which best fit the
experimental data. It is important to note, however, that the material parameters can and
should be measured independent from the drum experiments; further it is only with such
measurements that we can make a rigorous test of the fidelity of the model.
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Figure 8: Series of images of a model avalanche calculated using the crude depth-averaged
model.

The experimental data differs from the scaling Q/W 5/2 and the prediction of the model
at the upper and lower limits of flow rates explored in the experiment. In both limits the
slope of the flowing layer is greater than predicted. At high flow rates, a possible explanation
for the discrepancy is the effect of inertia, which should become more important at high flow
rates. At the lower flow rates plotted in Figure 9 the system is approaching the transition to
episodic avalanching. The failure of the model here may be linked to the transition, which
the model does not describe. Finally, for the wide drums W = 110 mm and W = 205 mm,
we see that the scaling predicted by the model is no longer valid. This may be due to the
fact that the model assumes that W/H is small that the velocity u is uniform across the
drum.

Further, the TSS model fails to predict the transition to episodic avalanching. Indeed,
the TSS model predicts some pile angle for arbitrarily small flow rates. Of course for a
low enough flow rate the predicted thickness of the flowing layer will be smaller than a
single particle diameter and the continuum approximation cannot possibly be valid. It is
unclear whether it is critical to understand the failure of the continuum assumption and
finite size effects in order to predict transition, or if other factors which the model neglects
are becoming important.
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Figure 9: Angle of the flowing layer versus Q/W 5/2 for five different widths in the Vancouver
drum with 3mm diameter glass spheres. Results are shown only for the continuous regime as
determined by the minimum value for θmax. Experimental results: (©, blue) W = 17 mm,
(×, red) W = 31 mm, (�, green) W = 56 mm, (4, black) W = 110 mm, (?, magenta)
W = 205 mm. The line is the prediction of the “thin, shallow, slippy” theory the material
constants θ1 = tan−1 µ1 = 24.5◦, θ2 = tan−1 µ2 = 40◦, µwall = 0.38µ1.
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5.2 Episodic avalanching and the crude inertial model

The “thin, shallow, slippy” model is inadequate for modeling the avalanching regime of
flow in a rotating drum because it neglects inertial terms in the x-momentum equation.
The crude inertial model appears to have the capacity to model an avalanche, but we have
not yet had the chance to compare the predicted avalanches with observations. Because it
seems plausible that the transition from avalanching to continuous flow with increasing flow
rate is linked to the comparative magnitude of the rotation time scale and the avalanche
duration, it may be especially important to predict the avalanche duration properly.

Nevertheless, avalanches in the crude inertial model seem reasonable at first glance: the
duration is on the order of 0.5 to 1 second, and the halting of the avalanche resembles a
wave which begins at the foot of the avalanche and propagates upstream. In addition to
this, the model predicts a critical flow rate at which an persistent avalanching solution no
longer exists. This transition depends on our model choice of θstart and occurs because the
rotation of the drum is fast enough (and the avalanche duration long enough) such that the
flow incurred in the avalanche never decreases all the way to zero. Figure 10 shows a plot of
θ versus Q and a phase space plot in {θ̇, θ}-space for the crude inertial model. In the plot
of θ versus Q, a transition from episodic avalanching to continuous flow is predicted around
Q ≈ 300 mm2/sec. The plot in {θ̇, θ}-space shows two phase space trajectories. The blue
solid line plots a trajectory taken by the system in in its episodic avalanching state and the
red dotted line plots a trajectory taken by the system for a higher flow rate at which the
system reaches the continuous flow state even when an avalanche is initiated at θstart. We
see in the trajectory taken by the system with a higher flow rate that the rate of change of
the pile angle, which is analogous to the inertia contained in the avalanche, is diminished.
Further, the minimum pile angle achieved on the trajectory for the higher flow rate is not
quite as low as the minimum pile angle achieved for the system with a smaller flow rate.
In the trajectory shown here, the system nearly reaches the cessation of flow as the rate
of change of the pile angle approaches its value for solid body rotation, but subsequently
drifts into the continuous flow solution.

6 Discussion

With the results of the two models in hand we can begin to sketch out a global understanding
of the system. We see first of all that the thin, shallow, slippy model appears to accurately
describe the dependence of the pile slope on flow rate for a certain range of flow rates.
This lends confidence to the validity of µ(I) frictional rheology. At high flow rates, the
thin shallow slippy model fails, but this is likely because of the importance of inertial terms
and not a failure of the µ(I) law. Near the transition to episodic avalanching, however, it
appears that the thin, shallow, slippy model begins to slightly underestimate the angle of
the pile. We can only speculate to the reason for this discrepancy, but it seems possible that
it is linked to the same physics that leads eventually to the disappearance of the continuous
flow regime. One possible explanation for this discrepancy (and perhaps the transition as
well [8]) is the finite thickness of the flowing layer.

Secondly, while the crudity and incompleteness of the crude inertial model mean it
cannot be used as a quantitative and predictive model, it provides some basis for the notion
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Figure 10: A θ versus Q plot (left) and a phase space plot (right) for the crude inertial
model. (Left) a θ versus Q plot as predicted by the crude inertial model with θstart =
35◦. Episodic avalanching cannot be observed as a steady solution in the model after
Q ≈ 300 mm2/sec. (Right) a plot showing transient phase space trajectories of episodic
avalanching and continuous flow solutions in {θ̇, θ}-space. When episodic avalanching is
observed we see that θ̇ and the inertia of the avalanche are large enough to bring the
avalanching to a small value of θ at which the flow stops completely. At larger flow rates,
the θ̇ and the inertia of the avalanche are insufficient to bring the pile angle low enough to
halt the avalanche.

that an increase in rotation rate can decrease the grain inertia which builds during an
avalanche. This is important because the inertia contained in the avalanche controls the
amount of material it moves; and the more material which is moved, the more the angle of
the pile is decreased. Finally, the pile angle must decrease sufficiently for the flow to cease
completely. If too little material is carried by the avalanche, the pile angle will remain high
enough to continue driving flow, and the system will undergo damped oscillations in flow
rate until settling into a continuous flow state. This implies that there is some critical flow
rate which diminishes avalanche inertia enough such that the episodic avalanching solution
no longer exists.

A sketch of our current understanding of the system — the “big picture” — is shown
in Figure 11. At low flow rates, Q < Q1, only episodic avalanching is observed. Below this
critical flow rate, the continuous flow solution cannot exist in steady-state; this perhaps can
be linked to a minimum thickness for the flowing layer, or an increase in effective friction for
layers on the order of a particle diameter. At intermediate flow rates, Q1 < Q < Q2, both
the episodic avalanching regime and the continuous flow solution are observed. At high flow
rates, Q > Q2 only continuous flow is observed. The episodic regime can no longer exist
in steady-state because the rotation of the drum prevents any avalanche from building up
enough inertia to cause cessation of flow.

Further, we can speculate as to why hysteresis is observed in sand where intermittency
is observed with spherical glass beads. It may be true that for any granular material there
are stochastic fluctuations in the volume fraction of the flow (affecting the effective internal
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Figure 11: The big picture: a sketch of our current understanding

friction coefficient), velocity profile, and pressure forces. These stochastic fluctuations could
imply that the critical flow rates Q1 and Q2 fluctuate as well, which could result in inter-
mittent transition between regimes at intermediate flow rates. In this theory, stochasticity
would still be present for sand but would be relatively small compared to other forcings in
the system. An explanation for the relative unimportance of stochasticity is perhaps related
to the larger effective friction coefficient observed with sand.

Much work remains. For the thin, shallow, slippy model, it should be verified that
discrepancies at high flow rates are due to inertia. This could be done preliminarily by
including the effects of inertia as a correction to the Fr = 0 solution. An asymptotic
expansion can only be extended so far, however, as it is still unable to accommodate flow
rates which result in pile angles θ > θ2, as the leading order inertialess solution no longer
exists in this case. Accommodating higher flow rates than this would likely require two-
dimensional simulations.

Further, the initial aim of this work was to describe the transition from continuous flow
to episodic avalanching, a goal which remains unfulfilled. Now that it is known that the
µ(I) frictional rheology is inadequate by itself to predict this transition (as well as under-
predicting the angle of the flowing layer close to transition), some creativity is necessary
to proceed. Perhaps most promising approach would be to consider effects of the finite
thickness of the flowing layer depth and the failure of the continuum approximation. This
may prove difficult, as connecting microscopic physics to the observed macroscopic behavior
of granular flows is a long-standing problem. Discrete element numerical simulations may
aid greatly in this pursuit.

For the crude avalanching model, it must first of all be confirmed that the avalanche
dynamics are captured correctly. If the dynamics are incorrect, the model must be refined.
Capturing avalanches correctly may require two-dimensional simulations. The proposed
hypothesis for the transition from episodic avalanching to continuous flow is that increasing
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flow rates limit the build up of inertia in the avalanche, which in turn limits the change
in pile angle. An accurate model for avalanching could explore this hypothesis fully. Fi-
nally, it would be desirable to be able to predict the width-dependent θstart, the angle at
which avalanches are initiated. With a method to predict θstart, and accurate avalanching
model could potentially be fully predictive and dependent only on independently measured
material parameters.
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Figure 12: (Left) θ versus Q for 2 mm from experiments in Vancouver and Woods Hole.
The Woods Hole results do not line up as well with the Vancouver results as for the 3 mm
glass beads. This may have to do with errors associated with the alignment of the Woods
Hole camera. It also appears that θ is increasing much faster with Q for both W = 17 mm
(W = 18 mm for Woods Hole) and W = 56 mm. The cause of this is unknown. (Right) θ
versus Q for the 1.5 mm glass beads from experiments in Vancouver.
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