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1 Introduction

Shelf breaks are a ubiquitous and dynamically important feature in the topography of the
coastal oceans. A region of particular interest is the southeastern coast of Africa, where the
Agulhas current flows southwest at speeds of up to 1 ms−1 over a shelf break [2]. This has
motivated a series of dynamical investigations. Gill and Schumann [6] studied the influence
of topography on a coastal jet with specific application to the Agulhas current, whilst Mysak
and others have considered the phenomenon of coastally-trapped waves [19, 20, 21].

Where there is a very sharp drop from the coastal shelf to the ocean floor, the topography
may be approximated by a discontinuity in depth, an approach that is appealing due to
its analytical simplicity. This approach was first used to study coastally-trapped waves by
Longuet-Higgins [17], and was subsequently applied to coastal currents by Johnson [10, 13].

The present work concerns a model for nonlinear Rossby shelf waves propagating along
a discontinuity in depth that was first developed by Haynes et al [7], who derived a fully
nonlinear wave equation that is valid in the limit of infinitely long waves. This model, which
will be discussed further in Section 3, was subsequently extended to include higher-order
dispersive terms [3, 11]. In the weakly nonlinear limit, the model reduces to a Korteweg-de
Vries (KdV)-type equation [4], which will be discussed in Section 4. These models, and the
broader subject of Rossby wave hydraulics, were reviewed by Johnson & Clarke [12].

The theory of nonlinear Rossby shelf waves hinges upon the assumption of columnar
motion in the fluid, even when it crosses the step, which has motivated several studies
[9, 14, 15] of the interaction of vortices with step topography. In a recent experiment [8],
dipoles fired over a step were shown largely to maintain their columnar structure, albeit
with some additional diffusion of vorticity. This suggests that fluid columns in a shallow
rotating flow will be preserved across a discontinuity in depth.

The goal of this project is to generate nonlinear Rossby shelf waves experimentally and
compare their properties with theoretical predictions. Whilst the previous theory is based
on an infinitely long straight channel, we have constructed our experiment in an annulus,
and we will show that analogous theoretical results hold in this geometry. We will first
introduce the set-up of the laboratory experiment and reformulate the finite-amplitude and
weakly nonlinear wave equations for the annular domain. We will then discuss the inclusion
of bottom friction in the model and its effect on the waves, and analyse some instabilities
that were found to arise in the course of the experiment. Finally, we will present some
experimental results for breaking lee waves and compare them with numerical simulations
based on the finite-amplitude wave equation.
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2 Experimental Set-Up

The theoretical analysis presented in this report has been motivated by the laboratory
experiment that served as the focus of this project. In this section we will only provide an
overview of the experiment, postponing a discussion of the results to Sections 6 and 7.

The experiment was designed to replicate the theoretical investigations of [7], who stud-
ied the behaviour of waves propagating about a discontinuity in depth in a straight channel
with a rigid lid in a rotating frame. The most practical way to achieve this in the laboratory
was to create an annular channel in a cylindrical tank on a rotating table. A shelf of width
10.5 cm and height 5.0 cm was built around the outer edge of the tank, which measured
approximately 2.13 m in diameter, to create a discontinuity in depth, and a weighted sheet
of flexible plastic was used to create the inner wall of the annulus. A photograph of this
apparatus is shown in Figure 1.

Figure 1: A photograph of the experimental set-up.

To perform the experiments, we filled the tank with water to a prescribed depth, typically
10 – 25 cm above the base of the tank, and then accelerated it to a constant angular velocity.
We then left the tank to rotate until the fluid inside had reached a stationary state in the
rotating frame of reference. We perturbed the fluid from this state either by the moving a
deformable wall attached to the edge of the tank, or by creating a bump in the outer wall
and rapidly changing the rate of rotation of the tank. To visualise the flow, we dispensed a
line of dye into the fluid directly above the shelf line (along the potential vorticity interface)
and recorded the results with a digital camera that positioned directly above the centre of
the tank and made to rotate at the same speed as the tank.
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This experiment does not perfectly replicate the theoretical conditions of [7], most ob-
viously because the channel is curved rather than straight. We have therefore modified
and extended the previous theory accordingly, and this will be covered in the following
sections. Note also that the inner wall is not sealed against the bottom of the tank, thereby
permitting a small flux of fluid between the outer annulus and the central part of the tank,
and that the fluid has a free surface that deforms under the influence of the centrifugal
force, rather than a rigid lid. However, both of these effects were found to make negligible
contributions to the behaviour of the fluid.

Another theoretical inconsistency arises from the fact that the ratio of the depth of the
fluid to the width of the channel is typically close to 1, casting doubt upon the validity of
the shallow water theory. In practice the rate of rotation of the tank was sufficiently high
as to ensure approximately columnar motion anyway, so the shallow water theory may be
expected to hold quite well. In fact, the most important deviation from the theory was the
absolute discontinuity in the depth at the shelf line, which in theory is an approximation
of a steep slope. In later experiments a slope of width 2.5 cm was added to the end of the
shelf, substantially altering the behaviour of the experiment.

3 Topographic Rossby Waves in a Rotating Annulus

We shall now reformulate the theory of [3] for application to the annular domain of the
laboratory experiment. The fluid lies in the region Rw(θ) ≤ r ≤ Rc(θ), 0 ≤ θ ≤ 2π,
h(r) ≤ z ≤ H, where h is the height of the bottom topography,

h =

{

0, Rw < r < Rh

Hs, Rh < r < Rc
, (1)

and r = Rh(θ) is the equation of the shelf line. Here we have applied the rigid lid approx-
imation, assuming that perturbations to the upper surface of the fluid are much smaller
than the average depth H. A diagram of this set-up is presented in Figure 2.

We assume that the flow is sufficiently shallow (H ≪ Rc − Rw), and has sufficiently
small topography (Hs ≪ H), that it is governed approximately by the shallow water quasi-
geostrophic equation for fluid under a rigid lid,

Dq

Dt
= 0, q = ∇2Ψ +

fh

H
, (2)

where f is the Coriolis parameter and q is the quasigeostrophic potential vorticity. Here
Ψ = ps/fρ is the quasigeostrophic streamfunction, where ps is the pressure at the rigid lid
and ρ is the density of the fluid. With this definition, Ψ satisfies

u = −1

r

∂Ψ

∂θ
, v =

∂Ψ

∂r
, (3)

and the velocity field is u = uer + veθ, such that ω = (∇× u) · ẑ = ∇2Ψ.
We prescribe a mean flow um = −∇×ψm(r, θ)ẑ in the channel, modelling the presence of

an along-shore current in the real ocean. We require that the flow should be unidirectional,
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Figure 2: Top-down (left) and side-on (right) views of the physical set-up for the model.

that the walls r = Rw and r = Rc should be streamlines, and that the volume flux should
be constant around the annulus,

∂

∂θ

∫ Rc(θ)

Rw(θ)
vmdr = 0. (4)

Here we neglect the contribution to the volume from the variation of the bottom topography
in order to be consistent with the quasigeostrophic approximation. We also require that
the vorticity of the mean flow should be materially conserved. These requirements may
be met in a radially symmetric annulus, but when Rw and Rc vary with θ we must allow
for bidirectional flow to find a steady solution. We must therefore prescribe a mean flow
streamfunction that approximately satisfies these conditions,

ψm = 1
2Ωm

(

Rc
2 −Rw

2
)

(

r2 −R2
w

)

R2
c −R2

w

, (5)

where an overbar denotes the value of a function at some fixed θ = θm. This mean flow
satisfies all requirements except that its vorticity should be materially conserved, which is
only approximately satisfied under the assumption that the walls of the annulus vary very
slowly with θ,

∣

∣

∣

∣

∂Rw

∂θ

∣

∣

∣

∣

,

∣

∣

∣

∣

∂Rc

∂θ

∣

∣

∣

∣

≪ 1 =⇒ Dω

Dt
≈ 0. (6)

In the case that Rw and Rc do not vary with θ, (5) reduces to a flow of constant angular
velocity and exactly satisfies the above requirements.

It is now convenient to write the overall streamfunction as

Ψ = ψm + ψ(r, θ, t), (7)
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where the first term corresponds to the mean flow and the second to any deviation. On
applying (6), the potential vorticity equation (2) then becomes

Dq′

Dt
≈ 0, q′ = ∇2ψ +

fh

H
, (8)

Suppose that the fluid is perturbed from a basic state in which the only motion is that of
the mean flow, such that ∇2ψ = 0 and

q′ =

{

0, Rw < r < Rh

Q, Rh < r < Rc
. (9)

We denote the position of the interface between these regions of differing potential vorticity
as r = R(θ, t), assuming that this interface remains single-valued in θ. If in some region
R > Rh then, by conservation of potential vorticity, we have

q′ = ∇2ψ + 0 = 0 =⇒ ∇2ψ = 0 in Rw < r < Rh,

q′ = ∇2ψ +Q = 0 =⇒ ∇2ψ = −Q in Rh < r < R,

q′ = ∇2ψ +Q = Q =⇒ ∇2ψ = 0 in R < r < Rc,

and if R < Rh then

q′ = ∇2ψ + 0 = 0 =⇒ ∇2ψ = 0 in Rw < r < R,

q′ = ∇2ψ + 0 = Q =⇒ ∇2ψ = Q in R < r < Rh,

q′ = ∇2ψ +Q = Q =⇒ ∇2ψ = 0 in Rh < r < Rc,

which may be expressed succinctly as the following Poisson equation for the streamfunction,

∇2ψ = Q (H(r −R) −H(r −Rh)) , (10)

where H denotes the Heaviside step function. We also require that the streamfunction
vanishes on the boundaries of the annulus,

ψ = 0 on r = Rw and r = Rc. (11)

Finally, we require that particles on the interface r = R remain on the interface, i.e.
D/Dt(r −R) = 0, which leads to the following condition,

∂R

∂t
= − 1

R

∂

∂θ
Ψ(R(θ, t), θ, t). (12)

We now define a length scale L = Rc − Rw and nondimensionalise r = Lr̂, t = Q−1t̂
and ψ = QL2ψ̂, where a hat ˆ denotes a dimensionless variable. This yields the following
system of dimensionless equations,

∂2ψ̂

∂r̂2
+

1

r̂

∂ψ̂

∂r̂
+

1

r̂2
∂2ψ̂

∂θ2
= H

(

r̂ − R̂
)

−H
(

r̂ −RH

)

, (13a)

ψ̂ = 0 on r̂ = RI and r̂ = RO, (13b)

∂R̂

∂t̂
= − 1

R̂

∂

∂θ
Ψ̂

(

R̂
(

θ, t̂
)

, θ, t̂
)

, (13c)

377



where RH = Rh/L, RI = Rw/L and RO = Rc/L are the dimensionless radii of the annulus.
We will henceforth drop the hat notation for dimensionless variables. We seek long wave
solutions by prescribing that the width of the channel should be small compared to the
circumference of the shelf line and assuming that the solution varies slowly with θ and t,

θ = µ−1/2φ, t = µ−1/2τ , (14)

where µ = (L/2πRh)2 ≪ 1. Equations (13a)–(13c) then take the form,

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+
µ

r2
∂2ψ

∂φ2
= H(r −R) −H(r −RH), (15a)

ψ = 0 on r = RI and r = RO, (15b)

∂R

∂τ
= − 1

R

∂

∂φ
Ψ(R(φ, τ), φ, τ). (15c)

We now expand ψ asymptotically in the small parameter µ,

ψ = ψ(0) + µψ(1) + µ2ψ(2) + . . . . (16)

Substituting this in to (15a) we find that the leading order equation is

∂2ψ(0)

∂r2
+

1

r

∂ψ(0)

∂r
= H(r −R) −H(r −RH), (17)

which may be solved subject to the boundary conditions (15b) to give

ψ(0) = 1
4

(

r2 −R2
)

H(r −R) − 1
4

(

r2 −R2
H

)

H(r −RH)

+ 1
2R

2
HH(r −RH) ln(r/RH) − 1

2R
2H(r −R) ln(r/R)

+
ln(r/RI)

ln(RO/RI)

[

1
2R

2 ln(RO/R) − 1
2R

2
H ln(RO/RH) + 1

4

(

R2 −R2
H

)]

. (18)

We may substitute this leading-order streamfunction in to (15c), but we then obtain a non-
dispersive evolution equation for R. This may be remedied by continuing the expansion of
(15a) to O (µ),

∂2ψ(1)

∂r2
+

1

r

∂ψ(1)

∂r
+

1

r2
∂2ψ(0)

∂φ2
= 0, (19)

which we solve to find the following expression for ψ(1),

ψ(1) =1
6

∂

∂φ

{

RRφ ln3(r/R)H(r −R) −RHRHφ ln3(r/RH)H(r −RH)
}

+
ln(r/RI)

ln(RO/RI)

{

1
6 (RHRHφ)φ ln3(RO/RH) − 1

2R
2
Hφ ln2(RO/RH)

− 1
6 (RRφ)φ ln3(RO/R) + 1

2R
2
φ ln2(RO/R)

}

+ ln(RO/r) ln(r/RI)

{

1
6 ln(ROr/R

2
I)
∂2

∂φ2
− RIφ

RI

∂

∂φ
+
R2

Iφ −RIRIφφ

2R2
I

}

G, (20)

378



where

G(φ, τ) =
1
2R

2 ln(RO/R) − 1
2R

2
H ln(RO/RH) + 1

4(R2 −R2
H)

ln(RO/RI)
. (21)

Substituting (18) and (20) into (15c) yields the following evolution equation for finite-
amplitude waves on the interface,

∂R

∂τ
= − 1

R

∂

∂φ







1
2αm

(

RO
2 −RI

2
)

(

R2 −R2
I

)

R2
O −R2

I

+ H(R−RH)
[

1
2R

2
H ln(R/RH) + 1

4(R2
H −R2)

]

+ ln(R/RI)G

+ µ

{

H(R−RH)
[

1
2R

2
Hφ ln2(R/RH) − 1

6 (RHRHφ)φ ln3(R/RH)
]

+
ln(R/RI)

ln(RO/RI)

[

1
6 (RHRHφ)φ ln3(RO/RH) − 1

2R
2
Hφ ln2(RO/RH)

− 1
6 (RRφ)φ ln3(RO/R) + 1

2R
2
φ ln2(RO/R)

]

+ ln(RO/R) ln(R/RI)

[

1
6 ln(ROR/R

2
I)
∂2

∂φ2
− RIφ

RI

∂

∂φ
+
R2

Iφ −RIRIφφ

2R2
I

]

G

}







,

(22)

where αm = Ωm/Q. We may obtain higher-order approximations to the streamfunction,
and thereby to the evolution equation (22), by solving further equations with the same form
as (19), but the expressions involved quickly become unmanagable.

It is important to note that whilst we can account for azimuthally varying Rw, Rh

and Rc, we are unable to apply this theory in the limits as (a) Rw → 0 or (b) Rc → ∞
uniformly. We can still apply a long-wave scaling in these cases by redefining L = Rc −Rh

or L = Rh − Rw respectively. In case (a) the asymptotic expansion breaks down when
r = O

(

µ1/2
)

because the derivative with respect to φ in (15a) is then O (1). In case (b) we
require that |u| → 0 as r → ∞ so that the total energy remains finite, but this condition
permits an infinite family of functions ψ(0) that satisfy the leading order Poisson equation
(17), and so we require a stronger condition on ψ as r → ∞ in order to determine ψ uniquely.
We are therefore restricted to cases where RI is O (1) and RO is finite.

4 Weakly Nonlinear Waves

The evolution equation (22) descibes the fully nonlinear behaviour of our system, but it
is somewhat too complicated to analyse directly. We therefore first examine the dynamics
of weakly nonlinear waves by assuming that the wave amplitude is O (µ) and that the
variations in RI , RH and RO are O

(

µ2
)

. These scalings are chosen such that nonlinear
and dispersive terms are of the same order, and such that only the leading-order effects of
a radially asymmetric annulus are included. We set R = RH + µÂ, RI = RI + µ2ŵ(φ),
RH = RH + µ2ĥ(φ) and RO = RO + µ2ĉ(φ) in (22), and retain terms up to O

(

µ2
)

. Note
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that the contributions from ψ(2) and higher-order terms will be at least O
(

µ3
)

due to the
φ derivative on the right hand side of (22). We obtain the following weakly nonlinear wave
equation,

Âτ + (α+ αm)Âφ + µβÂφφφ − µ

2RH

(

sign
(

Â
)

+ γ
)

ÂÂφ = −µαĥφ + µαm (δcĉφ + δwŵφ) ,

(23)
where

α =
ln

(

RH/RI

)

ln
(

RO/RH

)

ln
(

RO/RI

) , β =
ln2

(

RH/RI

)

ln2
(

RO/RH

)

3 ln
(

RO/RI

) , γ = 3
ln

(

RH
2
/RORI

)

ln
(

RO/RI

) ,

δc =
RO

(

RH
2 −RI

2
)

RH

(

RO
2 −RI

2
) , δw =

RI

(

RO
2 −RH

2
)

RH

(

RO
2 −RI

2
) . (24)

The terms on the left hand side of (23) resemble those of the KdV equation, whilst those on
the right are all contributions from variations of the annulus’ walls and shelf line. The most
significant contribution comes from variations of the shelf line ĥφ, whilst variation of the
walls, ĉφ and ŵφ, only makes a contribution in the case that there is a mean flow (αm 6= 0).

For convenience, we rewrite (23) in terms of unscaled dimensionless variables by reversing
the transformation (14) and setting A = µÂ, h = µ2ĥ, c = µ2ĉ and w = µ2ŵ. This yields
the following alternative form of the weakly nonlinear wave equation,

At + (α+ αm)Aθ + βAθθθ −
1

2RH

(sign(A) + γ)AAθ = −αhθ + αm (δccθ + δwwθ) . (25)

The difference between (25) and KdV lies in the coefficient of the nonlinear term (AAφ),
which may be positive or negative depending on the sign of A and the positions of the
channel walls and shelf line. It is exactly zero if

A > 0 and RH =
(

RI
2
RO

)1/3
= RH1, or A < 0 and RH =

(

RIRO
2
)1/3

= RH2. (26)

If we let RI → ∞ then RH1 → (2RI +RO)/3 and RH2 → (RI + 2RO)/3, which are exactly
the conditions found for the analogous straight-channel case in [3]. These values ofRH define
different regimes for the coefficient of the nonlinear term, and therefore for the direction
in which nonlinear steepening occurs. Specifically, the direction of nonlinear steepening is
always opposite to the direction of propagation, except in the cases RH < RH1 and A > 0
or RH > RH2 and A < 0, when the waves steepen towards the direction of propagation.

4.1 Cnoidal Waves

When A is single-signed and the annulus is radially symmetric (RO ≡ RO, RH ≡ RH ,
RI ≡ RI), equation (25) reduces to the KdV equation, which is known [25] to possess cnoidal
wave solutions. We shall restrict our attention to the case A ≤ 0, with the understanding
that the A ≥ 0 case has analogous results. Equation (25) then becomes

At + αAθ + βAθθθ + γ1AAθ = 0, γ1 =
ln(R2

ORI/R
3
H)

RH ln(RO/RI)
. (27)
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We seek travelling wave solutions of the form A(θ, t) = F (ξ), where ξ = θ − (α+ ∆)t, and
then apply the transformation F (ξ) = 6B(ξ)/γ1, ξ =

√
βζ, to obtain the standard form of

the KdV equation
−∆Bζ + 6BBζ +Bζζζ = 0. (28)

This equation has well-documented [25] ‘cnoidal’ wave solutions of the form,

B = 2p2κ2cn2(p(ζ + ζ0);κ) +B0, ∆ = 8p2κ2 − 4p2 + γ1A0, (29)

where 0 ≤ κ ≤ 1 is the modulus of the Jacobi elliptic cn function [1] and ζ0, p and B0 are
constants. Thus, the cnoidal wave solutions to (27) are

A(θ, t) = Am cn2

{

1

2κ

√

Amγ1

3β
(θ − (α+ ∆)t+ θ0) ;κ

}

+A0, (30)

with

∆ = γ1

(

A0 +

(

2 − 1

κ2

)

Am

3

)

, (31)

where A0 is the reference amplitude and Am is the maximum displacement from A0. The
argument of the cn function must be real for A to be bounded, so we must have Amγ1 ≥ 0
because β > 0 always. The sign of Am is therefore determined by the position of the shelf
line relative to the inner and outer walls of the annulus. Specifically, if RH ≥ RH2 then
γ1 ≤ 0 and so Am ≤ 0. Thus A ≤ 0 as long as A0 ≤ 0. If RH ≤ RH2 then γ1 ≥ 0 and so
Am ≥ 0. Thus A ≤ 0 as long as A0 ≤ −Am.

A further restriction is imposed by the periodicity of the annular domain. The angular
wave length of the cnoidal waves is

λθ = 4κK(κ)

√

3β

Amγ1
, (32)

where K is the complete elliptic integral of the first kind [1]. We require that λθ = 2π/n
for any positive integer n, which yields the following expression for the wave amplitude,

Am =
12βn2κ2K2(κ)

π2γ1
. (33)

Thus, for a given mode n, the amplitude of the wave Am determines the modulus κ, and
thereby the shape of the wave. Note also that because the amplitude is limited by the width
of the channel, and because κK(κ) is a strictly increasing function of κ, higher-frequency
modes must have smaller moduli κ, and so will be more similar to cosine waves. Meanwhile
lower-frequency modes can have larger moduli and so are closer to the soliton solution
(κ = 1). The complete range of solutions may be written as

A(θ, t) =
12βn2κ2K2(κ)

π2γ1
cn2

{

nK(κ)

π
(θ − (α+ ∆)t+ θ0) ;κ

}

+A0. (34)

Whilst these solutions describe only a small subset of the possible travelling wave solutions
of (27), we may expect to see the same broad characteristics in all such solutions. That is,
that the longest waves should exhibit the most nonlinear behaviour, whilst shorter waves
should be well-approximated by linear theory.
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4.2 Phase Plane Analysis

We will now expand our analysis of the weakly nonlinear wave equation to include travelling
wave solutions that are not single-signed. Following the method used in Section 4.1, we seek
travelling wave solutions of the form A(θ, t) = F (ξ), ξ = θ − (α + ∆)t, which leads to the
following travelling wave equation,

−∆Aξ + βAξξξ −
1

2RH
(sign(A) + γ)AAξ = 0. (35)

Integrating with respect to ξ yields

−∆A+ βAξξ −
1

4RH
(sign(A) + γ)A2 = −∆A0 −

1

4RH
(sign(A0) + γ)A2

0, (36)

where A0 is a reference amplitude at which Aξξ = 0. Multiplying through by Aξ allows us
to integrate again to obtain

1
2βA

2
ξ + V (A) = E, (37)

where E is a constant and V is given by

V (A) = A

[

∆
(

A0 − 1
2A

)

+
γ

4RH

(

A2
0 − 1

3A
2
)

+
1

4RH

(

|A0|A0 − 1
3 |A|A

)

]

(38)

The critical points of (37) are defined as solutions of the equation V ′(Ac) = 0, and their
nature is determined by V ′′(Ac): if V ′′(Ac) > 0 then the critical point is a centre, and if
V ′′(Ac) < 0 then the critical point is a saddle.

A

A
ξ

−0.6 −0.4 −0.2 0 0.2

−3

−2

−1

0

1

2

3

A

A
ξ

−0.5 0 0.5
−3

−2

−1

0

1

2

3

Figure 3: Phase plane for weakly nonlinear waves in the range RI ≤ A + RH ≤ RO

when Rc = 1.065 m, Rh = 0.960 m, and (a) Rw = 0.665 m, ∆ = −0.01, A0 = −0.35, (b)
Rw = 0.8654 m, ∆ = −0.02, A0 = 0. The thicker lines highlight the orbits of the critical
points.

We determine the forms of the solutions by analysing the phase plane in A and Aξ, where
each contour corresponds to a different travelling wave solution. We are restricted to those
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solutions whose amplitudes lie within the boundaries of the annulus, i.e. RI ≤ RH+A ≤ RO.
In order to fit in the annular domain, solutions must also be periodic with a period that
exactly divides 2π, so only closed orbits correspond to viable solutions. The reference
amplitude A = A0 is always a critical point, and is always a centre as long as

∆ +
1

2RH
(γ + sign(A0))A0 < 0. (39)

If this point is not a centre then the phase plane has no closed orbits, so this serves as a
sufficient condition for there to be physical solutions.

Additionally, because we assumed in our derivation that the solution has been perturbed
from a basic state in which R = RH , we must ensure that mass has been in conserved in
the transition to this steady solution,

∫ 2π

0

∫ R

RH

r drdθ = 0. (40)

Thus, only a small subset of the curves in the phase plane are permissible as travelling
wave solutions in the annulus. This excludes the possibility of the soliton solutions, which
correspond to the homoclinic orbit of the critical point in Figure 3(a). In Figure 3(b) we
present the case where Rh =

√
RcRw, such that γ = 0 and the nonlinear term in (35) is

symmetric about A = 0. In this case there is a heteroclinic orbit between the saddle critical
points that corresponds to the ‘kink’ solitons studied in [3], but again the periodicity of the
domain means that such solutions are not permissible.

5 Frictional Effects

The theory of Ekman layers [22, 23, 24] suggests that the fluid in the annulus will return
to solid-body rotation due to frictional effects at the base of the layer of fluid. It may
be shown [18] that the leading-order effects of bottom friction can be incorporated in the
rotating shallow water equations as follows,

∂u

∂t
+ (u · ∇)u + ∇π + f ẑ × u +

k̃

η
u = 0, (41a)

∇ · (ηu) = 0, (41b)

where u = (u, v) is the vertically-averaged horizontal fluid velocity, η = H − h is the
vertical thickness of the fluid layer and π is the fluid pressure at the rigid lid. The dis-
sipation constant k̃ is typically inversely proportional to the Ekman spin-down time [23],
k̃/H ∝ 1/τ

E
=

√

fν/H2 =⇒ k̃ ∝
√
fν, where τ

E
is the Ekman spin-down time. The

constant ν is the kinematic viscosity of the fluid in the experiment or the vertical eddy
viscosity in the ocean. We will now consider the influence of friction on the system studied
in Sections 3 and 4.

We first apply quasigeostrophic scaling [22, 23, 24] to (41a) and (41b). We assume that
the Rossby number is very small, Ro = U/fL ≪ 1, where U is a velocity scale for the
flow and L = Rc − Rw as before, and that h/H and k̃/Hf are O (Ro). Expanding u and

383



π asymptotically in Ro then yields geostrophic balance at leading order, with contribu-
tions from friction, bottom topography and advection included at first order in a modified
quasigeostrophic potential vorticity equation,

D

Dt

(

ω +Qĥ
)

= −kω, (42)

where k = k̃/H, and ĥ = h/Hs is the dimensionless height of the bottom topography.

5.1 Vorticity Evolution of Fluid Columns

As in Section 3, we seek to determine the vorticity distribution and thereby formulate a
nonlinear wave equation for the interface r = R(θ, t). Let us consider the vorticity ωp(t)
of an infinitesimal fluid column that lies in the region Rw < r < Rh at t = 0, such that
ωp(0) = qp(0) = 0. Equation (42) allows us to write down an evolution equation for ωp,

dωp

dt
+ kωp +Q

dĥp

dt
= 0, (43)

where Q = fHs/H as before and ĥp(t) is the dimensionless height of the topography
directly below the fluid column at time t. If the fluid column crosses the shelf line at times
t = t1, t2, . . . , tN , then we may write ĥp explicitly as

ĥp =

{

0, ti < t < ti+1 i = 0, 2, 4, . . . ,
1, ti < t < ti+1 i = 1, 3, 5, . . . ,

(44)

where we define t0 = 0. Thus in ti < t < ti+1 for all i, ∂ĥp/∂t = 0, and integrating equation
(43) yields

ωp = ωp|t=ti
e−k(t−ti), ti < t < ti+1. (45)

In order to determine the evolution of ωp at t = ti, i = 1, . . . , N , we integrate (43) over
[ti − δt, ti + δt] and take the limit δt→ 0,

lim
δt→0

∫ ti+δt

ti−δt

{

dωp

dt
+ kωp +Q

dĥp

dt

}

dt = lim
δt→0

[

ωp +Qĥp

]ti+δt

ti−δt
= 0, (46)

where the first equality follows from the requirement that ωp must remain finite. This
condition states that potential vorticity is exactly conserved following the fluid column at
the instant when it crosses the shelf line. Using (44) we may then write the jump condition
for the vorticity of the fluid column as

[ωp]t=ti
= (−1)iQ, (47)

where the square brackets [ ] denote the change of ωp over an infinitesimally short period
around t = ti. Combining (45) and (47) yields the complete time-evolution of ωp,

ωp =



































0, 0 ≤ t < t1,

Q

n
∑

i=1

(−1)ie−k(t−ti), tn < t < tn+1, n < N ,

Q
N

∑

i=1

(−1)ie−k(t−ti), tN < t.

(48)
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The vorticity of an infinitesimal fluid element that is initially on the shelf and that crosses
the discontinuity N times may be obtained by multiplying (48) by −1.

This analysis highlights an important difference between the frictionless and frictional
potential vorticity equations: in the frictionless case, fluid columns can only have non-zero
vorticity if they lie between the shelf line r = Rh and the interface r = R, whereas now
every fluid column that has at any point crossed the shelf line will have nonzero vorticity.
This complication means that it is no longer possible to perform a derivation similar to that
described in Section 3. However, the fact that the evolution of the vorticity of individual
fluid columns can be expressed in a simple form makes this system an appropriate candidate
for a vortex element method [16], a Lagrangian numerical method that advects individual
vortices to calculate the flow field.

5.2 Approximate Conservation Law Form

In order to include some dissipative effects in our nonlinear model, we require a conser-
vation law that approximates (42). It is not possible to rewrite this equation in an exact
conservation law form, so instead we use the following approximation,

D

Dt

(

ωekt +Qĥ
)

= 0. (49)

We shall now motivate this choice by considering the evolution of the total vorticity in the
annulus, rather than the local vorticity field.

We obtain an evolution equation for the total vorticity by integrating (42) over the
entire area of the annulus, which we denote by A,

∫∫

A

{

∂ω

∂t
+ kω + u · ∇

(

ω +Qĥ
)

}

dA = 0. (50)

In the quasigeostrophic limit ∇ · u = 0, so we may write the final term in the integrand as
∫∫

A
u · ∇

(

ω +Qĥ
)

dA =

∫∫

A
∇ ·

((

ω +Qĥ
)

u

)

dA =

∫

∂A

(

ω +Qĥ
)

u · n̂ds = 0, (51)

where ∂A denotes the horizontal boundaries of the domain, n̂ denotes a unit vector normal
to the boundary, and ds denotes an infinitesimal unit of distance along the boundary.
The second equality follows from an application of the divergence theorem, and the final
equality holds because u must be tangential to the boundaries. Applying (51) to (50) yields
the following evolution equation for the total vorticity,

∂

∂t

(

〈ω〉ekt
)

= 0, where 〈ω〉 =

∫∫

A
ω dA. (52)

Via a similar procedure, it may be shown that exactly the same evolution equation for 〈ω〉
holds in (49), which suggests that the global behaviours of (42) and (49) should be broadly
similar. However, if the interface line r = R(θ, t) has been perturbed from a state where
R = Rh and ω = 0 everywhere then this simply states that 〈ω〉 = 0 for all time, as in the
frictionless case. We can therefore make a stronger evaluation of our parametrisation by
considering the total absoulute vorticity in the annulus.
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Recall from (48) that when Q > 0, the vorticity is always positive in Rw < r < Rh

and always negative in Rh < r < Rc. We shall henceforth restrict our attention to this
case, with the understanding that analogous results hold when Q < 0. This motivates the
following integration of (42),

(
∫∫

A1

−
∫∫

A2

){

∂ω

∂t
+ kω + ∇ ·

((

ω +Qĥ
)

u

)

}

dA = 0 (53)

where we have applied ∇ · u = 0 in the final term of the integrand. We define the regions
A1 = {(r, θ) : Rw < r < Rh, 0 < θ < 2π} and A2 = {(r, θ) : Rh < r < Rc, 0 < θ < 2π}, such
that A = A1 ∪ A2. Thus ω ≥ 0 everywhere in A1 and ω ≤ 0 everywhere in A2. The first
two terms in the integrand in (53) may then be rewritten as
(

∫∫

A1

−
∫∫

A2

){

∂ω

∂t
+ kω

}

dA =

(

∂

∂t
+ k

)(
∫∫

A1

−
∫∫

A2

)

ω dA

=

(

∂

∂t
+ k

) (
∫∫

A1

+

∫∫

A2

)

|ω|dA =

(

∂

∂t
+ k

)

〈|ω|〉, (54)

where we use the shortened notation (
∫∫

A1
−

∫∫

A2
)F dA =

∫∫

A1
F dA −

∫∫

A2
F dA, and

where the angular brackets 〈 〉 denote integration over A, as in (52). The second equality
in (54) follows from the fact that ω is always positive in A1 and always negative in A2. The
final term of the integrand in (53) may be simplified using the divergence theorem,

I =

(
∫∫

A1

−
∫∫

A2

)

∇·
((

ω +Qĥ
)

u

)

dA =

(
∫

∂A1

−
∫

∂A2

)

(

ω +Qĥ
)

u · n̂ ds

=

∫

r=Rh

{(

ω1 +Qĥ1

)

u1 · n̂1 −
(

ω2 +Qĥ2

)

u2 · n̂2

}

ds. (55)

Here again ∂A1 and ∂A2 denote the boundaries of A1 and A2, n̂ denotes a unit vector
pointing normally outwards from the boundary, and ds denotes an infinitesimal distance
along the boundary. The second equality in (55) follows from the requirement that u · n̂ = 0
on r = Rw and r = Rc, so we need only integrate over the intersection of ∂A1 and ∂A2,
which is the shelf line r = Rh. The unit vectors n̂i are directed normally to the boundary
r = Rh and outwards from region Ai, so in fact n̂1 = −n̂2. Otherwise the subscripts i, where
i = 1, 2, denote that a quantity should be evaluated infinitesimally close to the boundary
in the region Ai.

Now by definition ĥ1 = 0, and ĥ2 = 1, and as we have taken the quasigeostrophic limit,
u must be continuous at r = Rh. This allows us to further simplify our expression for I to

I =

∫

r=Rh

{

ω1 + ω2 +Q
(

ĥ1 + ĥ2

)}

u · n̂ds =

∫

r=Rh

(|ω1| − |ω2|)u · n̂ds. (56)

The second equality follows from the fact that the total mass flux across r = Rh must be
zero,

∫

r=Rh
u · n̂ = 0, by conservation of mass. Thus I is the average around the shelf line

of the difference between the vorticity fluxes across the shelf line. Combining (54) and (56),
we obtain the following evolution equation for the total absolute vorticity in the annulus,

∂

∂t

(

〈|ω|〉ekt
)

+ Iekt = 0. (57)
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Applying the same integration to (49) yields exactly the same evolution equation for 〈|ω|〉.
The dependence of 〈|ω|〉 on I, and thereby on the average of the vorticity field around the
shelf line, means that the total absolute vorticity will evolve differently under (42) and (49).

Our parametrisation assumes, as before, that the fluid has been perturbed from a rest
state with r = Rh and ω = 0. All vorticity then decays exponentially at a rate k, regardless
of when the vorticity is generated by fluid crossing the shelf. As in the frictionless case,
only fluid within the envelope of the wave (between r = Rh and r = R) can have nonzero
vorticity. Thus, this equation exactly replicates the behaviour of fluid columns that are
perturbed across the shelf at t = 0 and remain there, or that do not cross the shelf at all. It
least accurately captures the behaviour of fluid columns that cross the shelf, remain there
for a period of time that is O (1/k), and then return, because these fluid columns end up
outside the envelope of the wave with non-negligible vorticity. One might expect to see such
behaviour, for example, in travelling wave solutions.

Nevertheless, we shall see in Section 7 that this parametrisation yields good agreement
with experimental results. This is because fluid columns tend to experience a loss of vor-
ticity when they cross the shelf line in the experiment, and so tend not to retain large
vorticities outside the envelope of the waves. Equation (49) is also useful because it allows
a straightforward derivation of an evolution equation for the interface r = R. Recalling
that in the quasigeostrophic limit we have ω = ∇2Ψ, as in Section 3, we let Ψf = Ψekt,
such that (49) becomes

D

Dt

(

∇2Ψf +
fh

H

)

= 0. (58)

We may then perform exactly the same analysis as was performed in Section 3, but replacing
Ψ and ψ by Ψf and ψf throughout. The equation for the evolution of the interface is then

∂R

∂t
= − 1

R

∂

∂θ
Ψ(R(θ, t), θ, t) = −e

−kt

R

∂

∂θ
Ψf (R(θ, t), θ, t). (59)

Thus, we obtain exactly the same solution for the evolution of the interface ∂R/∂t, but
multiplied by exp(−kt/Q), where t is now the dimensionless time. This means that the
solution evolves in a way that is identical to the frictionless case, but with the motion of
the interface decaying exponentially to zero.

6 Stability

The laboratory experiments with a rotating annulus have highlighed some instabilities of
the fluid under certain conditions. We now examine two specific types of instability in an
attempt to explain these results.

6.1 Stability of the Mean Flow

In Figure 4 we present snapshots of a laboratory experiment in which a mean flow is induced
by rapidly changing the rotation rate of the annulus once the fluid is in solid body rotation.
The flow becomes unstable and forms large eddies along the shelf line. It is desirable to
include a mean flow in our experiments to represent the presence of a current along the
shelf break, so it is of interest to determine the cause of this instability.
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Figure 4: Snapshots of an experiment exhibiting instability to a mean flow. Once the
fluid in the tank had achieved solid-body rotation, the rate of rotation of the tank was
rapidly reduced from f = 2.00 rad s−1 to f = 1.85 rad s−1. The fluid thus continues to move
anticlockwise around the tank, and develops large instabilities resembling Kelvin-Helmholz
rolls as it does so. These snapshots were taken 0 (top left), 45 (top right), 59 (bottom left)
and 77 (bottom right) seconds after the change in the tank’s rotation rate. The maximum
depth of the fluid is 25cm, and the radius of the inner wall is approximately 66cm.
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Consider a mean flow um = vm(r, t)êθ in a rotating annulus whose walls Rc and Rw

and shelf line Rh are independent of θ, and where um is initially a flow of constant angular
velocity α0, vm(r, 0) = α0r. We seek a radially symmetric solution of the dissipative shallow
water equations (41a), ensuring that mass and surface pressure are conserved across the shelf
line at r = Rh. The solution, which must be time-dependent due to the dissipative terms,
is

vm = α0re
−k̂t/η, πm = π0 + 1

2α0

(

r2 −R2
h

)

e−k̂t/η
(

f + α0e
−k̂t/η

)

, (60)

The fluid depth is η = H − h, where h is defined in Section 3. For t > 0 there is a
discontinuity in vm at r = Rh, and we expect that this velocity shear should be unstable to
small perturbations.

To demonstrate that this configuration is unstable we consider the simple problem of a
steady shear flow in the presence of a discontinuity in depth. We prescribe a mean flow of
the form

vm =

{

α1r, Rw < r < Rh,
α2r, Rh < r < Rc.

(61)

We might now naively seek a linear wave solution by following a method analogous to that
of [17], linearising the governing equations about the mean flow solution and requiring that
the mass flux and pressure across r = Rh should be continuous. However, this yields a
dispersion relation that has purely real modes, indicating that there is no instability in the
mean flow, and that does not reduce to the expected dispersion relation when there is no
discontinuity in depth. We must therefore approach the problem more carefully.

Figure 5: Schematic of a linear wave propagating in a small region of the annulus in the
presence of a sheared mean flow.

Let us consider the propagation of a linear wave along the line of the shelf, presented
diagrammatically in Figure 5. We split the domain into four regions, similar to the approach
taken in the derivation of the nonlinear wave equation in Section 3. In order to properly
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incorporate the influence of the shear, we must recognise that the mean flow in region 3 is
the same as that in region 1, and similarly that the mean flow in region 4 is the same as
that in region 2. The complete mean flow is then

umi = αjr êθ, πmi = π0 + 1
2αj

(

r2 −R2
)

, (62)

where j = 1 for i = 1, 3 and j = 2 for i = 2, 4, which also ensures continuity of pressure
across r = R and r = Rh. We linearise (41a) with k̂ = 0 about the mean flow solution,
setting ui = um,i + u

′

i, πi = πm,i + π′i and R = Rh + R′, where u
′

i ≪ um,i, π
′

i ≪ πm,i and
R′ ≪ L. This yields

∂u′

i

∂t
+ αj

∂u′

i

∂θ
+ (f + αj)ẑ × u

′

i + ∇π′i = 0, ∇ · u′

i = 0, (63)

which is valid everywhere except at r = Rh. However, in the linear limit, the fluid in
regions 3 and 4 becomes infinitesimally close to the shelf line r = Rh, and so there we must
apply the linearised form of the complete mass conservation equation (41b), rather than
the two-dimensional incompressibility condition. Thus (63) holds only for i = 1, 2.

In order to avoid a detailed consideration of the dynamics in regions 3 and 4, we in-
stead make use of the fact that the linearised kinematic boundary conditions and pressure
continuity condition for the interface r = Rh +R′ are imposed on the shelf line r = Rh,

∂R′

∂t
+ α1

∂R′

∂θ
= u′3,

∂R′

∂t
+ α2

∂R′

∂θ
= u′2, π′2 = π′3, on r = Rh, R′ > 0, (64a)

∂R′

∂t
+ α1

∂R′

∂θ
= u′1,

∂R′

∂t
+ α2

∂R′

∂θ
= u′4, π′1 = π′4, on r = Rh, R′ < 0. (64b)

We combine these with the jump conditions for the shelf line, which state that mass flux
and surface pressure must be continuous across the discontinuity in depth,

Hu′1 = (H −Hs)u
′

3, π′1 = π′3, on r = Rh, R′ > 0, (65a)

Hu′4 = (H −Hs)u
′

2, π′4 = π′2, on r = Rh, R′ < 0. (65b)

We may now eliminate u′3, u
′

4, π
′

3, and π′4 between (65a), (65b), (64a) and (64b). We thereby
avoid any consideration of the structure of regions 3 and 4, instead connecting regions 1
and 2 directly via the following jump conditions,

∂R′

∂t
+ α1

∂R′

∂θ
=

1

∆H
u′1,

∂R′

∂t
+ α2

∂R′

∂θ
= u′2, π′1 = π′2, on r = Rh, R′ > 0, (66a)

∂R′

∂t
+ α2

∂R′

∂θ
= ∆Hu

′

2,
∂R′

∂t
+ α1

∂R′

∂θ
= u′1, π′1 = π′2, on r = Rh, R′ < 0, (66b)

where ∆H = (H −Hs)/H ≤ 1 is the depth ratio. Note that in the absence of a mean flow,
α1 = α2 = 0, we may reduce the boundary conditions to (H−Hs)u

′

2 = Hu′1 and π′1 = π′2 at
r = Rh for all θ, which corresponds to the approach of [17]. In fact, this reduction can be
performed for any continuous mean flow profile, and it is only in the case of a discontinuous
profile that this special consideration is required.
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We now make use of the fact that the velocity is divergence-free in regions 1 and 2 to write
u
′

j = −∇× ψ′

j ẑ, and seek plane wave solutions of the form ψ′

j = Re{ψ̂j(r) exp[i(lθ − σt)]}.
Taking the curl of the linearised momentum equations in (63) yields a vorticity equation
that states that the vorticity must be uniformly equal to zero at all times, so ω′

1 = ∇2ψ′

1 = 0
and ω′

2 = ∇2ψ′

2 = 0. We may then solve for ψ̂i subject to the boundary conditions ψ′

1 = 0
at r = Rw and ψ′

2 = 0 at r = Rc. Substituting the result into (66a) and (66b) yields the
following dispersion relation,

σ =
1

c1∆H + c2

{

1
2(f2 − ∆Hf1) + (∆Hc1α1 + c2α2) l

±
√

1
4(f2 − ∆Hf1)2 + ∆H(f2c1 + f1c2)(α1 − α2)l − ∆Hc1c2(α1 − α2)2l2

}

, (67)

where f1 = f + 2α1, f2 = f + 2α2, and

c1(l) =
(Rh/Rw)l + (Rh/Rw)−l

(Rh/Rw)l − (Rh/Rw)−l
, c2(l) =

(Rc/Rh)l + (Rc/Rh)−l

(Rc/Rh)l − (Rc/Rh)−l
. (68)

When there is no mean flow (α1 = α2 = 0) this reduces to the dispersion relation for linear
shelf waves in an annulus. In the case of a sheared mean flow with no topography and no
rotation (∆H = 1, f = 0) we recover the expected instability of all wave numbers to small
perturbations.

In the short-wave limit, c1, c2 → ±1 as l → ±∞, so the term proportional to l2 in the
square root of (67) causes σ to have a positive complex component proportional to l for
sufficiently large l. Thus very short waves are always unstable. However, for small l the
frequency may become real, and so long waves may be stable. It may be shown that in the
limit of infinitely long waves, l → 0, σ is real if the velocity shear, α1 − α2, satisfies
∣

∣

∣

∣

∣

α1 − α2
1
2(f1 ln(Rh/Rw) + f2 ln(Rc/Rh))

− 1

∣

∣

∣

∣

∣

<

√

1 +
(f2 − ∆Hf1)2 ln(Rc/Rh) ln(Rh/Rw)

∆H(f1 ln(Rh/Rw) + f2 ln(Rc/Rh))2
. (69)

This is not an exact condition for the velocity shear because α1 and α2 appear within f1 and
f2. However, typically in both the laboratory experiments and in the ocean, α1, α2 ≪ f ,
and so (69) still provides us with some insight. Long waves are stable as long as the shear
is sufficiently small. For f > 0 a comparatively small negative shear (α1 < α2) will make
all wave numbers unstable, whereas a relatively large positive shear (α1 > α2) is required
to achieve the same effect. In Figure 6 we present plots of the real and imaginary parts of
(67) for typical experimental parameter values with a positive shear.

Long waves can be stabilised because the generation of vorticity within the envelope of
the wave creates a velocity shear about the shelf line. This shear, which is most pronounced
in long waves, may exceed the size of the mean shear and thereby stabilise the disturbances.
Despite this, short waves are almost completely unaffected by the presence of rotation and a
discontinuity in depth. Although we still expect the shortest waves to be the most unstable,
the largest instabilities in the experiment of Figure 4 have wavelengths on the order of 30cm,
so in fact the longer perturbations grow faster in practice. Thus, whilst our idealised theory
can qualitatively predict this instability, we require a more sophisticated treatment to make
realistic quantitative predictions.
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Figure 6: Real (left) and imaginary (right) parts of the dispersion relation for linear waves
propagating in the presence of a sheared mean flow. Here f = 1.5 rad s−1, α1 = 0.1 rad s−1,
U2 = 0.05 rad s−1, ∆H = 0.8, Rw = 66 cm, Rh = 96 cm and Rc = 106.5 cm, as in the
experiment shown in Figure 4.

6.2 Stability of Long Waves

We now turn our attention to another laboratory experiment, illustrated in Figure 7. Here
a long wave is generated by reducing the rotation rate of the tank for a few seconds, creating
a temporary mean flow that generates a perturbation past a long bump in the outer wall.
The perturbation quickly breaks up into short waves, with the rest of the dyed interface
following suit shortly afterwards. This raises the possibility that the nonlinear topographic
Rossby waves themselves may be intrinsically unstable.

We perform a simple stability analysis of the waves by using the fact that they are long
and slowly-varying to approximate them as a radially symmetric strip of constant vorticity
ω0, as shown in Figure 8. We retain the shelf line at r = Rh, but for now we let ω0 be
arbitrary, and do not require it to be equal to Q as we did in Section 3. We shall also
only consider the case where R > Rh, as in the experiment shown in Figure 7, with the
understanding that similar results hold in the case that R < Rh. In the analogous problem
for a straight channel with a symmetric strip of constant vorticity [5], the flow is found to
be unstable to long waves if the width of the strip is less than half the width of the channel.

We write the basic-state vorticity as

ω = ω0 [H(r −R) −H(r −Rh)] , (70)

as in (10), where the bar notation will be used henceforth to denote the basic flow. This
means that for ω0 > 0, ω < 0 in Rh < r < R, reflecting the f > 0 case in Section 3. We seek
a radially symmetric basic flow u = v(r)êθ, which by definition is incompressible, ∇·u = 0.
The corresponding streamfunction ψ matches the leading-order streamfunction (18) from
Section 3 exactly, subject to the requirement that it must be uniformly equal to zero on the
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Figure 7: Snapshots of an experiment in which an instability arises in a long perturbation.
Once the fluid in the tank had achieved solid-body rotation (top left), the rate of rotation
of the tank was rapidly decelerated from f = 1.50 rad s−1 to f = 1.20 rad s−1, and then
rapidly accelerated again to f = 1.45 rad s−1. The effect of this is to cause the fluid to
move anticlockwise around the tank for 6 seconds and then return to approximate solid-
body rotation. A bump in the side wall of length 1.5m and maximum amplitude 2cm,
highlighted in the diagram by the superposed dashed lines, leads to the formation of a
perturbation ahead of the bump (top right). After 12 seconds (bottom left), a growing
short wave instability appears in the perturbation, and after 17 seconds this instability is
affecting the entire annulus. The maximum depth of the fluid in this experiment is 20cm,
and the radius of the inner wall is approximately 75cm.
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walls r = Rw and r = Rc. Thus the basic-state velocity is

v(r) =
ω0

2r

[

H(r −R)(r2 −R2) −H(r −Rh)(r2 −R2
h)

+
1
2(R2 −R2

h) +R2 ln(Rc/R) −Rh ln(Rc/Rh)

ln(Rc/Rw)

]

. (71)

Note that although the vorticity is discontinuous at r = R and r = Rh, the velocity is
continuous at both radii. The corresponding basic-state surface pressure satisfies dπ/dr =
fv + v2/r, but its exact form has no bearing on the stability of the flow.

Figure 8: A strip of constant vorticity in a section of the annulus, approximating a long,
slowly-varying topographic Rossby shelf wave.

We now consider infinitesimal perturbations to the basic state, setting u = u + u
′ and

π = π + π′, where u
′ ≪ u and π′ ≪ π. Substituting these into the non-dissipative shallow

water equations, (41a) and (41b), and linearising yields

∂u′j
∂t

+
v

r

∂u′j
∂θ

−
(

f +
2v

r

)

v′j +
∂π′j
∂r

= 0, (72a)

∂v′j
∂t

+
v

r

∂v′j
∂θ

+

(

f +
v

r
+
∂v

∂r

)

u′j +
1

r

∂π′j
∂θ

= 0, (72b)

∇ · u′

j = 0, (72c)

for j = 1, 2, 3, which is valid everywhere except at r = Rh. We connect regions 1 and 2
across r = Rh and regions 2 and 3 across r = R by requiring that an interface propagating
about either of them should satisfy kinematic boundary conditions and continuity of surface
pressure. At r = R, these reduce to

u′2 = u′3, π′2 = π′3, at r = R. (73)

At r = Rh we must also ensure that mass flux and surface pressure are continuous across
the discontinuity in depth. An analysis similar to that performed in Section 6.1 shows that,

394



because the basic velocity v is continuous, these are exactly the jump conditions required
to connect regions 1 and 2,

Hu′1 = (H −Hs)u
′

2, π′1 = π′2, at r = Rh. (74)

Taking the curl of (72a) and (72b) yields the vorticity equation

∂ω′

j

∂t
+
v

r

∂ω′

j

∂θ
+ u′j

∂ω

∂r
= 0. (75)

The last term on the left hand side of this equation is equal to zero because ω is piecewise-
constant. Thus, if we seek plane wave solutions of the form ψ′

j = Re{ψ̂j exp[i(lθ − σt)]},
then (75) states that ω′

j = 0 holds everywhere except at r = Rh.

Figure 9: Plot of the stability radius Rs (in metres) for the case R > Rh (solid line), defined
such that if Rh < R < Rs then the flow is unstable, but for Rs < R < Rc the flow is stable.
We also show the stability radius for the case R < Rh (dashed line), defined such that if
Rs < R < Rh then the flow is unstable, but for Rw < R < Rs the flow is stable. The dotted
lines mark the positions of the outer wall Rc, the shelf line Rh and the inner wall Rw.

We may now obtain the complete solution using ωj = ∇2ψ′

j = 0 in region j for j = 1, 2, 3,
which has the solution

ψ′

j = Re
{(

Ajr
l +Bjr

−l
)

ei(lθ−σt)
}

, (76)

where Aj and Bj are constants. We then apply the jump conditions (73) and (74), and
the boundary conditions ψ′

1 = 0 on r = Rw, ψ′

3 = 0 on r = Rc. This determines all of the
constants Aj , Bj in terms a single constant representing the amplitude of the wave, which re-
mains arbitrary, and yields a dispersion relation for the wave frequency σ(l). Unfortunately
the calculation quickly becomes too complicated to obtain meaningful analytical results,
and is best handled using symbolic computation packages and numerical calculation. We
find that if there is no shelf (∆H = 1) then, as in the case of a straight channel, the flow
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is unstable to long waves (l → 0) unless one of the discontinuities lies sufficiently close to
the edge of the channel. The stability here is also independent of the vorticity ω0 and the
Coriolis parameter f . This is illustrated in Figure 9.

If we include a shelf (∆H < 1) then, as we found in Section 6.1, long waves may be
stabilised. In Figure 10 we compare σ(l) between cases where ∆H = 0.75 and ∆H = 1, with
all other parameters chosen to match the experiment presented in Figure 7. We see that
the flow is stable to all wave numbers in the presence of the shelf, but is unstable to long
waves when the shelf is absent. The most unstable wave in the latter case has a length of
approximately π/16 radians, which almost exactly matches the the length of the instabilities
observed in the bottom-left frame in Figure 7. This raises the possibility that the stability
of the long nonlinear wave in this experiment, which utilised an absolute discontinuity in
the bottom topography, is not affected by the shelf.

Figure 10: Plot of the wave frequency σ in rad s−1 as a function of the wave number
l in rad−1 for linear perturbations to an annular strip of vorticity, where Rw = 0.75 m,
Rh = 0.96 m, R = 0.985 m and Rc = 1.065 m. The solid line corresponds to the wave
frequency when there is a discontinuity in depth (∆H = 0.75) at r = Rh, whilst the
dotted line corresponds to the case of no discontinuity in depth (∆H = 1). In both cases
f = 1.45 rad s−1 and ω0 = 0.3625 rad s−1, corresponding the theoretical vorticity of the
nonlinear topographic Rossby wave in Figure 7.

The analysis performed here is based on infinitesimal horizontal perturbations to the
fluid directly above the discontinuity. To comply with this theory, fluid columns are required
to cross the discontinuity rapidly and repeatedly, which is physically counter-intuitive, so
it is not surprising to see that this analysis breaks down. If indeed the stability of long
topographic Rossby shelf waves propagating about an absolute discontinuity in depth is
determined by the theory for the case of a flat channel, then we should expect almost all
such waves to be unstable, according to Figure 9. However, in both the real ocean and in the
later laboratory experiments, the discontinuity in the theory is actually an approximation
of a slope, whose width is assumed to be negligible compared to the amplitude of the
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waves. This casts doubt upon the validity of the linear theory, which assumes waves of
infinitesimally small amplitude. In order to accurately examine the stability of these waves,
we would require a considerably more complex treatment of the problem that accounted for
the slope connecting the regions of different depths across the shelf line.

7 Breaking Lee Waves

We shall now turn our attention to waves generated in the lee of a bump in the outer wall
of the annulus. Of all of the experiments performed in the course of this project, these were
the only ones that led to consistent and measurable results, as most were subject to rapidly
growing instabilities similar to those described in Section 6.

In Figure 11 we present a specimen experiment in which a bump has been created on
the inside edge of the tank using the deformable wall. This is compared with a numerical
solution to the nonlinear wave equation (22), computed using a pseudo-spectral code. Once
the fluid had reached solid-body rotation, we rapidly increased the rate of rotation of the
tank from f = 1.50 rad s−1 to f = 1.60 rad s−1 for 6 seconds, and then returned the rotation
rate to f = 1.54 rad s−1. This resulted in the generation of a wave behind the bump and a
mean flow of αm ≈ −0.02 rad s−1. This state is used as the starting point (t = 0 s) of the
experiment for the purpose of numerical calculation, and corresponds to the top frame in
each of the series of images in Figure 11.

In the laboratory experiment, both with and without a sloping shelf, the long lee wave
breaks at the end furthest from the shelf after approximately 8 seconds. This is not possible
in the numerical solution of the full nonlinear wave equation (22), as dispersion will always
“smooth out” any large gradients. We therefore also present the numerical solution when
the dispersive O (µ) terms are excluded, visible only in the second frame of the numerical
solution. In Figure 12 we compare the length of the lee wave at the point of breaking between
the experiments and the non-dispersive computations for a range of mean flow speeds. We
also plot the dispersive wavelengths at times correspoinding to the point of wave breaking
in the experiments. These results suggest that the dispersive theory accurately predicts the
wavelength for mean flow speeds less than −0.01 rad s−1, whilst the non-dispersive theory
is more accurate for larger mean flow speeds. However, there is some uncertainty in the
wavelength and exact time of breaking in the experiment. For αm > 0.01 rad s−1 the wave is
drawn under the bump in the wall before breaking can occur, whilst for αm < −0.02 rad s−1

the wave tends to be swept away from the bump by the strong mean flow.
At later times the behaviour of the experiments and the numerical solution diverge

from one another. In the presence of a steep slope, the wave grows in length and amplitude,
building up behind the bump in the wall. Meanwhile, instabilities arise at the end of the
wave furthest from the bump, and subsequently grow into short breaking waves. Thus
the wave gradually sheds vorticity and its amplitude slowly decays. By contrast, in the
presence of a discontinuous shelf the wave quickly loses energy and decays back down to
the shelf line. In the numerical solution, the wave also build up behind the bump in the
wall, but remains there because it can not shed vorticity. The dissipation introduced via
the parameterisation of section 5 gradually slows all motion of the interface, such that the
wave eventually comes to rest behind the bump. The behaviour described here was found
to be similar for any negative mean flow, αm < 0. For αm ≥ 0 the wave moves under the
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Figure 11: Snapshots of an experiment with a sloping shelf (left), and a discontinuous shelf
(middle), and in a numerical solution (right) of the nonlinear wave equation with (black
line) and without (dark grey line) its dispersive terms. The pictures have been taken 0, 8,
94 and 113 seconds after the generation of the lee wave.
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bump, but friction around the shelf line causes it to decay rapidly as it does so.
As was mentioned in Section 2, the most serious deviation of the experiment from the

theory was the use of an actual discontinuity in the depth. This experiment suggests that
the fluid loses substantially more energy in crossing the discontinuous shelf than it does
in crossing the steeply sloping shelf. Intuitively, this is because a Stewartson boundary
layer will form at vertical wall of the shelf, whereas the sloping shelf will only have a
bottom Ekman layer (see [22], p219). We therefore expect fluid columns to encounter more
resistance as they cross the discontinuity than they do when they cross the slope.
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Figure 12: A comparison of the lengths of breaking lee waves in laboratory experiments
(crosses) and nondispersive computations (circles), defined as the angular distance from
the point of breaking to the front of the wave. In the dispersive computations (triangles),
the length of the region of positive amplitude is calculated at the time of breaking in the
corresponding laboratory experiment.

Between the dispersive and non-dispersive nonlinear wave equations, the main features
of the flow in the sloping shelf experiment are captured quite well. The instability that
arises in the lee waves may be due to a mechanism similar to that discussed in Section 6.2,
but there is no reason to expect that linear analysis to apply to the case of a sloping shelf.
Either way, it seems that short-wave processes invariably become important within a finite
time.

8 Conclusion

This project was initially conceived as a means of testing the fundamental theory of non-
linear long Rossby shelf waves in a channel, but it has broadened to cover a much wider
range of topics. The traditional theory for a straight channel has been redeveloped for
application to an annular domain, and extended to include the effects of irregular walls,
yielding a similar nonlinear wave equation (22). In the weakly nonlinear limit, the equation
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is exactly the same as that found in the straight-channel case, but with slightly different
coefficients, so the amplitude of weakly nonlinear waves is too small for them to be affected
by the geometry of the annulus. The additional requirements that the waves must fit into
the annular domain, and conserve mass about the shelf line, severely constrain the types of
solution that are possible, and suggest that longer waves should exhibit the most nonlinear
behaviour.

We have also considered the way that bottom friction might act to dissipate energy
from the system. Even a simple representation of this dissipation in the quasigeostrophic
shallow water equations is impossible to include exactly in our nonlinear wave model, so we
constructed an alternative parametrisation on the basis of conservation laws for the global
vorticity.

In the experiment itself, the waves generated were found to deviate from the long-
wave theory in two important ways: they were able to break, and they were unstable to
shorter waves. We explored possible mechanisms for the observed instabilities in Section 6,
where a linear analysis showed that a mean flow about a discontinuity should be unstable,
and that long waves of sufficiently small amplitude should themselves be unstable to long
perturbations. A comparison with the experiment depicted in Figure 7 suggests that in fact
the stability may be unaffected by the presence of the shelf line, explaining the observed
instability at somewhat larger amplitudes.

The experiments discussed in Section 7 exhibited both breaking of long waves and
instability to shorter waves that themselves subsequently went on to break. The fact that
the instability arises at the rear of the lee waves, where the amplitude approaches zero,
suggests an agreement with the linear stability theory. Meanwhile, the breaking of long
waves suggests that in reality, dispersive effects are not strong enough to counteract the
nonlinear steepening of the waves. Thus, although the nonlinear long-wave theory provides
a good qualitative description of the behaviour, in practice short-wave phenomena tend to
become just as important in a short time.
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