
A particle-simulation method to study mixing efficiencies

Takahide Okabe

March 15, 2007

1 Introduction

Mixing by fluid flows is a ubiquitous natural phenomenon that plays a central role in many
of the applied sciences and engineering. A geophysical example is the mixing of aerosols
(e.g., CO2 supplied by a volcano, say, or by human activity) in the atmosphere. Aerosols
are dispersed by molecular diffusion on the smallest scales but are more effectively spread
globally by atmospheric flows. The density—and density fluctuations—of some aerosols
influence the albedo of the earth and thus have an environmental impact. Hence it is
important to understand fundamental properties of dispersion, mixing, and the suppression
of concentration fluctuations by stirring flow fields.

At the most basic level, the mixing of a passive scalar can be modeled by an advection-
diffusion equation for the scalar concentration field with a specified stirring flow field. In
this work we will focus on problems where fluctuations in the scalar field are generated
and sustained by temporally steady but spatially inhomogeneous sources. The question of
interest here is this: for a given source distribution, how well can a specified stirring flow
mix the scalar field? Mixing can be measured by the scalar variance over the domain. A
well-mixed scalar field will have a relatively uniform density with “small” variance while
increased fluctuations in the scalar density will be reflected in a “larger” variance. We put
quotes around the quantifiers small and large because the variance is a dimensional quantity
whose magnitude depend on the choice of units employed. A dimensionless measure of the
scalar fluctuations is necessary to give precise meaning to these characterizations.

Several years ago Thiffeault et al [1] introduced the notion of “mixing efficiency” for
a velocity field stirring a steadily sustained scalar by comparing the bulk (space-time)
averaged density variance with and without advecting flow. In the absence of stirring the
mixing is accomplished by molecular diffusion alone, which can be very effective on small
scales but is not generally very good at breaking up and disbursing large scale fluctuations
quickly. Stirring can greatly enhance the transport of the scalar from regions of excess
density to regions of depletion, however, suppressing the variance far below its diffusion-
only value. The magnitude of this variance suppression by the stirring, i.e., the ratio of the
variance without stirring to the variance in the presence of stirring, is a dimensionless
quantity that provides a sensible gauge of the mixing efficiency of the flow. Different
advection fields will have different efficiencies stirring scalars supplied by different sources.

227

It is then of obvious interest both to determine theoretical limits on mixing efficiencies for
various source configurations and to explore whether those limits may be achieved.

In this project we develop a computational scheme that is easy to implement and appli-
cable to the study of mixing by any advection field and with any source distribution. The
idea is to develop a method that accurately simulates advection and diffusion of large num-
bers of passively advecting particles introduced by a steady source, and to measure density
fluctuations by “binning” the particles to produce an approximation of the “hydrodynamic”
concentration field. Unlike a numerical PDE code, a particle code does not prefer specific
forms of advection or source (PDE methods generally work best with smooth fields). There
is, however, no free lunch: the accuracy of the particle code is ultimately limited by the
finite number of particles that can be tracked. The limitation to finite numbers of particles
inevitably introduces statistical errors due to discrete fluctuations in the local density and
systematic errors in the variance measurements due to binning. But these problems can be
addressed and as will be shown in this report, for some applications the method proves to
be computationally efficient and quantitatively accurate.

The most significant upside of a particle code—and one of the most significant motiva-
tions for this work—is that it can easily handle (i.e., resolve) small scales in sources and,
subsequently, in the concentration field. It is even applicable to delta-function sources whose
resolution requirements would strain standard PDE methods. Delta-function scalar sources
are the most singular physically relevant distributions, and at the same time the simplest
to implement in a particle tracking scheme: just introduce the particles at the same point
in space. A delta-function source could serve, for example, as a model of a smoke stack
supplying an aerosol into the atmosphere when the smallest scales in the flow are larger
than the radius of the outlet.

The remainder of this report is organized as follows. In section 2 the mathematical
model is presented, basic quantities characterizing mixing phenomena are defined, and some
general results about mixing efficiencies are reviewed. In section 3 the particle simulation
scheme is explained in detail. The problems inherent to a discrete particle method, and
solutions to these problems, are also discussed. The particle code as implemented is numer-
ically validated in section 4. There, the variance from the particle code is compared with
exact solutions and the results of a PDE code for some benchmark problems. In section
5 the particle method is used to measure the mixing efficiency of a particular statistically
homogeneous flow stirring ever smaller-scale sources (down to a delta-function source). This
is a new result, and it is qualitatively and quantitatively compared to previous analysis of
upper bounds on the mixing efficiency for such sources. We close this report with conclusive
remarks and provide appendices containing details of the computer code used to implement
the scheme.

2 Basic facts about the mixing efficiency problem

In this section we review basic facts about the mixing efficiency problem as formulated
by Thiffeault, Doering & Gibbon el al [1] and further developed by Plasting & Young [2],
Doering & Thiffeault [3], and Shaw et al [4]. The dynamics is given by the advection-
diffusion equation for the concentration of a passive scalar ρ(t,x) with time-independent

228

but spatially inhomogeneous source field S(x):

∂ρ

∂t
+ u · ∇ρ = κ∆ρ + S(x), (1)

where κ is the molecular diffusivity and u(t,x) is a specified advection field that satisfies
(at each instant of time) the incompressibility condition

∇ · u = 0. (2)

For simplicity, the domain is the d-torus, i.e., [0, L]d with periodic boundary conditions. We
will limit attention in this report to stirring fields that satisfy the properties of statistical
homogeneity and isotropy defined by

ui(x, ·) = 0 (3)

ui(x, ·)uj(x, ·) =
U2

d
δij (4)

where the overbar is time average and U is the root mean square speed of the velocity field,
a natural indicator of the intensity of the stirring (recall that d is the spatial dimension).
These statistical properties are shared by homogeneous isotropic turbulence on the torus.

We are interested in fluctuations in the concentration ρ so the spatially averaged back-
ground density is irrelevant. It is easy to see from (1) that the spatial average of ρ grows
linearly with time at the rate given by the spatial average of S. Hence we may change
variables to spatially mean-zero quantities

θ(t,x) = ρ(t,x) − 1

Ld

∫

ddx′ ρ(t,x′) (5)

and

s(x) = S(x) − 1

Ld

∫

ddx′ S(x′) (6)

that satisfy

∂θ

∂t
+ u · ∇θ = κ∆θ + s(x). (7)

(We must also supply initial conditions for ρ and/or θ but they play no role in the long-time
statistically steady statistics that we are interested in.)

The “mixedness” of the scalar may be characterized by, among other quantities, the
long-time averaged variance of ρ, proportional to the long-time averaged L2 norm of θ,

〈θ2〉 := lim
T→∞

1

T

∫ T

0
dt

1

Ld

∫

ddx θ2(t,x) (8)

The smaller 〈θ2〉 is, the more uniform the distribution is. The “mixing efficiency” of a
stirring field is naturally evaluated by comparing the scalar variance to the variance with

229

the same source but in the absence of stirring. To be perfectly precise, we compare 〈θ2〉 to
〈θ 2

0 〉 where θ0 is the solution to

∂θ0

∂t
= κ∆θ0 + s(x) (9)

(with, say, the same initial data although these will not affect the long-time averaged fluc-
tuations). Formally, then, the dimensionless mixing efficiency is defined

E0 :=

√

〈θ 2
0 〉

〈θ2〉 . (10)

This efficiency carries the subscript 0 because we can also define multiscale mixing efficien-

cies by weighting large/small wavenumber components of the scalar fluctuations:

Ep :=

√

〈|∇pθ0|2〉
〈|∇pθ|2〉 (p = −1, 0, 1). (11)

As discussed in Doering & Thiffeault [3], Shaw et al [4] and Shaw [5], E±1 provide a gauge
of the mixing efficiencies of the flow as measured by scalar fluctuations on relatively small
and large length scales respectively. In this project, however, we will focus exclusively on
the mixing efficiency at “moderate” length scales, E0.

There is a theoretical upper bound on E0 valid for any statistically stationary homoge-
neous and isotropic stirring field [3, 5, 4]:

E0 ≤

√

√

√

√

∑

k6=0
|ŝ(k)|2/k4

∑

k6=0
|ŝ(k)|2/(k4 + Pe2

L2d
k2)

(12)

where ŝ(k) are the Fourier coefficients of the source and the Péclet number

Pe :=
UL

κ
. (13)

is a dimensionless measure of the intensity of the stirring. Generally we anticipate that E0

is an increasing function of Pe and the estimate in (12) guarantees that E0(Pe) . Pe as
Pe → ∞, the scaling expected if there is any residual variance suppression in the singular
vanishing diffusion limit (i.e., κ → 0 with all other parameters held fixed).

The upper limit to the mixing efficiency in (12) depends on the stirring field only through
U via Pe, but it depends on all the details of the source distribution. As studied in depth
in references [3, 4, 5], the structure of the scalar source can have profound effects on the
behavior, i.e., the high Pe scaling, of E0. It is precisely this source-dependence of the
qualitative behavior of E0(Pe) that motivates this development of a computational method
that can handle singular source distributions.

In the remainder of this report we focus on the two-dimensional torus (d = 2) and for
computational simplicity and efficiency we take as the stirring field the “random sine flow”
defined for all time by

u(t,x) =

{

w sin(2πy
L

+ φn)̂i for nT < t ≤ nT + T/2

w sin(2πx
L

+ φ′
n)̂j for nT + T/2 < t ≤ (n + 1)T

(14)

where T is the period, n = 0, 1, 2, . . . , and φn and φ′
n are random phases chosen indepen-

dently and uniformly on [0, 2π) in each half cycle. Then U = w/
√

2.

230

3 A particle code

In a particle code to solve the advection-diffusion equation, the concentration field ρ is
represented by a distribution of particles. Particles introduced by generating random loca-
tions using the properly normalized source S(x) as a probability distribution function, and
advecting them with the flow. Given a particle distribution, ρ(t,x) is measured by covering
the domain with bins counting the number of particles per bin.

A particle code is employed because it can deal with a small-scale source. It is easily
applicable for any source fields and advection fields, while the spectral method prefers fields
whose Fourier expansion is simple. The downside of a particle code is that it necessarily
introduces statistical errors: the number density of particles calculated by dividing the
domain into bins is only resolved down to the lengthscale of bin size, and the measurement
of ρ always includes error due to the use of finite number of particles.

In this section the numerical scheme based on a particle code is explained. The code
mainly consists of three parts: 1) Time evolution, 2) calculation of variance, and 3) a
particle subtraction scheme. The time evolution is realized by displacing each particle with
appropriate advection and diffusion, and by adding new particles in accordance with a
source term. We calculate spatial variance at a random instant once each half cycle in order
to take its time average. A subtraction scheme removes group of particles that are well-
mixed and this not participating in time evolution any longer. The subtraction scheme is
necessary and crucial to prevent a calculation from slowing down due to an ever increasing
number of particles in the system. Details of the code are presented in the appendix.

3.1 Variance calculation

The variance 〈θ2〉 is measured by monitoring the fluctuations in the number of particles per
bin and time averaging. In two dimensions the domain is divided into l2 bins and the code
calculates 〈n2〉 where n is the number of particles in a bin and 〈θ2〉 is initially approximated
by

〈n2〉 − 〈n〉2 =

(

L

l

)2

〈θ2〉. (15)

We say “initially” because the expression above includes both the hydrodynamic fluctuations
of interest and discreteness fluctuations resulting solely from the fact that each bin contains
a finite number of particles. We will discuss corrections to this expression for the variance
to account for this effect below in Section 3.3. Beyond these inevitable fluctuations due
to discreteness, because of the binning density fluctuations are observed only down to the
length scales ∼ L

l
, which is one of the sources of error in this procedure.

The variance is calculated once per each half period, and the instant when it is calculated
is determined randomly in order to obtain an unbiased time average. Thus each half period
is divided into two parts, before and after variance calculation, and the particle transport
and source processes are appropriately adapted.

231

Figure 1: Gaussian due to diffusion only. Figure 2: Distorted Gaussian due to shear.

3.2 Time evolution: particle transport

At each time step, the system is evolved by advection and diffusion, and by the source
terms. First we focus on particle motion, and then on the particle input.

An advection-only equation would be solved by evolving particles along characteristics,
and a diffusion-only equation would be solved by adding Gaussian random noise to each par-
ticle. With both advection and diffusion we need to solve a stochastic differential equations
to determine the proper displacement of the particles during a time step. The stochastic
differential equation is

dX = u(t,X)dt +
√

2κ dW (16)

where W(t) is a standard vector-valued Wiener process.
In order to solve (16) we will assume that the displacement due to the noise in a half-

period T/2 is much smaller than the wavelength of the random sine flow. Then during each
half period the drift field u(t,X) experienced by each particle can be approximated by a
constant flow with a linear shear superposed. For the first half of the period for a particle
starting at (x0, y0) = (X(t = 0), Y (t = 0)) we approximate (16) by

{

dX = w sin(2πy0

L
+ φ)dt + w cos(2πy0

L
+ φ)2π

L
(Y − y0)dt +

√
2κ dW1

dY =
√

2κ dW2
(17)

and for the second half of the period, starting from (x′
0, y

′
0) = (X(t = T/2), Y (t = T/2)),

{

dX =
√

2κ dW1

dY = w sin(
2πx′

0

L
+ φ′)dt + w cos(

2πx′

0

L
+ φ′)2π

L
(X − x′

0)dt +
√

2κ dW2.
(18)

Therefore, during the first half period we evolve the position of a particle through a time
interval ∆t (where ∆t ≤ T/2 need not be small) by the map

x → x0 + w sin(
2πy0

L
+ φ)∆t +

√

1

6
S2κ∆t3 + 2κ∆t × N1 +

√

1

2
S2κ∆t3 × N2 (19)

y → y0 +
√

2κ∆t × N2 (20)

232

where N1 and N2 are independent N(0, 1) random variables. A similar map is employed
during the second half of the period. These stochastic maps include the shear—in the
approximation that the shear remains constant for each particle during each half cycle—
that causes a “distortion” of a Gaussian cloud of particles; see Figures 1 and 2.

3.3 Time evolution: particle input

The steady scalar source is realized by introducing new particle one by one using normal-
ized S(x) as a probability distribution function. Numerically, such probability distribution
function can be realized by mapping uniform random numbers with an inverse of cumulative
probability distribution function in question. In Figures 3, 4 and 5, sample source terms are
visualized by putting many (in these examples 104) particles at once. The monochromatic
source in Figure 3 is S(x) = A[1 + sin(2π(x + y)/L)].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 3: Monochromatic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 4: Square (a = L
2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 5: Square (a = L
10)

In the actual time evolution of the system, however, new particles are added one by
one. Since new particles are put in constantly, the total number of particles increases which
makes computation slow down. To cope with increasing particles, we will implement a
particle subtraction scheme as described in the next section.

3.4 Background noise and subtraction scheme

Particles eventually get well mixed, and the “older” particles do not contribute the value
of the hydrodynamic variance. There is no added value in keeping track of those particles,
and we can simply remove them from the system after a sufficiently long time. In fact it
is necessary to implement such a particle subtraction scheme so that computation goes on
without slowing down.

A subtraction scheme eliminates particles which are “well-mixed”, but we need to be
careful about the well-mixedness in a particle code. If the system is completely mixed, the
hydrodynamic variance 〈θ2〉 = 0. But since θ(t,x) is represented with a finite number of
particles and bin of a finite size, 〈θ2〉measured is nonzero even when the particles are uniformly
distributed: 〈n2〉 has the same amount of fluctuations as the error we might have when Nall

particles are randomly thrown in l2 bins. Thus when the particles are uniformly distributed
〈n2〉 − 〈n〉2 is the order of Nall/l

2 as illustrated in Figures 6 and 7. There θ2
measured(t)—

where the overline now represents the volume average—is plotted in the diffusion-only case
with the monochromatic initial condition. Instead of approaching 0, θ2

measured(t) goes to
Nall/l

2. We call this departure from 0 a background fluctuation, and we refer to the error

233

due to the use of the finite number of particles and finite size of a bin as error due to
discreteness.

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 0 10 20 30 40 50 60 70 80 90 100

θ2

time

Figure 6: κ = 10−3, Nall = 104, 104 bins

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 10 20 30 40 50 60 70 80 90 100

θ2

time

Figure 7: κ = 10−3, Nall = 105, 104 bins

These background fluctuations must be removed to obtain hydrodynamic variance that
we are interested in. The effect of this subtraction is illustrated in Figures 8 and 9. When
the initial density is ρ(0,x) = A[1 + sin(2π(x + y)/L)],

ρ(t,x) = A

[

1 + e−
8π

2

L2
κt sin

(

2π

L
(x + y)

)]

, (21)

the instantaneous hydrodynamic variance, i.e., θ2 = (ρ − ρ)2, is

θ2(t) =
A2

2
e−

16π
2

L2
κt. (22)

As illustrated in Figure 9, after background fluctuations are subtracted off we obtain the
correct behavior, i.e., exponential decay. In Figure 8 it might be difficult to tell the differ-
ence, but in the log-linear plot in Figure 9 it is obvious that θ2 shows exponential decay
only after background noise is removed. From this point on, this background noise is always
removed when 〈θ2〉 is calculated.

-10

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

θ2

time

Figure 8: Normal plots

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

θ2

time

Figure 9: Log-normal plots

234

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90 100

θ2

time

Figure 10: Normal plots

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

θ2

time

Figure 11: Log-normal plot.

A group of particles can be discounted, removed from further consideration, once their
variance reaches the level of background fluctuation. In the actual code, we keep track the
∆n particles put in a half period as a group and they are removed after they participate in
the time evolution for a time t∗, where t∗ is a typical time scale for ∆n particles to reach
the background fluctuation level. The “lifetime” t∗ depends on the number of particles
in the cohort we are regarding as “old”, the form of the source field, the advection field,
and of course the diffusion coefficient κ. This lifetime is estimated by plotting a transient
behavior of the variance of ∆n particles under the particular advection and/or diffusion
conditions of interest. In Figures 10 and 11, 105 particles, initially distributed as for the
monocromatic source, are mixed by diffusion or advection-diffusion. Eventually both cases
end up in a well-mixed state (in the figures, background fluctuations are already removed)
and t∗ is estimated to be ∼10 in the case of advection-diffusion and ∼45 in the case of
only diffusion. These values of t∗ would then be used for long time average measurements
for these particular source, stirring and diffusion conditions. For each source, stirring or
amplitude of diffusion, such a transient calibration simulation must be repeated to determine
the appropriate value of t∗ .

3.5 Benchmark Tests

In this section we report the results of specific simulation where the particle code results
can be compared to either exact solutions or numerical solutions of the inhomogeneous
advection-diffusion partial differential equation. These benchmark tests serve as a check
of the code and give some quantitative information about our particle tracking scheme’s
accuracy.

3.5.1 Simulation parameter independence

First of all, the measures of hydrodynamic variances should be independent of ∆n (the
number of particles introduced each half-cycle of the stirring) or the bin size that is used
to estimate ρ(t,x). The parameter independence can be checked by changing the value
of ∆n or l with other conditions fixed. Here, we illustrate ∆n independence by showing
the exponential decays of transient variance for several values of ∆n. κ is 0.01, 0.001,

235

0.0001, respectively, and ∆n = 104(red), 105(green) and 106 (blue) (Figures 12, 13 and
14). The plots show exponential decay until the particles are well-mixed, as expected, and

 1e-025

 1e-020

 1e-015

 1e-010

 1e-005

 1

 100000

 0 5 10 15 20 25 30

θ2

time

Figure 12: κ=0.01

 1e-008

 1e-006

 0.0001

 0.01

 1

 100

 10000

 0 10 20 30 40 50 60 70 80 90 100

θ2

time

Figure 13: κ=0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

θ2

time

Figure 14: κ=0.0001

the exponential decay rates are independent of ∆n (at least in the range [104, 106] tested).
The straight lines fit to the data here are the exact theoretical values with no adjustable
parameters.

3.5.2 Diffusion-only with steady source

Secondly we consider diffusion-only with a steady source since 〈θ 2
0 〉 can be calculated exactly

for these cases. It is possible to solve Eq. (9) analytically by Fourier expansion:

θ0(t,x) =
∑

k6=0

θ̂0(t,k)eik·x (23)

s(x) =
∑

k6=0

ŝ(k)eik·x (24)

Note that θ̂(t,k = 0) = 0 and that ŝ(t,k = 0) = 0, because θ(t,x) and s(x) have zero
spatial means. The inhomogeneous diffusion equation is

∂θ̂0

∂t
= −κk2θ̂0(t,k) + ŝ(k) (25)

so that

θ̂0(t,k) =
ŝ(k)

κk2
+

(

θ̂0(0,k) − ŝ(k)

κk2

)

e−κk2t (26)

Plugging this expression into the definition of 〈θ 2
0 〉,

〈θ 2
0 〉 = lim

T→∞
1

T

∫ T

0
dt

1

Ld

∫

ddx
∑

k,k′ 6=0

θ̂0(t,k)θ̂0(t,k
′)ei(k+k′)·x (27)

= lim
T→∞

1

T

∫ T

0
dt

∑

k6=0

|θ̂0(t,k)|2 (28)

=
1

κ2

∑

k6=0

|ŝ(k)|2
k4

(29)

236

We now check if the particle simulation code produces this value with three kinds of sources:
(1) a monochromatic source, (2) a square source and (3) a delta-function source.

For the monochromatic source,

〈θ 2
0 〉 =

S2L4

128π4κ2
(30)

〈n 2
0 〉 = 〈θ 2

0 〉 · (bin vol.) =
(∆n

∆t
)2L4

128π4κ2
(31)

and the comparison of theory and simulation is presented in tabular form:

κ 〈θ 2
0 〉calculated theoretical values

0.05 0.1290±0.0076 0.128324
0.02 0.7914±0.0032 0.802029
0.01 3.215±0.010 3.208119
0.005 12.370±0.014 12.8324
0.002 78.836±0.052 80.2029
0.001 312.82±0.13 320.8119
0.0005 1236.39±0.29 1283.24

For the square sources

s(x) =

{

S x ∈
[

−a
2 + L

2 , a
2 + L

2

]

0 otherwise
(32)

the variances are

〈θ 2
0 〉 =

1

κ2

16S2

L4

∑

k6=0

1

(k 2
1 + k 2

2)2

(

sin(k1
a
2)

k1

)2 (

sin(k2
a
2)

k2

)2

(33)

〈n 2
0 〉 =

1

κ2

16

a4

(

∆n

∆t

)2
∑

k6=0

1

(k 2
1 + k 2

2)2

(

sin(k1
a
2)

k1

)2 (

sin(k2
a
2)

k2

)2

(34)

and the simulations yield

a = L
2

κ 〈θ 2
0 〉calculated theoretical values

0.01 45.593±0.041 45.862
0.005 177.750±0.092 183.448

a = L
10

κ 〈θ 2
0 〉calculated theoretical values

0.01 141.593±0.075 142.092
0.005 565.99±0.19 568.37

a = L
20

κ 〈θ 2
0 〉calculated theoretical values

0.01 150.502±0.086 150.615
0.005 599.79±0.20 602.46

237

Finally, for the delta-function source

s(x) = Sδ

(

x − L

2

)

δ

(

y − L

2

)

, (35)

we have

〈θ 2
0 〉 =

1

κ2

S2

L4

∑

k6=0

1

(k 2
1 + k 2

2)2
(36)

〈n 2
0 〉 =

1

κ2

(

∆n

∆t

)2
∑

k6=0

1

(k 2
1 + k 2

2)2
=

1

κ2

(

∆n

∆t

)2

L4 · 3.8669 × 10−3. (37)

(Note that (37) can be obtained by letting a → 0 in (34).) We can check if the code outputs
the same value:

κ l 〈θ 2
0 〉measured theoretical values

0.02 100 37.772±0.023 38.669
0.01 100 142.673±0.064 154.678
0.02 200 2.4127±0.0025 2.4168
0.01 200 9.4448±0.0044 9.6674
0.02 400 0.15116±0.00024 0.15105
0.01 400 0.59042±0.00034 0.60421
0.005 400 2.36000±0.00085 2.41684

In those results, 〈θ 2
0 〉measured tends to be smaller than the theoretical values because variance

calculation is based on bins of a finite size and the contribution from smaller scales is not
included. If 〈θ 2

0 〉measured is compared with, say,

1

κ2

|k|≤ 2π

∆l
∑

k6=0

|ŝ(k)|2
k4

, (38)

the discrepancies would be smaller. Also, note that in the case of a delta function source,
the bin size needs to be very small—at least in the neighborhood of the source—in order
to obtain accurate values.

3.5.3 Advection, diffusion and a steady source

Finally, we compare the full advection-diffusion-source code with the results of a spectral
method applied to the inhomogeneous advection-diffusion partial differential equation. In
Figure 15, the mixing efficiency is plotted against Pe for the case of the monochromatic
source stirred by the random sine flow. The green curve shows the theoretical upper bound
and the red curve is calculated by spectral method [4, 5]. The blue points are from the
particle code. This comparison shows that the code accurately calculates mixing efficiencies
and that it can be effectively as accurate as spectral method even with ∆n is as small as
104.

238

 1

 10

 100

 1000

 10 100 1000 10000

E
0

Pe

Figure 15: Benchmark test for the mixing efficiecy with a monochromatic source.

4 New applications

The particle code is applicable for small-scale sources, as shown in the diffusion-only case
in the previous section. Figures 16, 17 show, repectively, the upper bounds on the mixing
efficiencies and the measured values of the mixing efficiencies for square and delta function
sources. The theoretical upper bounds and data plots are for source sizes L/2, L/10, L/50
and a delta function source (from top to bottom in each plot). The upper bound analysis
predicted that as the source gets smaller, the E0(Pe) curves are lowered. While the upper
bound for any finite-size source is asymptotically ∼Pe, the delta function source behaves
∼ Pe√

lnPe
in the large Pe limit.

As the source gets smaller, the measured mixing efficiencies get smaller in a way that is
qualitatively remarkably similar to that shown by the bounds. That is, Figures 16 and 17
show that the observed mixing efficiencies qualitatively display the same features as that
of upper bounds as far as source-size is concerned. The bounds and simulation data are
plotted together for comparison in Figure 18.

5 Future Works and Conclusions

We have confirmed that we can use a particle code to study hydrodynamic mixing efficien-
cies. The particle method reproduces theoretical values and previous numerical simulation
correctly. As we saw, the outputs may be as accurate as a PDE code. Moreover, the number
of particles used to represent the passive scalar field can be as small as 104. The particle
method is particularly useful for simulations at high Péclet number and with a wide variety,
including singular measure-valued source distributions. In this project, the same code was
used effectively for a monochromatic source, square sources and a delta-function source.
The code efficiently produced reliable results for all these cases.

239

 1

 10

 100

 1000

 10 100 1000

E
0

Pe

Figure 16: Upper bounds

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000

E
0

Pe

Figure 17: The plot of mixing efficiencies

What we have done here is just the very beginning of investigations exploiting the
particle code. There are lots of problems to be explored. Firstly, we can adapt the method
to other stirring fields. In this paper only the random sine flow was used, but it is possible
to extend this approach to other advection fields such as sine flows with a variety of wave
numbers or turbulent flows. Secondly, simulations in three dimensions important. The
distinction between mixing efficiencies for the finite-size square sources and a delta function
source is predicted to be much more apparent in 3D. The extension of the particle method
to 3D is straightforward although simulations will require much more computation power
(more particles and more bins will be necessary). Thirdly, the mixing efficiency on large
length scales, E−1, can be calculated in principle even though only E0 was calculated in this
project. Fourthly, we would like to see the results of the small-scale sources reported here
reproduced by another numerical scheme. Then the results presented in this report can
serves as a benchmark test for new codes.

240

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000

E
0

Pe

Figure 18: Upper bounds (solid lines) and simulation data (points). The different colors
represent the different source sizes.

6 Acknowledgements

The author is grateful for the wonderful summer. I learned much by studying with the
intelligent fellow Fellows. The principal lecture by Dr. Worster was full of intellectual
excitement even though I knew nothing about the theory of sea ice before. The author
sincerely appreciates my advisor, Dr. Doering. He taught me the mixing efficiency problem
from scratch, and when I was having difficulties with the code, he helped me by suggesting
possible solutions. I could not have accomplished the project without his patient guidance
and encouragement. It has been one of my greatest honors to complete research under the
supervision of Dr. Doering.

References

[1] J. -L. Thiffeault, C. R. Doering, and J. D. Gibbon, J. Fluid Mech. 521 (2004), 105-114.

[2] S. Plasting and W. R. Young, J. Fluid Mech. 552 (2006), 289-298.

[3] Charles R. Doering and Jean-Luc Thiffeault, Phys. Rev. E Vol. 74, 025301(R) (2006).

[4] T. A. Shaw, J. -L. Thiffeault and C. R. Doering, Stirring up trouble, Physica D (sub-
mitted, 2006).

241

[5] T. A. Shaw, Bounds on Multiscale Mixing Efficiencies. Proc. 2005 Summer Program in

Geophysical Fluid Dynamics. Woods Hole Oceanographic Institution, Woods Hole, MA,
USA. http://gfd.whoi.edu/proceedings/2005/PDFvol2005.html.

242

Appendices
In these appendices we explain the detail of the code, including the actual imple-

mentation.

A Calculation of Variance

The domain is divided into l*l bins (i.e. bin size is deltal=L/l) in order to calculate
instantaneous variances. Given positions of all the particles, (p[n].x and p[n].y

(n=1, 2, · · · , N_all), the number of particles in each bin (bin[c], c=1,2, · · · , l*l)
is counted as follows.

for(n=1; n<=N_all; n++){

u=(int)(p[n].x/deltal);

v=(int)(p[n].y/deltal);

bin[v*l+u+1]=bin[v*l+u+1]+1;

}

u and v are horizontal and vertical positions of a bin. Bins are labeled from bottom
left to top right, and if a bin is located at (u, v), the label is v*l+u+1. Variance
calculation follows.

nbar=(double)N_all/(double)(l*l);

a=0;

for(c=1;c<=l*l;c++)

{

a=a+(bin[c]-nbar)*(bin[c]-nbar)/((double)l*(double)l);

}

var=a-nbar;

In the last line, background fluctuation is removed.

B Miscellaneous components on time evolution

B.1 Periodic boundary condition

for(n=1; n<=N_all; n++) {

while(p[n].x>L){p[n].x=p[n].x-L;}

while(p[n].x<0.0){p[n].x=p[n].x+L;}

while(p[n].y>L){p[n].y=p[n].y-L;}

while(p[n].y<0.0){p[n].y=p[n].y+L;}

243

B.2 Source term

Source term is realized by adding a new particle one by one in accordance with S(x).
In the case of a square source, a new particle is generated every ∆n/∆t, using a
probability distribution function

p(x, y) =

{

1
a2 x ∈

[

−a
2

+ L
2
, a

2
+ L

2

]2

0 otherwise
(39)

The corresponding code is

void source(double a, double *xo, double *yo){

double x1,x2;

x1=a*(double)rand()/(double)RAND_MAX+0.5-0.5*a;

x2=a*(double)rand()/(double)RAND_MAX+0.5-0.5*a;

*xo=x1;

*yo=x2;

}

A monochromatic source is a little bit difficult. We need to generate a pair of random
numbers which follow

p(x, y) = 1 + sin

(

2π

L
(x + y)

)

x ∈ [0, L]2 (40)

Because this probability distribution function is tilted, let us consider it in the new

coordinates (ξ, η) =
(

1√
2
(x + y), 1√

2
(−x + y)

)

. Then, the probability distribution

funciton becomes

p(ξ) =
1√
2

(

1 + sin(
2π

L

√
2ξ)

)

ξ ∈ [0,
√

2], η ∈ [0,
√

2]. (41)

η is given by uniform random numbers, and ξ is given by mapping uniform random
numbers by the inverse of the cumulative distribution function of (41):

ξ√
2

+
L

4π
− L

4π
cos

(

4π√
2L

ξ

)

(42)

The subroutine inv maps a uniform random number y with the function above by
using bisection method up to the accuracy of 0.01*deltal. Then source subroutine
rotates the frame by π

4
and imposes periodic boundary conditions.

void source(double deltal, double *xo, double *yo){

double x1,x2,y,z1,z2;

y=(double)rand()/(double)RAND_MAX;

x1=inv(y,deltal);

x2=sqrt(2.0)*(double)rand()/(double)RAND_MAX;

244

z1=(x1-x2)/sqrt(2.0)+0.5;

z2=(x1+x2)/sqrt(2.0)-0.5;

while(z1>1.0){z1=z1-1.0;}

while(z1<0.0){z1=z1+1.0;}

while(z2>1.0){z2=z2-1.0;}

while(z2<0.0){z2=z2+1.0;}

*xo=z1;

*yo=z2;

}

double inv(double y, double deltal)

{

double small, mid, large;

int i;

small=0.0;

large=sqrt(2.0);

while(large-small>0.01*deltal)

{

mid=0.5*(large+small);

if(func(large,y)*func(mid,y)<0.0){small=mid;}

else{large=mid;}

}

return(mid);

}

double func(double x,double y)

{

double z;

z=-y+x/sqrt(2.0)+1.0/(4.0*pi)-cos(4.0*pi*x/sqrt(2.0))/(4.0*pi);

return(z);

}

B.3 distorted Gaussian profile: (noise) subroutine

The following code is just the noise parts of (19) and (20). Normal Gaussian noises
(y1, y2) are generated by using Box-Muller method.

void noise(double kappa, double S, double dt, double *rand1, double

*rand2) {

double x1,x2,y1,y2, a,b,c;

x1=((double)rand()+0.01)/((double)RAND_MAX+0.01);

x2=((double)rand()+0.01)/((double)RAND_MAX+0.01);

245

y1=sqrt(-2.0*log(x1))*cos(2.0*pi*x2);

y2=sqrt(-2.0*log(x1))*sin(2.0*pi*x2);

a=S*sqrt(0.5*kappa)*dt*sqrt(dt);

b=sqrt(kappa*S*S*dt*dt*dt/6.0+2.0*kappa*dt);

c=sqrt(2.0*kappa*dt);

*rand1=a*y1+b*y2;

*rand2=c*y1;

}

B.4 Subtraction scheme

It is easy to implement subtraction scheme. Subtraction of Nold older particles is done
by re-labeling particles.(Nold + i)th particle becomes ith particle, and the number of
all the particles gets smaller by Nold. In this code, Nold = ∆n.

if(j>=cutoff){

N_all=N_all-deltan;

for(n=1;n<=N_all;n++){

p[n].x=p[n+deltan].x;

p[n].y=p[n+deltan].y;

}

}

C Time evolution

The following code is time evolution from the beginning of the period to variance
calculation.

phi=2.0*pi*rand()/(double)RAND_MAX;

randt=(double)rand()/(double)RAND_MAX;

for(c=1;c<=l*l;c++)

{

bin[c]=0;

}

a=0.0;

t_obs=deltat*randt;

N_obs=(int)(deltan*randt);

for(n=1;n<=N_all;n++)

{

noise(kappa, -w*2.0*pi*cos(2.0*pi*p[n].y/L+phi)/L, t_obs, &rand1,

&rand2);

p[n].x=p[n].x-t_obs*w*sin(2.0*pi*p[n].y/L+phi)+rand1;

p[n].y=p[n].y+rand2;

while(p[n].x>L){p[n].x=p[n].x-L;}

246

while(p[n].x<0.0){p[n].x=p[n].x+L;}

while(p[n].y>L){p[n].y=p[n].y-L;}

while(p[n].y<0.0){p[n].y=p[n].y+L;}

u=(int)(p[n].x/deltal);

v=(int)(p[n].y/deltal);

bin[v*l+u+1]=bin[v*l+u+1]+1;

}

for(n=1;n<=N_obs;n++)

{

dt=t_obs-deltat*(double)n/(double)deltan;

source(deltal, &xo, &yo);

noise(kappa, -w*2.0*pi*cos(2.0*pi*yo/L+phi)/L, dt, &rand1, &rand2);

p[n+N_all].x=xo-dt*w*sin(2.0*pi*yo/L+phi)+rand1;

p[n+N_all].y=yo+rand2;

while(p[n+N_all].x>L){p[n+N_all].x=p[n+N_all].x-L;}

while(p[n+N_all].x<0.0){p[n+N_all].x=p[n+N_all].x+L;}

while(p[n+N_all].y>L){p[n+N_all].y=p[n+N_all].y-L;}

while(p[n+N_all].y<0.0){p[n+N_all].y=p[n+N_all].y+L;}

u=(int)(p[n+N_all].x/deltal);

v=(int)(p[n+N_all].y/deltal);

bin[v*l+u+1]=bin[v*l+u+1]+1;

}

N_all=N_all+N_obs;

nbar=(double)N_all/(double)(l*l);

First, random phase (phi), the time to calculate variance (t_obs) and the number
of particles added into the domain from the beginning of the period to the variance
calculation (N_obs) are calculated. In the first for-loop, the particles which already
existed at the beginning of the period are evolved based on (19) and (20), bound-
ary conditions are imposed and (coarse-grained) concentration field is recovered by
binning. In the following for-loop, new particles from a source term are added with
source subroutine. dt is a time from particle creation to the variance calculation,
which is different from particle to particle. Those new particles are evolved in the
same way as existing particles. The time evolution after the variance calculation is
implemented in the same way. The time evolution of the second half of the period is
similar except that the random sine flow is vertical.

247

