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1 Introduction

The irrotational flow of an incompressible homogenous inviscid fluid is generally a three-
dimensional problem. The main issue of Boussinesq-type equations is to reduce the descrip-
tion to a two-dimensional one by introducing a polynomial approximation to the vertical
distribution of the flow into integral conservation laws, while accounting for non-hydrostatic
effects due to the vertical acceleration of water. After solving the two-dimensional problem
we can easily find the flow properties everywhere in the three-dimensional domain using
the polynomial approximation. In this work we apply this method to the flow of internal
interfacial waves between two incompressible fluids. In the first part of the work (sections 2
and 3) both fluids are homogeneous and the flow is irrotational either with a rigid-lid or a
free surface. In the second part (section 4) the fluids are both exponentially stratified and
the flow is irrotational with a rigid-lid (a similar problem with a free surface could be solved
as well by using the same techniques). In the third part of the work (section 5) the method
is applied to the rotational flow, which is presented by the surface quasi-geostrophic model.
Finally, in the last part of the work (section 6) a new layered model based on the sur-
face quasi-geostrophic model is constructed and its dimension is reduced by the Boussinesq
method.

2 Internal interfacial waves between two unstratified layers

with a rigid-lid

2.1 An infinite series solution for the Laplace equation in each layer over

a horizontal bottom

The equations governing the irrotational flow of an incompressible inviscid fluid in the lower
layer over a horizontal bottom are:
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∇2Φ(1) + Φ(1)
zz = 0 −h1 < z < η (1)

ηt + ∇Φ(1)∇η − Φ(1)
z = 0 z = η (2)

Φ
(1)
t +

1

2

(

∇Φ(1)
)2

+
1

2

(

Φ(1)
z

)2
+ gη − P

ρ1
= 0 z = η (3)

Φ(1)
z = 0 z = −h1 (4)

The equations governing the irrotational flow of an incompressible inviscid fluid in the upper
layer under a rigid lid are:

∇2Φ(2) + Φ(2)
zz = 0 η < z < h2 (5)

ηt + ∇Φ(2)∇η − Φ(2)
z = 0 z = η (6)

Φ
(2)
t +

1

2

(

∇Φ(2)
)2

+
1

2

(

Φ(2)
z

)2
+ gη − P

ρ2
= 0 z = η (7)

Φ(2)
z = 0 z = h2 (8)

By the use of (2), (3), (6), and (7) we can construct two interface conditions on z = η:

ρ1

(

Φ
(1)
t + 1

2

(

∇Φ(1)
)2

+ 1
2

(

Φ
(1)
z

)2
+ gη

)

= ρ2

(

Φ
(2)
t + 1

2

(

∇Φ(2)
)2

+ 1
2

(

Φ
(2)
z

)2
+ gη

)

(9)

−∇Φ(1)∇η + Φ
(1)
z = −∇Φ(2)∇η + Φ

(2)
z (10)

Here Φ is the velocity potential, h1and h2 are the water depths of the two layers, P is the
pressure and η the interface elevation. The horizontal gradient operator relates Φ to the
horizontal velocity, u:

∇ =

(

∂

∂x
,
∂

∂y

)

, u = (u, v). (11)

For convenience we denote Φz = W and use the hat (ˆ) and tilde (˜) signs to denote the
value on z = 0 and on z = η respectively.

One of the main ideas of Boussinesq-type theories is to reduce the three-dimensional
description to a two-dimensional one. The first step towards such a reduction is to introduce
an expansion of the velocity potential as a power of series in the vertical coordinates:

Φ(x, y, z, t) =
∞
∑

n=0

znφn(x, y, t). (12)

By substituting this expansion into (1) we find

Φ(1)(x, y, z, t) =
∞
∑

n=0

(−1)n

(

z2n

(2n)!
∇2nφ

(1)
0 +

z2n+1

(2n+ 1)!
∇2nφ

(1)
1

)

. (13)

This is a series solution with two unknown functions φ
(1)
0 and φ

(1)
1 . Note that the velocities

in layer 1 at the undisturbed interface are given by
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û
(1) = ∇Φ̂(1) = ∇φ(1)

0 , Ŵ (1) = φ
(1)
1 (14)

Now by the use of (13) and (14) the horizontal bottom condition (4) can be expressed as

Lc

{

Ŵ (1)
}

+ Ls ·
{

∇Φ̂(1)
}

= 0 (15)

with

Lc =
∞
∑

n=0

(−1)n h2n
1

(2n)!
∇2n, Ls =

∞
∑

n=0

(−1)n h2n+1
1

(2n+ 1)!
∇2n+1 (16)

where ∇ is the gradient operator when applied to a scalar, and the divergence when applied
to a vector. This equation defines a relation between Ŵ (1) and Φ̂(1) which is of infinite order
in h∇. The series are convergent if Φ(1) has a Fourier transform, since they correspond to
the analytic functions sinh(kh) and cosh(kh) where ik is the Fourier symbol of ∇.

Following Rayleigh (1876) , we may use symbolic notation of Taylor series operators by
which (16) can be given in the compact form

Lc = cos(h1∇), Ls = sin(h1∇) (17)

so that (15) becomes

cos(h1∇)Ŵ (1) + sin(h1∇)∇Φ̂(1) = 0 (18)

and (13) and its z derivative become

Φ(1)(x, y, z, t) = cos(z∇)Φ̂(1) + sin(z∇)
∇ Ŵ (1), (19)

W (1)(x, y, z, t) = − sin(z∇)∇Φ̂(1) + cos(z∇)Ŵ (1). (20)

Using (18) we can easily construct a Dirichlet to Neumann relation

Ŵ (1) = − tan(h1∇)∇Φ̂(1) @z = 0 (21)

and define its operator as

G1 = − tan(h1∇)∇. (22)

By applying the same techniques we can construct a similar Dirichlet to Neumann relation
for the second layer

Ŵ (2) = tan(h2∇)∇Φ̂(2) @z = 0 (23)

207



2.2 Constructing the accurate equations for the linear problem

For small amplitude waves in the sense that the ration between the amplitude to the wave
length (wave slope) is small the problem becomes linear. We can see that the kinematic
and dynamic interface conditions (10) and (9) become

Ŵ (1) = Ŵ (2) @z = 0 (24)

ρ1

(

Φ̂
(1)
t + gη

)

= ρ2

(

Φ̂
(2)
t + gη

)

@z = 0 (25)

By the use of (21), (23) and (24) we can construct a relation between Φ̂(1) and Φ̂(2)

Φ̂(2) = − tan(h1∇)
tan(h2∇) Φ̂

(1) @z = 0. (26)

Let us define this operator as

G2 = − tan(h1∇)
tan(h2∇) . (27)

By using the linear version of (2), (26), (27) and the derivative of (25) with respect to time
we get

(ρ1 − ρ2G2) Φ̂
(1)
tt = (ρ2 − ρ1) gŴ

(1) @z = 0 (28)

By the use of (21) and (22) equation (28) becomes

(ρ1 − ρ2G2) Φ̂
(1)
tt = (ρ2 − ρ1) gG1Φ̂

(1) @z = 0 (29)

By substituting the linear relations ∇ = ik and ∂
∂t

= iω and the definitions of the differential
operators (22) and (27) into (29) we get

ω2 =
(ρ1 − ρ2) g tanh (kh1) tanh (kh2)

ρ1 tanh (kh2) + ρ2 tanh (kh1)
(30)

We can see that equation (30) is exactly the well known linear dispersion relation for this
problem.

2.3 Constructing approximate equations for the linear problem

One way to use the above equations for solving a general wave problem is by using Fourier
and Laplace transforms with the exact linear dispersion (30). A solution using that method
have two downsides. The first is the difficulty of computing its integrals and the other
downside is that this type of linear solution doesn’t help us construct the solution of the
nonlinear problem.
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We introduce here another method for solving the linear problem. In this method we
first need to approximate the infinite differential operators (22) and (27) to finite operators.
The accuracy of this solution will relate to the accuracy of the approximations that are
used. The simplest way of doing that is by truncating the Taylor series representing these
operators. The higher the order of derivatives kept in the Taylor expansions the higher the
accuracy. But, there is a better way of approximating these operators.

Padé approximation approximates these operators by a ratio of two power series. It has
double the accuracy of the Taylor approximation, while using the same order of derivatives.
For clarity we give both the Taylor and the Padé approximations. Taylor (2) represents the
Taylor approximation up to the order of ∇2 (including) and Padé (2,2) represents the Padé
approximation up to the order of ∇2 both in the numerator and the denominator.

Note that the two operators being approximated here are even operators. Therefore,
for the Taylor approximation the lowest order term neglected is actually of O

(

∇4
)

and for
the Padé approximation it is of O

(

∇8
)

.
The Taylor and Padé approximations for relation (21) are

Ŵ (1) = −h1∇2Φ̂(1) Taylor (2) (31)
(

1 − 1
3h

2
1∇2

)

Ŵ (1) = −h1∇2Φ̂(1) Padé (2,2). (32)

The Taylor and Padé approximations for the coupling relation (26) are

Φ̂(2) = −h1

h2

(

1 + 1
3

(

h2
1 − h2

2

)

∇2
)

Φ̂(1) Taylor (2) (33)
(

15 −
(

6h2
1 + h2

2

)

∇2
)

Φ̂(2) = −h1

h2

(

15 −
(

h2
1 + 6h2

2

)

∇2
)

Φ̂(1) Padé (2,2) (34)

Now we can use the Taylor (2) approximations to construct an approximated version of
equation (29) by using the (31), (33) and the derivative of (25) with respect to time

(

(ρ1h2 + ρ2h1) + 1
3ρ2h1

(

h2
1 − h2

2

)

∇2
)

Φ̂
(1)
tt = (ρ1 − ρ2)h1h2g∇2Φ̂(1) (35)

and by using the Padé (2,2) approximations (32) and (34) we can construct in the same
manner the following equation

(

ρ1h2 − ρ2h1

(

15 −
(

h2
1 + 6h2

2

)

∇2
))

Φ̂
(1)
tt = (ρ2 − ρ1) gh2

(

15 −
(

6h2
1 + h2

2

)

∇2
)

Ŵ (1).(36)

Notice that we are not substituting equation (32) into (36) because by doing so the order of
differentiation will increase resulting in a more complicated method. Therefore, we should
first use (32) for computing Ŵ (1) and then only then substitute Ŵ (1) into (36) and solve
for Φ̂(1).
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2.4 Constructing approximate equations for the nonlinear Dirichlet to

Neumann problem

From the Laplace equation (1) we can replace horizontal by vertical differentiation to obtain
for layer 1

∇2mΦ(1) = (−1)m∂
2mΦ(1)

∂z2m
(37)

Now we look for Φ(1) of the form

Φ(1)(x, y, z, t) =
∞
∑

n=0

(z + h1)
nφ(1)

n (x, y, t). (38)

From (38) it follows that

∂mΦ(1)

∂zm
=

∞
∑

n=0

n!

(n−m)!
(z + h1)

n−mφ(1)
n (x, y, t) (39)

By substituting (38) into the Laplace equation (1) and collecting equal powers of z we obtain
a recursive relation

φ
(1)
n+2 = − ∇2φ

(1)
n

(n+ 1)(n+ 2)
. (40)

On the horizontal bottom, boundary condition (4) leads to

φ
(1)
1 = 0. (41)

This implies from (40) that all φ
(1)
n ’s with odd n vanish

φ
(1)
1 = φ

(1)
3 = φ

(1)
5 = ... = 0. (42)

Now by the use of (38), (37) and (39) we can write Φ̂(1), ∇2Φ̂(1), Ŵ (1) and ∇2Ŵ (1), which
relate to the properties of the flow on z = 0 as

Φ̂(1) =
3
∑

n=0

h2n
1 φ

(1)
2n Ŵ (1) =

3
∑

n=0

2nh2n−1
1 φ

(1)
2n

∇2Φ̂(1) = −
3
∑

n=0

(2n)!

(2n− 2)!
h2n

1 φ
(1)
2n ∇2Ŵ (1) = −

3
∑

n=0

(2n)!

(2n− 3)!
h2n

1 φ
(1)
2n (43)

Notice that (38) was truncated to use only 4 base functions. This enables us to solve for
them using the 4 equations written in (43). Had we wanted to use more base functions
for higher accuracy, we would have needed to increase the number of equations by adding
equations for higher order of differentiation to equation set (43). By solving equation set

(43) for the base functions φ
(1)
2n , n = 0..3 in terms of Φ̂(1) and Ŵ (1) and their second

horizontal derivatives we get
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φ
(1)
0 =

1

48

(

−9h2
1∇2Φ̂(1) + h3

1∇2Ŵ (1) − 33h1Ŵ
(1) + 48Φ̂(1)

)

φ
(1)
2 =

1

16

(

7∇2Φ̂(1) − h1∇2Ŵ (1) +
15

h1
Ŵ (1)

)

φ
(1)
4 =

1

16

(

− 5

h2
1

∇2Φ̂(1) +
1

h1
∇2Ŵ (1) − 5

h3
1

Ŵ (1)

)

(44)

φ
(1)
6 =

1

48

(

3

h4
1

∇2Φ̂(1) − 1

h3
1

∇2Ŵ (1) +
3

h5
1

Ŵ (1)

)

Using the solution (44) in (38) on z = η we get a relation involving Φ̂(1), Ŵ (1) and Φ̃(1):

Φ̃(1) =
η3
(

η + 2h2
1

)3

48h3
1

∇2Ŵ (1) +
η2
(

η + 2h2
1

)2 (
η2 + 2ηh1 − 2h2

1

)

16h4
1

∇2Φ̂(1)

+
16h5

1η + 10h2
1η

4 + 6h1η
5 + η6

16h5
1

Ŵ (1) + Φ̂(1) (45)

Equations (15) and (45) are two equations for Φ̂(1) and Ŵ (1). We can solve for Φ̂(1) and
Ŵ (1)using a numerical method such as finite differences. The set of equation will have the
form

[

A
(1)
padé −B(1)

padé

A
(1)
nl B

(1)
nl

]

[

Φ̂(1)

Ŵ (1)

]

=

[

0

Φ̃(1)

]

. (46)

Here A
(1)
padé and B

(1)
padé are the finite difference matrices representing the Dirichlet to Neu-

mann relation (32), A
(1)
nl and B

(1)
nl are the finite difference matrices representing the relation

between the undisturbed potential and vertical velocity and the potential on the interfa-
cial wave. Now by using Φ̂(1) and Ŵ (1) we can find the base functions and from the base
functions we can find the properties of the flow at every point in the layer.

Now let us present a way to calculate the properties of the flow in the upper layer. We
can easily find W̃ (2) using (10). Applying the same technique described in subsection 2.1
we can construct an equivalent version of equations (19) and (20) for the upper layer

Φ(2)(x, y, z, t) = cos(z∇)Φ̂(2) + sin(z∇)
∇ Ŵ (2), (47)

W (2)(x, y, z, t) = − sin(z∇)∇Φ̂(2) + cos(z∇)Ŵ (2). (48)

On z = ηwe can use equations (47) and (48) to solve Φ̂(2) and Ŵ (2) and substitute the
solution into (47) and (48) to get Φ(2) and W (2) at every point in the layer.

2.5 Constructing the equations for the nonlinear time marching

An analytical relation between Φ̃
(1)
t and Φ̃

(2)
t must be developed in order to enable marching

Φ̃ in time using the dynamical interface boundary condition (9). By applying the solution
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(44) to the z derivative of (38) on z = η we get a second relation between Φ̂(1) and Ŵ (1)with
respect to W̃ (1). By using this relation, equation (45) and equation (15) we can eliminate
Φ̂(1) and Ŵ (1)and obtain an analytical Dirichlet to Neumann relation on the interfacial wave

(

1 −
(

1

2
η2 + ηh1

)

∇2

)

Φ̃(1) = − (η + h1)∇2W̃ (1) Taylor (2) (49)

(

1 −
(

1

2
η2 + ηh1 +

3

7
h2

1

)

∇2

)

Φ̃(1) = − (η + h1)∇2W̃ (1) Padé (2,2) (50)

A similar relation can be constructed for the second layer

(

1 −
(

1

2
η2 − ηh2

)

∇2

)

Φ̃(2) = − (η − h2)∇2W̃ (2) Taylor (2) (51)

(

1 −
(

1

2
η2 − ηh2 +

3

7
h2

2

)

∇2

)

Φ̃(2) = − (η − h2)∇2W̃ (2) Padé (2,2) (52)

Now by substituting equations (49) and (51) into the kinematic interface boundary condition
(10) we get a relation between Φ̃(1) and Φ̃(2) for Taylor (2) approximation

(η − h2)

(

1 −∇2η∇−
(

1

2
η2 + ηh1 + 2∇2η

)

∇2

)

Φ̃(1)

= (η + h1)

(

1 −∇2η∇−
(

1

2
η2 − ηh2 + 2∇2η

)

∇2

)

Φ̃(2) (53)

deriving this relation with respect to time yields a relation between Φ̃
(1)
t and Φ̃

(2)
t

For Taylor (2) approximation

(η − h2)
(

1 −∇2η∇−
(

1
2η

2 + ηh1 + 2∇2η
)

∇2
)

Φ̃
(1)
t +

(

−ηt +
(

∇3ηt (η − h2) + ∇3ηηt

)

∇
)

Φ̃(1)

+
(

2∇3ηt (η − h2) +
(

2∇2η + 3
2η

2 − h2η − h1 (−2η + h2)
)

ηt

)

∇2Φ̃(1)

= (η + h1)
(

1 −∇2η∇−
(

1
2η

2 − ηh2 + 2∇2η
)

∇2
)

Φ̃
(2)
t +

(

−ηt +
(

∇3ηt (η + h1) + ∇3ηηt

)

∇
)

Φ̃(2) +
(

2∇3ηt (η + h1) +
(

2∇2η + 3
2η

2 + h1η − h2 (2η + h1)
)

ηt

)

∇2Φ̃(2) (54)

which together with the dynamical interface boundary condition (9) enable us to solve for

Φ̃
(1)
t and Φ̃

(2)
t and then propagate them in time. The above derivatives should be handle

with care because Φ̃(1) and Φ̃(2) are located on the interfacial wave, which means that in
each location they are located on a different elevation (η). The horizontal derivatives can
be locally related to the tangential (∇Φ̃ · t̂) derivatives, the elevation (η) and the vertical
derivatives Ŵ (1) and Ŵ (2) using this relation

∇Φ̃ = (∇Φ̃ · t̂) +

(

W̃ − ∇η
|〈1,∇η〉|

(

∇Φ̃ · t̂
)

) ∇η
|〈1,∇η〉| (55)
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3 Internal interfacial waves between two unstratified layers

with a free surface

3.1 An infinite series expansion for Φ in each layer over a horizontal

bottom

The equations governing the irrotational flow of an incompressible inviscid fluid in the lower
layer over a horizontal bottom are shown in equations (1)-(4). The equations governing the
irrotational flow of an incompressible inviscid fluid in the second layer under a free surface
boundary condition are:

∇2Φ(2) + Φ(2)
zz = 0 η < z < h2 (56)

ηt + ∇Φ(2)∇η − Φ(2)
z = 0 z = η (57)

Φ
(2)
t +

1

2

(

∇Φ(2)
)2

+
1

2

(

Φ(2)
z

)2
+ gη − P

ρ2
= 0 z = η (58)

ξt + ∇Φ(2)∇η − Φ(2)
z = 0 z = h2 + ξ (59)

Φ
(2)
t +

1

2

(

∇Φ(2)
)2

+
1

2

(

Φ(2)
z

)2
+ gξ = 0 z = h2 + ξ (60)

By the use of (2), (3), (57), and (58) we can construct two interface boundary conditions
on z = η:

ρ1

(

Φ
(1)
t + 1

2

(

∇Φ(1)
)2

+ 1
2

(

Φ
(1)
z

)2
+ gη

)

= ρ2

(

Φ
(2)
t + 1

2

(

∇Φ(2)
)2

+ 1
2

(

Φ
(2)
z

)2
+ gη

)

(61)

−∇Φ(1)∇η + Φ
(1)
z = −∇Φ(2)∇η + Φ

(2)
z (62)

Here Φ is the velocity potential, h1and h2 are the water depths of the two layers, P is the
pressure, η is the interface elevation and ξ is the free surface elevation. The horizontal
gradient operator relates the horizontal velocity u to Φ:

∇ =

(

∂

∂x
,
∂

∂y

)

, u = (u, v) = ∇Φ (63)

For convenience we denote

ˆ̂
Φ(2) = Φ(2)(z = h1) ,

˜̃Φ(2) = Φ(2)(z = h2 + ξ)

ˆ̂
W (2) = W(2)(z = h1) ,

˜̃
W (2) = W(2)(z = h2 + ξ) (64)

The work on the Dirichlet to Neumann relation that has been done for the first layer in
the previous section holds for this section. Its linear part can be summarize in equations
(15) and (17). For the second layer we again introduce an expansion of the velocity potential
as a power of series in z:

Φ(2)(x, y, z, t) =
∞
∑

n=0

z̄nφ(2)
n (x, y, t) (65)
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Here z̄ = z − h2. Now by substituting this expansion into (56) we find

Φ(2) = cos(z̄∇)
ˆ̂
Φ(2) +

sin(z̄∇)

∇
ˆ̂
W (2) (66)

By using the above equation we can construct a linear relation between the interfacial wave
and the free surface

Ŵ (2) = sin(h2∇)∇ ˆ̂
Φ(2) + cos(h2∇)

ˆ̂
W (2) (67)

3.2 Constructing accurate equations for the linear problem

For the linear problem that the kinematic and dynamic interface boundary conditions (62)
and (61) become

Ŵ (1) = Ŵ (2) @z = 0, (68)

ρ1

(

Φ̂
(1)
t + gη

)

= ρ2

(

Φ̂
(2)
t + gη

)

@z = 0. (69)

The free surface boundary conditions (59) and (60) become

ξt − Φ(2)
z = 0 @z = h2, (70)

Φ
(2)
t + gξ = 0 @z = h2. (71)

By substituting (70) into the time derivative of (71) we get

ˆ̂
Φ

(2)
tt = −g ˆ̂

W (2) @z = h2. (72)

Substituting (68) into (67) yields

ˆ̂
W (2) = − tan(h2∇)∇ ˆ̂

Φ(2) +
1

cos(h2∇)
Ŵ (1) (73)

By substituting (21) into (73) and then into (66) on z = 0 and deriving twice with respect
to time we get

Φ̂
(2)
tt =

1

cos(h2∇)
ˆ̂
Φ

(2)
tt + tan(h1∇) tan(h2∇)

ˆ̂
Φ

(1)
tt (74)

By using the linear version of (57), (72), (74) and the derivative of (69) with respect to time
we get

(ρ1 − ρ2 tan(h1∇) tan(h2∇)) Φ̂
(1)
tt = −ρ2 cos−1(h2∇)

ˆ̂
W (2) + (ρ2 − ρ1) gŴ

(1) (75)

For solving the linear problem we need to solve for Ŵ (1) using (21), then solve for
ˆ̂
W (2)

using (73). After this we can use equations (72) and (75) in order to find the potentials
ˆ̂
Φ(2) and Φ̂(1).
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3.3 Constructing the equations for solving the Dirichlet to Neumann re-

lation for the nonlinear problem

For the first layer we can use the same equations (15) and (45) that have been developed
in section 2.4 and in the same way find W̃ (1). For the second layer let us use (66) and (62)
to obtain

− (∇η cos (η̄∇)∇ + sin (η̄∇))
ˆ̂
Φ(2) −

(∇η sin (η̄∇)∇− cos (η̄∇))
ˆ̂
W (2) = −∇Φ̃(1)∇η + W̃ (1). (76)

Here η̄ = η − h2. By using this equation with (66) on z = h2 + ξ we can solve for
ˆ̂
Φ(2)and

ˆ̂
W (2).

3.4 Constructing equations for the nonlinear time marching

Again an analytical relation between Φ̃
(1)
t and Φ̃

(2)
t must be developed in order to get equa-

tions for Φ̃ using the dynamical interface boundary condition (61). Now by using (66) we

get three equations relating Φ̃(2), W̃ (2) and ˜̃Φ(2) to
ˆ̂
Φ(2)and

ˆ̂
W (2). Eliminating

ˆ̂
Φ(2) and

ˆ̂
W (2) from these three equations leaves a relation between W̃ (2), Φ̃(2) and ˜̃Φ(2)

W̃ (2) = − cot ((h2 + ξ − η)∇)∇Φ̃(2) + sin−1 ((h2 + ξ − η)∇)∇ ˜̃Φ(2). (77)

By using (13) we can define Φ̃(1) and W̃ (1) with respect to Φ̂(1)and Ŵ (1)together with (15)
we can find a relation between W̃ (1) and Φ̃(1):

W̃ (1) =
cos ((h1 − η)∇)

cos ((h1 + η)∇)
∇Φ̃(1). (78)

Now let us substitute these two relations (77), (78) into the kinematic interface boundary
condition (62) and derive it with respect to time to get

(

∇ηt − ηt cos (2h1∇) sin−2 ((h1 + η)∇)∇
)

Φ̃(1) −
(

∇ηt − (ξt − ηt) sin−2 ((h2 + ξ − η)∇)∇
)

Φ̃(2) +

(ξt − ηt) cot ((h2 + ξ − η)∇) sin−1 ((h2 + ξ − η)∇)∇ ˜̃Φ(2) +

sin−1 ((h2 + ξ − η)∇) ˜̃Φ
(2)
t +

(

∇η + cos−1 ((h1 + η)∇) sin ((h1 − η)∇)
)

Φ̃
(1)
t −

(∇η + cot ((h2 + ξ − η)∇)) Φ̃
(2)
t = 0 (79)

Equation (79) together with equations (60) and (61) is a set of equations for Φ̃(1), Φ̃(2) and
˜̃Φ(2) and equations (2) and (59) are equations for η and ξ.
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4 Internal interfacial waves between two exponentially strat-

ified layers with a rigid-lid

4.1 An infinite series solution for the Laplace equation in each layer over

a horizontal bottom

The equations governing the irrotational flow of an incompressible inviscid fluid in the lower
layer over a horizontal bottom are:

∇2Φ(1) + Φ(1)
zz +

dρ1

dz

ρ1
Φ(1)

z = 0 −h1 < z < η (80)

ηt + ∇Φ(1)∇η − Φ(1)
z = 0 z = η (81)

Φ
(1)
t +

1

2

(

∇Φ(1)
)2

+
1

2

(

Φ(1)
z

)2
+ gη − P

ρ1
= 0 z = η (82)

Φ(1)
z = 0 z = −h1 (83)

The equations governing the irrotational flow of an incompressible inviscid fluid in the upper
layer under a rigid-lid are:

∇2Φ(2) + Φ(2)
zz +

dρ2

dz

ρ2
Φ(2)

z = 0 η < z < h2 (84)

ηt + ∇Φ(2)∇η − Φ(2)
z = 0 z = η (85)

Φ
(2)
t +

1

2

(

∇Φ(2)
)2

+
1

2

(

Φ(2)
z

)2
+ gη − P

ρ2
= 0 z = η (86)

Φ(2)
z = 0 z = h2 (87)

By the use of (81), (82), (85), and (86) we can construct two interface conditions on z = η:

ρ1

(

Φ
(1)
t + 1

2

(

∇Φ(1)
)2

+ 1
2

(

Φ
(1)
z

)2
+ gη

)

=

ρ2

(

Φ
(2)
t + 1

2

(

∇Φ(2)
)2

+ 1
2

(

Φ
(2)
z

)2
+ gη

)

(88)

−∇Φ(1)∇η + Φ
(1)
z = −∇Φ(2)∇η + Φ

(2)
z (89)

Here Φ is the velocity potential, h1 and h2 are the water depths of the two layers, P is the
pressure and η the interface elevation. The horizontal gradient operator relates Φ to the
horizontal velocity, u:

∇ =

(

∂

∂x
,
∂

∂y

)

, u = (u, v). (90)

For convenience we denote Φz = W and use the hat (ˆ) and tilde (˜) signs to denote the
value on z = 0 and on z = η respectively.
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For an exponentially stratified fluid the ratios
dρ1

dz

ρ1
and

dρ2

dz

ρ2
are constant and will be

regarded as small parameters

ε1 =
dρ1

dz

ρ1
, ε2 =

dρ2

dz

ρ2
.

Notice that for linearly stratified fluid ε1 and ε2 will no longer be constants but functions
of z. Nevertheless, their z derivatives will be of O

(

ε2
)

and every additional z derivative will
further more increase the order, so if we choose to have an accuracy of O (ε) the following
derivations hold for linearly stratified fluids as well.

Now let us introduce an expansion of the velocity potential as a power series in the
vertical coordinates with a small perturbation related to the stratification:

Φ(1)(x, y, z, t) = Φ
(1)
0 (x, y, z, t) + ε1Φ

(1)
1 (x, y, z, t) =

=
∑∞

n=0 z
n (φ0,n(x, y, t) + ε1φ1,n(x, y, t)) . (91)

By substituting (91) into (80) and collecting equal powers of z we obtain recursive relations

φ
(1)
0,n+2 = −

∇2φ
(1)
0,n

(n+ 1)(n+ 2)
, φ

(1)
1,n+2 = −

∇2φ
(1)
1,n

(n+ 1)(n+ 2)
−

φ
(1)
0,n+1

(n+ 2)
. (92)

Now by substituting (92) into (91) we get

Φ(1)(x, y, z, t) =

∞
∑

n=0

(−1)n

(

z2n

(2n)!
∇2nφ

(1)
0,0 +

z2n+1

(2n+ 1)!
∇2nφ

(1)
0,1

)

+

∞
∑

n=0

(−1)nε1

(

z2n

(2n)!
∇2nφ

(1)
1,0 −

z2n+1n

(2n+ 1)!
∇2nφ

(1)
0,0 +

z2n+1

(2n+ 1)!
∇2nφ

(1)
1,1 +

z2nn

(2n)!
∇2n−2φ

(1)
0,1

)

(93)

This is a series solution with 4 unknown functions φ
(1)
0,0 and φ

(1)
0,1, φ

(1)
1,0 and φ

(1)
1,1. Note that

the velocities in layer 1 at the undisturbed interface z = 0 are given by

û
(1) = ∇Φ̂

(1)
0 + ε1∇Φ̂

(1)
1 = ∇φ(1)

0,0 + ε1∇φ(1)
1,0,

Ŵ (1) = Ŵ
(1)
0 + ε1Ŵ

(1)
1 = φ

(1)
0,1 + ε1φ

(1)
1,1. @z = 0 (94)

By using Rayleigh’s notation and (94) we can write equation (93) as

Φ(1)(x, y, z, t) =
(

cos(z∇) + 1
2ε1z cos(z∇) + ε1

sin(z∇)
2∇

)

Φ̂
(1)
0 +

(

sin(z∇)
∇ − ε1

z sin(z∇)
2∇

)

Ŵ
(1)
0 + ε1 cos(z∇)Φ̂

(1)
1 + ε1

sin(z∇)
∇ Ŵ

(1)
1 (95)

Equation (95) enables us to write ∇Φ(1) and W (1):
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∇Φ(1) =
((

1 + 1
2ε1z

)

cos(z∇)∇ + 1
2ε1 sin(z∇)

)

Φ̂
(1)
0 +

(

1 − 1
2ε1z

)

sin(z∇)Ŵ
(1)
0 + ε1 cos(z∇)∇Φ̂

(1)
1 + ε1 sin(z∇)Ŵ

(1)
1 (96)

W (1) =
(

ε1 cos(z∇) −
(

1 + 1
2ε1z

)

sin(z∇)∇
)

Φ̂
(1)
0 +

(

(

1 − 1
2ε1z

)

cos(z∇) − 1
2ε1

sin(z∇)
∇

)

Ŵ
(1)
0 − ε1 sin(z∇)∇Φ̂

(1)
1 + ε1 cos(z∇)Ŵ

(1)
1 (97)

Now with the use of (97) and (94) the horizontal bottom condition (83) can be expressed
as

O
(

ε01
)

: Ŵ
(1)
0 = − tan(h1∇)∇Φ̂

(1)
0

O
(

ε11
)

: Ŵ
(1)
1 = − tan(h1∇)∇Φ̂

(1)
1 − 1

2h1 tan2(h1∇)Φ̂
(1)
0 (98)

A similar relation can be found for the upper layer

O
(

ε02
)

: Ŵ
(2)
0 = tan(h2∇)∇Φ̂

(2)
0

O
(

ε12
)

: Ŵ
(2)
1 = tan(h2∇)∇Φ̂

(2)
1 + 1

2h2 tan2(h2∇)Φ̂
(2)
0 (99)

4.2 Constructing the accurate equations for the linear problem

For small amplitude waves in the sense that the ration between the amplitude to the wave
length (wave slope) is small the problem becomes linear. We can see that the kinematic
and dynamic interface conditions (89) and (88) become

Ŵ (1) = Ŵ (2) @z = 0 (100)

ρ1

(

Φ̂
(1)
t + gη

)

= ρ2

(

Φ̂
(2)
t + gη

)

@z = 0 (101)

By the use of (98), (99) and (100) we can construct relations between Φ̂
(1)
0 , Φ̂

(1)
1 , Φ̂

(2)
0 and

Φ̂
(2)
1

Φ̂
(2)
0 = − tan(h1∇)

tan(h2∇) Φ̂
(1)
0 ,

Φ̂
(2)
1 = h2 tan(h1∇)

2∇ Φ̂
(1)
0 − ε1

ε2

(

tan(h1∇)
tan(h2∇) Φ̂

(1)
1 + h1 tan2(h1∇)

2 tan(h2∇)∇ Φ̂
(1)
0

)

@z = 0 (102)

By using (102), the linear version of (82) and the time derivative of (101) we get

O
(

ε01
)

:
(

ρ1 + ρ2
tan(h1∇)
tan(h2∇)

)

∂2

∂t2
Φ̂

(1)
0 = (ρ2 − ρ1) gŴ

(1)
0

O
(

ε11
)

:
(

ρ1 + ρ2
ε1

ε2

tan(h1∇)
tan(h2∇)

)

∂2

∂t2
Φ̂

(1)
1 =

(ρ2 − ρ1) gŴ
(1)
1 −

(

h2 tan(h1∇)
2∇ + ε1

ε2

h1 tan2(h1∇)
2 tan(h2∇)∇

)

∂2

∂t2
Φ̂

(1)
0 (103)
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Now by using equations (103) and (98) we can solve Φ̂
(1)
0 , Φ̂

(1)
1 , Ŵ

(1)
0 and Ŵ

(1)
1 .

4.3 Constructing approximate equations for the nonlinear Dirichlet to

Neumann problem

Equation (80) allows us to replace horizontal differentiation by vertical ones in order to
obtain

∇2mΦ(1) = (−1)m

(

∂2mΦ(1)

∂z2m
+mε

∂2m−1Φ(1)

∂z2m−1

)

(104)

By extending one of the main Boussinesq concepts we look for Φ(1) of the form

Φ(1)(x, y, z, t) =
∞
∑

n=0

(z + h1)
n (φ0,n(x, y, t) + ε1φ1,n(x, y, t)) . (105)

From (105) it follows that

∂mΦ(1)

∂zm
=

∞
∑

n=m

n!

(n−m)!
(z + h1)

n−m (φ0,n(x, y, t) + ε1φ1,n(x, y, t)) . (106)

Now by using (104) and (106) we get

∇2mΦ(1) = (−1)m
∑∞

n=2m
n!

(n−2m)!(z + h1)
n−2mφ0,n + (107)

ε1(−1)m
(

∑∞
n=2m

n!
(n−2m)!(z + h1)

n−2mφ1,n +m
∑∞

n=2m−1
n!

(n−2m+1)!(z + h1)
n−2m+1φ0,n

)

+O
(

ε21
)

,

∇2mW (1) = (−1)m
∑∞

n=2m+1
n!

(n−2m−1)!(z + h1)
n−2m−1φ0,n + (108)

ε1(−1)m
(

∑∞
n=2m+1

n!
(n−2m−1)!(z + h1)

n−2m−1φ1,n +m
∑∞

n=2m
n!

(n−2m)!(z + h1)
n−2mφ0,n

)

+O
(

ε21
)

.

Next by substituting m = 0, 1 into equations (107) and (108) we get the following equations
for Φ̂(1), ∇2Φ̂(1), Ŵ (1) and ∇2Ŵ (1):

O
(

ε01
)

: Φ̂
(1)
0 =

∑3
n=0 h

n
1φ0,n,

Ŵ
(1)
0 =

∑3
n=1 nh

n−1
1 φ0,n,

∇2Ŵ
(1)
0 = −3!φ0,3,

∇2Φ̂
(1)
0 = −∑3

n=2
n!

(n−2)!h
n−2
1 φ0,n. @z = 0 (109)

O
(

ε11
)

: Φ̂
(1)
1 =

∑3
n=0 h

n
1φ1,n,

Ŵ
(1)
1 =

∑3
n=1 nh

n−1
1 φ1,n,

∇2Φ̂
(1)
1 = −∑3

n=2
n!

(n−2)!h
n−2
1 φ1,n −∑3

n=1
n!

(n−1)!h
n−1
1 φ0,n,

∇2Ŵ
(1)
1 = −3!φ1,3 −

∑3
n=2

n!
(n−2)!h

n−2
1 φ0,n. @z = 0 (110)
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Notice that (107) and (108) were truncated. Only the first 4 base functions were used in
each order. This enables us to find these base functions using the 8 equations written in
(109) and (110). Had we wanted to use more base functions for higher accuracy, we would
have needed to increase the number of equations by substituting m = 2, m = 3 and so on
into equations (107) and (108). That would also have increased the order of the derivatives,
which would have been more complex to solve.

Note that the accuracy of this calculation is lower than the one presented in section 2.4
because we need to use the odd base functions as well as the even ones. Thus, for the same
number of base functions the expansion of Φ(1) shown in equation (105) gives us a power
expansion up to z3, whereas in section 2.4 it was up to z6.

By solving equation sets (109) and (110) for the base functions φ
(1)
0,n, n = 0..3 and φ

(1)
1,n,

n = 0..3 in terms of Φ̂
(1)
0 , Ŵ

(1)
0 , Φ̂

(1)
1 and Ŵ

(1)
1 and their second horizontal derivatives we

get

O
(

ε01
)

: φ
(1)
0,0 = Φ̂

(1)
0 − h1Ŵ

(1)
0 − 1

2∇2Φ̂
(1)
0 + 1

6∇2Ŵ
(1)
0

φ
(1)
0,1 = Ŵ

(1)
0 + h1∇2Φ̂

(1)
0 − 1

2h
2
1∇2Ŵ

(1)
0

φ
(1)
0,2 = −1

2∇2Φ̂
(1)
0 + 1

2h1∇2Ŵ
(1)
0

φ
(1)
0,3 = −1

6∇2Ŵ
(1)
0 (111)

O
(

ε11
)

: φ
(1)
1,0 = Φ̂

(1)
1 − h1Ŵ

(1)
1 − 1

6h
2
1∇2Φ̂

(1)
0 + 1

6h
2
1∇2Ŵ

(1)
0 − 1

2h
2
1∇2Φ̂

(1)
1 − 1

2h
2
1Ŵ

(1)
0

φ
(1)
1,1 = Ŵ

(1)
1 + h1∇2Φ̂

(1)
1 + h1Ŵ

(1)
0 − 1

2h1∇2Ŵ
(1)
0 + 1

2h1∇2Φ̂
(1)
0

φ
(1)
1,2 = −1

2∇2Φ̂
(1)
0 + 1

2∇2Ŵ
(1)
0 − 1

2Ŵ
(1)
0 − 1

2∇2Φ̂
(1)
1

φ
(1)
1,3 = − 1

6h1
∇2Ŵ

(1)
0 + 1

6h1
∇2Φ̂

(1)
0 (112)

Substituting the solutions (111) and (112) into (91) on z = η gives us relations involving

Φ̂
(1)
0 , Ŵ

(1)
0 , Φ̂

(1)
1 , Ŵ

(1)
1 , Φ̃

(1)
0 and Φ̃

(1)
1 :

Φ̃
(1)
0 = Φ̂

(1)
0 − (h1 − η) Ŵ

(1)
0 − 1

2 (h1 − η)2 ∇2Φ̂
(1)
0 + 1

6 (h1 − η)3 ∇2Ŵ
(1)
0 (113)

Φ̃
(1)
1 = Φ̂

(1)
1 − (h1 − η) Ŵ

(1)
1 − 1

2 (h1 − η)2 ∇2Φ̂
(1)
1 −

−1
2 (h1 − η)2 Ŵ

(1)
0 − 1

6h1
(h1 − η)3 ∇2Φ̂

(1)
0 + 1

6h1
(h1 − η)3 ∇2Ŵ

(1)
0 (114)

Labels (98), (113) and (114) presents us with 4 equations for Φ̂
(1)
0 , Ŵ

(1)
0 , Φ̂

(1)
1 and Ŵ

(1)
1 .

We can solve Φ̂
(1)
0 , Ŵ

(1)
0 , Φ̂

(1)
1 and Ŵ

(1)
1 using a numerical method such as finite differences.

By implementing this method we receive 2 sets of linear equations, which take the form of
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[

A
(1)
0 padé −B(1)

0 padé

A
(1)
0 nl B

(1)
0 nl

][

Φ̂
(1)
0

Ŵ
(1)
0

]

=

[

0

Φ̃
(1)
0

]

, (115)

[

A
(1)
1 padé −B(1)

1 padé

A
(1)
1 nl B

(1)
1 nl

][

Φ̂
(1)
1

Ŵ
(1)
1

]

=

[

C
(1)
1 Φ̂

(1)
0

Φ̃
(1)
1 + C

(1)
2 Φ̂

(1)
0 + C

(1)
3 Ŵ

(1)
0

]

. (116)

Here A
(1)
padé and B

(1)
padé are the finite difference matrices representing the Dirichlet to Neu-

mann relation (label 98), A
(1)
nl and B

(1)
nl are the finite difference matrices representing the

relation between the undisturbed potential and vertical velocity and the potential on the

interfacial wave. C
(1)
1 and C

(1)
2 are the finite difference matrices representing the relation

between Ŵ
(1)
1 and Φ̂

(1)
1 to Φ̂

(1)
0 . C

(1)
3 is the finite difference matrix representing the relation

between Ŵ
(1)
1 and Φ̂

(1)
1 to Ŵ

(1)
0 . By using Φ̂

(1)
0 , Ŵ

(1)
0 , Φ̂

(1)
1 and Ŵ

(1)
1 we can find the base

functions using (111) and (112), which gives us the properties of the flow at every point in
the layer.

Now let us present a way to calculate the properties of the flow in the upper layer.

We can easily find W̃
(2)
0 and W̃

(2)
1 using (89). Applying the same technique described in

subsection 2.1 we can construct an equivalent version of equations (95) and (97) for the
upper layer

Φ(2) =
(

cos(z∇) + 1
2ε2z cos(z∇) + ε2

sin(z∇)
2∇

)

Φ
(2)
0 +

(

sin(z∇)
∇ − ε2

z sin(z∇)
2∇

)

W
(2)
0 + ε2 cos(z∇)Φ

(2)
1 + ε2

sin(z∇)
∇ W

(2)
1 , (117)

W (2) =
(

−1 + 1
2ε2z

)

sin(z∇)∇Φ
(2)
0 +

(

(

1 − 1
2ε2z

)

cos(z∇) − 1
2ε2z

sin(z∇)
∇

)

W
(2)
0 −

ε2 sin(z∇)∇Φ
(2)
1 + ε2 cos(z∇)W

(2)
1 (118)

On z = η we can use equations (117) and (118) to solve Φ̂
(1)
0 , Ŵ

(1)
0 , Φ̂

(1)
1 and Ŵ

(1)
1 and

substitute the solution into (117) and (118) to get Φ(2) and W (2) at every point in the layer.

4.4 Constructing the equations for the nonlinear time marching

An analytical relation between Φ̃
(1)
t and Φ̃

(2)
t must be developed in order to enable marching

Φ̃ in time using the dynamical interface boundary condition (88). Equations (95), (97) and

(98) on z = η are a set of 6 equations relating Φ̂
(1)
0 , Ŵ

(1)
0 , Φ̂

(1)
1 , Ŵ

(1)
1 , Φ̃

(1)
0 , W̃

(1)
0 , Φ̃

(1)
1 and

W̃
(1)
1 . By eliminating these 6 equations we get

W̃
(1)
0 = − tan ((h1 + η)∇)∇Φ̃

(1)
0 (119)

W̃
(1)
1 = − tan ((h1 + η)∇)∇Φ̃

(1)
1 +

1
4 sec2 ((h1 + η)∇) (1 − h1 + (2 + h1) cos (2h1∇) + 2 cos (2η∇) + 2η sin (2h1∇)∇) Φ̃

(1)
0
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Similar relations can be found for the upper layer

W̃
(2)
0 = tan ((h2 − η)∇)∇Φ̃

(2)
0 (120)

W̃
(2)
1 = tan ((h2 − η)∇)∇Φ̃

(2)
1 +

1
4 sec2 ((h2 − η)∇) (1 − h2 + (2 + h2) cos (2h2∇) + 2 cos (2η∇) − 2η sin (2h2∇)∇) Φ̃

(2)
0

By using equations (119), (120) and (89) we get relations between Φ̃
(1)
0 , Φ̃

(1)
1 , Φ̃

(2)
0 and Φ̃

(2)
1

−∇ηΦ̃(1)
0 − tan ((h1 + η)∇)∇Φ̃

(1)
0 = ∇ηΦ̃(2)

0 + tan ((h2 − η)∇)∇Φ̃
(2)
0

1
4 sec2 ((h1 + η)∇) (1 − h1 + (2 + h1) cos (2h1∇) + 2 cos (2η∇) + 2η sin (2h1∇)∇) Φ̃

(1)
0 −

∇ηΦ̃(1)
1 − tan ((h1 + η)∇)∇Φ̃

(1)
1 =

1
4 sec2 ((h2 − η)∇) (1 − h2 + (2 + h2) cos (2h2∇) + 2 cos (2η∇) − 2η sin (2h2∇)∇) Φ̃

(2)
0 −

∇ηΦ̃(2)
1 + tan ((h2 − η)∇)∇Φ̃

(2)
1 (121)

By taking the time derivative of (121) we get

ηt sec2 ((h1 + η)∇)∇2Φ̃
(1)
0 − (∇η + tan ((h1 + η)∇)∇) ∂

∂t
Φ̃

(1)
0 =

ηt sec2 ((h2 − η)∇)∇2Φ̃
(2)
0 − (∇η − tan ((h2 − η)∇)∇) ∂

∂t
Φ̃

(2)
0

−ηt sec2 ((h1 + η)∇)∇2Φ̃
(1)
1 + 1

2ηt sec2 ((h1 + η)∇)

(− sin (2η∇) + (1 − h1 + (2 + h1) cos (2h1∇)) tan ((h1 + η)∇) + 2 sin (2h1∇))∇Φ̃
(1)
0 +

(cos (2η∇) + 2∇η sin (2h1∇)) tan ((h1 + η)∇)∇Φ̃
(1)
0 +

1
4 sec2 ((h1 + η)∇) (1 − h1 + (2 + h1) cos (2h1∇) + 2 cos (2η∇) + 2η sin (2h1∇)∇) ∂

∂t
Φ̃

(1)
0 −

(∇η + tan ((h1 + η)∇)∇) ∂
∂t

Φ̃
(1)
1 =

−ηt sec2 ((h2 − η)∇)∇2Φ̃
(2)
1 + 1

2ηt sec2 ((h2 − η)∇)

(− sin (2η∇) + (1 − h2 + (2 + h2) cos (2h2∇)) tan ((h2 − η)∇) − 2 sin (2h2∇))∇Φ̃
(2)
0

(cos (2η∇) + 2∇η sin (2h2∇)) tan ((h2 − η)∇)∇Φ̃
(2)
0 +

1
4 sec2 ((h2 − η)∇) (1 − h2 + (2 + h2) cos (2h2∇) + 2 cos (2η∇) − 2η sin (2h2∇)∇) ∂

∂t
Φ̃

(2)
0 −

(∇η − tan ((h2 − η)∇)∇) ∂
∂t

Φ̃
(2)
1 (122)

Now by using equations (122), (81) and (88) we can march the problem in time.

5 Surface Quasi-Geostrophic Model

The quasi-geostrophic equation for constant stratification is
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(

∂

∂t
+ Ψx

∂

∂y
− Ψy

∂

∂x

)(

∇2Ψ +
1

S
Ψzz + βy

)

= 0 (123)

u = (−Ψy,Ψx) , Ψz = Θ (124)

Here S = N2H2

f2

0
L2

, N is the buoyancy frequency, f0 is the rotation frequency, H is the vertical

length scale, L is the horizontal length scale and Ψ is the horizontal stream function and its
z-derivative relates to the potential temperature Θ. Assuming zero initial potential vorticity
equation (123) becomes

∇2Ψ +
1

S
Ψzz + βy = 0 (125)

The Boundary conditions for this one layer model are

Θt + ΨxΘy − ΨyΘx = 0 @z = 0 (126)

Ψz = 0 @z = −H (127)

Equations (125), (126) and (127) represents the surface quasi-geostrophic model. We intro-
duce an expansion of Ψ as a power series in z:

Ψ(x, y, z, t) =
∞
∑

n=0

znψn(x, y, t) − 1

6
βy3 (128)

By substituting equation (128) into equation (125) and using equation (127) we get

cos(
√
SH∇)Θ̂ + sin(

√
SH∇)∇Ψ̂ = 0 (129)

Therefore,

Ψ̂x = − cot
(√

SH ∂
∂x

)

Θ̂

Ψ̂y = − cot
(√

SH ∂
∂y

)

Θ̂ (130)

As before, the hat sign (ˆ) denotes the value on z = 0. Now by applying (130) to (126) we
get

Θt − Θy cot

(√
SH

∂

∂x

)

Θ + Θx cot

(√
SH

∂

∂y

)

Θ = 0 @z = 0 (131)

The infinite differential operators in equation (131) can now be approximated using Taylor
approximation or Padé approximation to any required order and solved for Θ.
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6 A new Layered Quasi-Geostrophic Model

6.1 Formulating the equations for the layered model

The surface quasi-geostrophic model regards the entire water depth as one stratified layer. In
this new model the water depth is divided to two stratified layers with a density jump in the
interface. This represents better the ocean’s density structure and should give more accurate
results than the one-layered representation. Due to the density jump in the interface there
is a mechanism for internal interfacial Rossby waves to propagate. The equations governing
the quasi-geostrophical flow of an incompressible inviscid fluid in the lower layer over a
horizontal bottom are:

∇2Ψ(1) +
1

S1
Ψ(1)

zz + βy = 0 (132)

Θ̂
(1)
t + û

(1) · ∇Θ̂(1) = N2
1 Ŵ

(1) @z = 0 (133)

ηt + û
(1) · ∇η = Ŵ (1) @z = 0 (134)

Θ(1) = 0 @z = −h1 (135)

The equations governing the quasi-geostrophical flow of an incompressible inviscid fluid in
the upper layer under a rigid lid are:

∇2Ψ(2) +
1

S2
Ψ(2)

zz + βy = 0 (136)

ˆ̂
Θ

(2)
t + ˆ̂u(2) · ∇ ˆ̂

Θ(2) = F @z = h2 (137)

Θ̂
(2)
t + û

(2) · ∇Θ̂(2) = N2
2 Ŵ

(2) @z = 0 (138)

ηt + û
(2) · ∇η = Ŵ (2) @z = 0 (139)

Here we added a surface potential temperature forcing function F to the surface boundary
condition that is presented in equation (137). Using (133), (134), (138) and (139) we can
write the potential temperature interfacial equation

N2
2

(

Θ̂
(1)
t + û

(1) · ∇
(

Θ̂(1) −N2
1 η
))

=

N2
1

(

Θ̂
(2)
t + û

(2) · ∇
(

Θ̂(2) −N2
2 η
))

@z = 0 (140)

Here,

∇ =

(

∂

∂x
,
∂

∂y

)

(141)

u = (−Ψy,Ψx) , Ψz = Θ. (142)
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Now in order for the problem to be well-posed we need to construct a pressure interfacial
condition. Let us write the pressure formulation for each layer,

−ps − p2(z) = ρ1 g (h2 − z) − ∆ρ g (h2 − z) − p
,
2 @ 0 < z < h2 (143)

−ps − p1(z) = ρ1 g (h2 − z) − ∆ρ g (h2 − η) − p
,
1 @ −h1 < z < 0. (144)

Here p
,
1 and p

,
2 are the non-hydrostatic part of the pressure, ps is the rigid-lid surface

pressure and ∆ρ = ρ2 − ρ1. By defining Ψ with ps as the datum and using equations (143)
and (144) we can write the pressure interfacial equation,

Ψ̂(2) + ∆ρ gη = Ψ̂(1) @z = 0. (145)

By using (133) and (134) we can also construct an equation relating η to the potential
temperature,

ηt = 1
N2

1

(

Θ̂
(1)
t + û

(1) ·
(

Θ̂(1) −N2
1 η
))

@z = 0. (146)

6.2 An infinite series solution for the quasi-geostrophic equation in each

layer over a horizontal bottom

We introduce an expansion of Ψ as a power series in z:

Ψ(x, y, z, t) =
∞
∑

n=0

znψn(x, y, t) − 1

6
βy3 (147)

By substituting equation (147) for the lower layer into equation (132) and using equation
(135) we get

cos(
√

S1h1∇)Θ̂(1) + sin(
√

S1h1∇)∇Ψ̂(1) = 0 (148)

and by substituting equation (147) for the upper layer into equation (136) we get

Ψ(2) =
sin(

√
S2(z−h2)∇)

∇
ˆ̂
Θ(2) + cos

(√
S2 (z − h2)∇

) ˆ̂
Ψ(2) − 1

6βy
3. (149)

Now by using equation (149) we can formulate the relations between the flow properties of
the upper layer on the interface and the flow properties on the surface,

Θ̂(2) =
√
S2 cos

(√
S2h2∇

) ˆ̂
Θ(2) +

√
S2 sin

(√
S2h2∇

)

∇ ˆ̂
Ψ(2) (150)

Ψ̂(2) = − sin(
√

S2h2∇)
∇

ˆ̂
Θ(2) + cos

(√
S2h2∇

) ˆ̂
Ψ(2) − 1

6βy
3. (151)

Let us now eliminate equations (145), (148), (150) and (151) to give us an equation con-

taining only the potential temperature functions Θ̂(1),Θ̂(2)and
ˆ̂
Θ(2),
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√
S2

1
∇ cot

(√
S1h1∇

)

Θ̂(1) + 1
∇ cot

(√
S2h2∇

)

Θ̂(2) −
√
S2

1
∇ csc

(√
S2h2∇

) ˆ̂
Θ(2) +√

S2

(

∆ρ gη − 1
6βy

3
)

= 0. (152)

The next step is to take the derivative of equation (152) with respect to time and also use
equations (137) and (146) in order to get

1
∇ cot

(√
S2h2∇

)

Θ̂
(2)
t − 1

∇ csc
(√
S2h2∇

)

(

F − ˆ̂u(2) · ∇ ˆ̂
Θ(2)

)

=

−∆ρ f

N2

1

û
(1) · ∇

(

Θ̂(1) −N2
1 η
)

−
(

1
∇ cot

(√
S1h1∇

)

+ ∆ρ f

N2

1

)

Θ̂
(1)
t . (153)

At this point we have all the equations needed in order to construct the method. From initial

conditions or from a prior time step we know Θ̂(1),
ˆ̂
Θ(2) and η. By the use of equations

(145), (148) and (151) we can find Ψ̂(1), Ψ̂(2) and
ˆ̂
Ψ(2). Afterwards, we can use equations

(140), (153) and (146) in order to march Θ̂(1),
ˆ̂
Θ(2) and η in time and the process can be

repeated.
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