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1 Introduction

The phenomenon of turbulence remains one of modern physics greatest unresolved chal-
lenges. Turbulent fluid flow exhibits an extraodinarily complex structure which manifests
itself in a wide range of length and time scales, posing a significant problem in its ana-
lytical study as well as in numerical simulation. While many aspects of turbulence are
quite controversial, it is generally accepted that turbulence is characterized by a nonlinear
transfer of energy from large length scales to smaller and smaller ones, wherein energy is
dissipated at the length scale of the molecular viscosity ν [5, 6, 8]. What can then be said
about energy dissipation in the regime of fully-developed turbulence—that is, as Re → ∞,
or equivalently, as ν → 0?

In his 1949 paper, Onsager [7] made the surprising conjecture that turbulent flow can
remain dissipative even in the inviscid limit. By transferring energy to ever smaller scales
and gradually dividing it amongst infinitely many degrees of freedom, the driving mechanism
behind such “anomalous dissipation” is the energy cascade itself! Onsager thus suggested
that the role of viscosity in energy dissipation is secondary to that of the cascade process.
The purpose of this paper is to present simple exactly solvable models which exhibit these
very features of a cascade of energy and anomalous dissipation, and to demonstrate that
Onsager’s conjecture is indeed realizable within this elementary framework.

1.1 Energy Balance and Onsager’s Conjecture

We begin our discussion in the context of the 3D incompressible Navier-Stokes equations
with viscosity ν > 0, forcing f , and periodic boundary conditions

{

ut + (u · ∇)u = −∇p + ν∆u + f , x ∈ Ω = [0, Lf ]3

∇ · u = 0
(1)

where f(x, t) is a stationary, homogeneous forcing acting on large scales:

Ef(x, t) = 0, Ef(x, t)f(x′, t′) = F

(

x− x′

Lf

)

δ(t − t′). (2)
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For our present discussion, let

f(x, t) = σ

3
∑

i=1

(

Ẇxi
(t) sin

2πxi

L
+ Ẇ ′

xi
(t) cos

2πxi

L

)

êi (3)

which satisfies (2) with F (x) = 1
2σ2

∑3
i=1 cos (2π|x · ei|). Consider now the energy density

of the system

E(t)
.
=

1

|Ω|

∫

Ω

1

2
Eu2(x, t)dx =

1

|Ω|

∫

Ω

1

2

(

lim
T→∞

1

t + T

∫ t

−T
u2(x, t′)dt′

)

. (4)

where the last equality holds by ergodicity. Multiplying (1) by u and integrating by parts
gives

Ė(t) =
d

dt

1

|Ω|

∫

Ω

1

2
E|u|2dx = −ν

1

|Ω|

∫

Ω
E|∇u|2dx + ε (5)

where ε = 3
2σ2, the density of the energy flux into the system through forcing, appears by

Îto’s formula. Assuming the system is in a statistical steady state (Ė(t) = 0) then there
exists a global energy balance between forcing and dissipation through viscosity:

ν
1

|Ω|

∫

Ω
E|∇u|2dx = ε (6)

To arrive at a local energy balance, consider a dimensional argument with L = length
and T = time. Since

[Lf ] = L [ε] =
L2

T 3
[ν] =

L2

T
, (7)

the only length scale which can be derived from ν and ε is the viscous length scale

lν = Cǫ−
1
4 ν

3
4 (8)

which vanishes in the inviscid limit. From a local perspective, energy that is pumped into
the system at the forcing length scale Lf cascades to smaller and smaller scales and is
subsequently removed from the system at the length scale of the viscosity lν (see Figure 1).

The cascade picture is more readily observed in the Fourier space setting. The Fourier
representation of (1) is

d

dt
ûk = −iPk⊥

∑

q

(q · ûk−q)ûq − ν|k|2ûk + f̂k (9)

where Pk⊥ = I − k⊗k
|k|2

is the projection on the space of divergence-free velocity fields and

ûk(t) =
1

L
3
2

∫

[0,L]3
u(x, t)eik·xdx

f̂k(t) =
1

L
3
2

∫

[0,L]3
f(x, t)eik·xdx.
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Figure 1: Cascade of energy from forcing length scale Lf to viscous length scale lν .

The first, second, and third terms on the right-hand side of (9) correspond to the mechanism
of energy transfer between modes, dissipation at l−1

ν , and energy input at L−1
f , respectively.

By Parseval’s identity, the energy equation is then

Ė(t) =
d

dt

∑

k

1

2
E|ûk|2

= i
∑

k

Pk⊥E

∑

q

(q · ûk−q)(û∗
k · ûq) + c.c. − ν

∑

k

|k|2E|ûk|2 + ε
(10)

with c.c. denoting the complex conjugate of the first term. The summands within the
energy transfer terms are commonly known as “triad interactions” due to the appearance of
coupling between the modes k,q, and k− q, consequently resulting in a nonlinear transfer
of energy. A formal rearrangement of the sum gives that

i
∑

k

Pk⊥E

∑

q

(q · ûk−q)(û∗
k · ûq) + c.c. = 0, (11)

implying a global energy balance between forcing and viscous dissipation analogous to (6)
for statistical steady state solutions to 3D Navier-Stokes:

ν
∑

k

|k|2E|ûk|2 = ε. (12)

Is this formal rearrangement actually valid? If we presume the existence of a steady state
solution to (1) in the inviscid limit (Euler equation with forcing) then (11) is strikingly
false! For steady state solutions to Euler, the energy transfer and forcing terms balance:

i
∑

k

Pk⊥E

∑

q

(q · ûk−q)(û∗
k · ûq) + c.c. = ε. (13)
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The fact that the sum in (13) does not vanish provides some insight into the lack of regularity
of solutions to the forced Euler equation [3, 4]. In particular, since the Fourier coefficients
of u do not decay rapidly enough to allow absolute convergence of the sum we have that
such solutions maintain shocks, which allow for the anomalous dissipation of energy. This
is the heart of Onsager’s conjecture: In the regime of fully-developed turbulence, steady
state solutions correspond to the most regular weak solutions of the 3D Euler equation
that allow for anomalous dissipation. In addition, Onsager proposed that weak solutions of
Euler conserve energy if they are Hölder continuous with exponent n greater than 1/3 [5].
In Fourier space, the Hölder condition is

∑

k

|k|n|ûk| < ∞ (14)

so if the previous sum is absolutely convergent with n > 1/3 then the conjecture gives that
the formal rearrangement in (11) is valid and energy is conserved. The sufficiency of this
condition was proved in 1994 by Constantin et al. [2] but necessity still remains an open
question.

The loss of regularity of steady solutions to forced 3D Euler can be observed through a
dimensional analysis argument. Define the second-order structure function

E(x − x′, t)
.
= E|u(x, t) − u(x′, t)|2, (15)

where the homogeneity of solutions u to (1) has been used. Then

[E(x, t)] =
L2

T 2
[x] = L. (16)

and there exists a function F such that

F
(

E− 3
2 εx,

x

Lf
,
x

lν

)

= 0. (17)

Assuming isotropy,

E = C ′ε
2
3 |x| 23 g

( |x|
Lf

,
|x|
lν

)

(18)

for some g. Since we are interested in the inertial range lν ≪ |x| ≪ Lf with Lf fixed,
we first let lν → 0 (that is, let ν → 0) and then take |x| → 0 to arrive at the celebrated
Kolmogorov two-thirds law

E = Cε
2
3 |x| 23 , (19)

where we have made the assumption that limξ→0 limη→∞ g(ξ, η) exists and is finite. In
Fourier space, the previous display is equivalent to the five-thirds law

Ek ∼ ε
2
3 |k|− 5

3 (20)

with Ek = E|ûk|2. Using (19) and Hölder’s inequality, one finds that the velocity field is
Hölder continuous with exponent 1/3:
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E|u(x, t) − u(x′, t)| ≤
√

E(x − x′, t) = O(|x − x′| 13 ). (21)

Formally,

E|∇u(x)|2 = lim
|y|→0

1

|y|2 E|u(x + y) − u(x)|2 ≃ |y|− 4
3 ≃ |lν |−

4
3 ∼ ν−1 (22)

where we have used the two-thirds law and concerned ourselves with the regularity of u at
the level of the viscous length scale. It can then be seen that

ν
1

|Ω|

∫

Ω
E|∇u|2dx ∼ O(1).

Alternatively, since (6) is valid for all ν > 0, we have that limν→0 ν 1
|Ω|

∫

Ω E|∇u|2dx = ε.
Even in the inviscid limit energy is still removed by loss of regularity of solutions to Euler’s
equation!

1.2 Anomalous Dissipation in Burgers’ Equation

In our discussion to present we have made several significant assumptions, such as that of
the existence of a unique steady state solution to 3D Navier-Stokes with random forcing
(which is in fact a reasonable assumption, see [1]). While Onsager’s conjecture is somewhat
speculative for the 3D or 2D Navier-Stokes and Euler equations, it is realizable and easily
illustrated within the framework of Burgers’ equation with forcing and periodic boundary
conditions:

ut +
1

2
(u2)x = νuxx − π

2
sin(2πx), x ∈ [0, 1]. (23)

For ν > 0, (23) admits smooth solutions with “shock layers” of size O(ν); however, if
ν → 0, solutions develop discontinuities which allow for anomalous dissipation of energy.
In Fourier space, the solution of (23) with ν = 0 is

u(x, t) =
1

2

∑

n∈Z

bn(t) sin(2nπx) (24)

where bn(t) = Im ûn(t) = 2
∫ 1
0 u(x, t) sin(2nπx)dx and satisfies

ḃn = 2

∫ 1

0
ut sin(2nπx)dx

= 2

∫ 1

0
[−uux + f(x)] sin(2nπx)dx

= −2nπ
∑

m∈Z

bmbm−n − π

2
(11n=1 − 11n=−1).

(25)

By Parseval’s identity and the previous display, the unique steady state solution must satisfy
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Figure 2: Dissipative solution to forced inviscid Burgers’ equation.

Ė(t) =
d

dt

∑

n∈Z

1

2
b2
n = −

∑

n,m∈Z

2nπbnbmbn−m + πb1 = 0. (26)

If the sum in the previous display is formally reorganized,

∑

n,m∈Z

2nπbnbmbn−m =
∑

n,m∈Z

2nπb−nbmb−n−m

= −
∑

n+m+p=0

2nπbnbmbp

= −1

3

∑

n+m+p=0

2(n + m + p)πbnbmbp

= 0.

(27)

We are then led to believe that the system has no steady state solution (with b1 6= 0). Yet,
it is simple to show that

w(x) = − cos πx (28)

is a solution of (23) in the inviscid limit! How can this be?
The answer lies in the fact that w is a weak solution and rearrangement of the sum is

invalid because the coefficients bn do not decay fast enough. In order to compensate for the
lack of a viscous dissipation mechanism, w has lost regularity and developed shocks (see
Figure 2). One has that

bn = − 8n

π(4n2 − 1)
∼ − 2

πn
as |n| → ∞ (29)

so b2
n ∼ O(|n|−2). In this case, the energy of the steady state E =

∑

n∈Z

1
2b2

n < ∞ and
dissipation is nonzero:
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∑

n,m∈Z

2nπbnbmbn−m = πb1 = −8

3
< 0. (30)

The above example illustrates that there exist steady state solutions with finite energy
that dissipate through shocks. In the next section, we develop yet simpler models that
exhibit an energy cascade and anomalous dissipation.

2 Simple Models

Consider the following infinite dimensional dynamical system:

{

ȧn = α{(n − 1)pan−1 − npan+1} + f(t)11n=1, n ∈ N

a0 = 0
(31)

where α ∈ R, p = 0, 1, 2 and f(t)11n=1 is a time-dependent forcing term on the first mode.
The system (31) describes a linear shell model with nearest-neighbor coupling and (as we
shall see) the feature that it allows for anomalous dissipation. We will focus here on the
case p = 1 with forcing f(t) =

√
2εẆ (t) and will speculate on cases with p 6= 1. In the

case of white noise forcing—which has the advantage of being uncorrelated with the modes
an—an energy balance relation analogous to (5) can be derived:

Ė(t) =
d

dt

∑

n∈N

1

2
Ea2

n = α
∑

n∈N

E{(n − 1)panan−1 − npanan+1} + ε (32)

and we have that anomalous dissipation is possible if

−α
∑

n<N

E{(n − 1)panan−1 − npanan+1} = αNp
EaNaN+1 −→

N→∞
ε. (33)

This requires that for steady state solutions

an ∼ n−p/2 as n → ∞ (34)

since if an scales with any other exponent, solutions will have either zero or infinite dis-
sipation. This is consistent with Onsager’s conjecture since steady states of the model
correspond to the most rapidly decaying {an} which allow for anomalous dissipation! By a
simple scaling argument, one has that steady state solutions must lie on the boundary of
the weighted l2 spaces

l2,p
.
=

{

{an}n∈N :
∑

n∈N

np−1a2
n < ∞

}

, (35)

with no dissipation in the interior of l2,p and infinite dissipation in the exterior of l2,p (see
Figure 3). The representation formula for the unique steady state with p = 1, to be derived
in a subsequent section, agrees with this picture.
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Figure 3: Spaces l2,p and corresponding rates of dissipation.

2.1 The case p = 1

We now show how to solve the simple model in the case p = 1 with forcing f(t) =
√

2εẆ (t).
Some remarks on the case p = 2 wil be made in Section 3.

Consider the set of Laguerre polynomials Ln(x) which satisfy

(i) L0(x) = 1

(ii) (n + 1)Ln+1(x) = (2n + 1 − x)Ln(x) − nLn−1(x), n ∈ N

(iii) xL′
n(x) = nLn(x) − nLn−1(x)

(iv)

∫ ∞

0
Lm(x)Ln(x)e−xdx = δnm

(36)

Let f0 = 0, fn(z) = Ln−1(z) for n ∈ N, and define

g(z, t) =
∑

n∈N

an(t)fn(z). (37)

Then one has that

ġ(z, t) =
∑

n∈N

ȧn(t)fn(z)

=
∑

n∈N

α{(n − 1)an−1 − nan+1}fn(z) +
√

2εẆ (t)

=
∑

n∈N

αan{2zf ′
n(z) + (1 − z)fn(z)} +

√
2εẆ (t)

= 2αz
∂g

∂z
(z, t) + α(1 − z)g(z, t) +

√
2εẆ (t)

(38)
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by shifting indices and by properties (36) of the Laguerre polynomials. Solving the stochastic
partial differential equation in the previous display, one can use the orthonormality of
{fn(z)}n∈N to find an:

an(t) =

∫ ∞

0
g(z, t)fn(z)e−zdz. (39)

Furthermore,

E(t) =
∑

n∈N

1

2
Ea2

n =

∫ ∞

0

1

2
Eg2(z, t)e−zdz

Ė(t) =
∑

n∈N

Eanȧn =

∫ ∞

0
Eg(z, t)ġ(z, t)e−zdz

(40)

where equality follows from Parseval’s identity. Note that from (38) one can also derive the
conservation form

1

2
(g2e−z) ˙= gġe−z

= g

[

2αz
∂g

∂z
+ α(1 − z)g +

√
2εẆ

]

e−z

=
∂

∂z
(αzg2e−z) +

√
2εẆ ge−z.

(41)

We are now equipped with the tools necessary to determine properties of explicitly deter-
mined solutions.

2.2 Representation Formulas for the Steady State and IVP

We now derive the steady state solution of (31) for p = 1 with white-noise forcing and
examine the initial value problem (IVP) without forcing. To simplify discussion, take α = 1.
Solving (38) with initial conditions g0(z)

.
= g(z, 0) =

∑

n∈N
an(0)fn(z), one has that

g(z, t) = e( z
2
+t)

[

e(− z
2
e2t)g0(ze2t) +

√
2ε

∫ t

0
e(− z

2
e2(t−s))dW (s)

]

. (42)

The explicit representation for the unique statistical steady state solution is then

an(t) =
√

2ε

∫ t

−∞
dW (s)

∫ ∞

0
dzLn−1(z)e[t−s− z

2
(e2(t−s)+1)] (43)

so an(t) is a Gaussian field with mean 0 and covariance

E(an(t)am(t)) = 2ε

∫ ∞

0
ds

∫ ∞

0
dz1

∫ ∞

0
dz2Ln−1(z1)Lm−1(z2)e

h

2s−
z1+z2

2
(e2s+1)

i

=
2ε

n + m − 1
.

(44)
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In particular,

− lim
N→∞

∑

n≤N

{(n − 1)E(anan−1) − nE(anan+1)} = lim
N→∞

NEaNaN+1 ≡ ε

and we have anomalous dissipation.
A simple consequence of the conservation form (41) is that energy is conserved if one

begins with finite energy:

∑

n∈N

Ea2
n(0) < ∞ implies

∑

n∈N

Ea2
n(t) =

∑

n∈N

Ea2
n(0) for t > 0. (45)

There also exist dissipative solutions with
∑

n∈N
Ea2

n(0) = ∞; that is, solutions such that

E|an| ≥ Cn−1/2 as n → ∞. (46)

Finally, as we have shown above, with forcing there exists a unique statistical steady state
with equilibrium distribution supported on the the most regular dissipative solutions, i.e.,
such that

Ea2
n = O(n−1) as n → ∞.

3 PDE Approximation to Simple Models

When scaled properly, the system (31) very closely resembles a finite difference scheme for
the wave equation ut = cux. Keeping this in mind, for α > 0 one can find PDEs whose
solutions mimic those of the simple model for the IVP.

We begin by setting α = 1 and by recalling that with no forcing,

ȧn = (n − 1)pan−1 − npan+1.

Let an(t) = A(nh, th−p+1) and send h → 0 with nh → x and th−p+1 → τ to obtain

∂A

∂τ
= −pxp−1A − 2xp ∂A

∂x
. (47)

The previous equation can also be written in the conservation form

1

2

∂A2

∂τ
= − ∂

∂x
(xpA2). (48)

Thus, one has

1

2

d

dτ

∫ L

0
A2(x, τ)dx = −LpA2(L, τ) 6→

L→∞
0 if A2(L, τ) > CL−p (49)

which is exactly the phenomenon of anomalous dissipation!
Now consider the characteristic equation and solution of (47):

dX

dτ
= −2Xp, X(0) = x (50)
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A(x, τ) = A0(X(τ)) exp

(

−p

∫ τ

0
Xp−1(τ ′)dτ ′

)

. (51)

3.1 The case p = 1

If p = 1, then X(τ) = xe−2τ and there is no anomalous dissipation if
∫ ∞
0 A2

0(x)dx < ∞
since energy is conserved:

∫ ∞

0
A2(x, τ)dx =

∫ ∞

0
A2

0(xe−2τ )e−2τdx =

∫ ∞

0
A2

0(η)dη. (52)

Anomalous dissipation only occurs in this case if A2
0(x) > Cx−1 as x → ∞, and in particular,

A2(x, τ) = Cx−1 if A2
0(x) = Cx−1.

3.2 The case p = 2

If p = 2, then X(τ) = x
1+2τx and anomalous dissipation occurs even if

∫ ∞
0 A2

0(x)dx < ∞
since

∫ ∞

0
A2(x, τ)dx =

∫ ∞

0
A2

0

(

x

1 + 2τx

)

dx

(1 + 2xτ)2

=

∫ 1/2τ

0
A2

0(η)dη

≤
∫ ∞

0
A2

0(η)dη.

(53)

Notice also that

A2(x, τ) = A2
0

(

x

1 + 2τx

)

1

(1 + 2xτ)2
∼ A2

0(1/2τ)(2xτ)−2 as x → ∞ (54)

so that one has anomalous dissipation for τ ≥ τ⋆, where

τ⋆ = min{τ : A2
0(1/2τ) 6= 0}. (55)

3.3 Properties of the Solutions

It can easily be seen that the approximating PDE is consistent with the simple model
for p = 1 since the aforementioned properties exactly mirror those given in the previous
section. We can speculate that this is true for all other values of p as well. Moreover, since
the behavior of the characteristics completely determine the properties of the IVP solution,
by (50) one has that solutions with p < 1 behave like the p = 1 solution, and solutions with
p > 2 behave like the p = 2 solution with regards to anomalous dissipation.

There is an interesting analog between solutions of the approximating PDE for p = 2
and p = 1 and those of the 3D and 2D Euler equations, respectively. As discussed in [3],
solutions of 3D Euler with finite energy are expected to dissipate, as in the case p = 2.
In contrast, it has been proved [4] that solutions to 2D Euler (in which the enstrophy
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Figure 4: Characteristics of the approximating PDE for (a) p = 1 and (b) p = 2.

E = 1
2 |ω|2 = 1

2 |∇×u|2, rather than the energy, cascades to small scales) conserve enstrophy
whenever the enstrophy itself is finite, just as in the case p = 1! Furthermore, if we define the
“turnover time” τ(k) in the context of 3D Euler as the only time scale which can be derived
from the wavenumber magnitude k = |k| and energy flux ε (equivalently, the enstrophy flux
ε̂ in 2D Euler), dimensional analysis gives that

τ(k) = Cε−1/3k−2/3 (3D Euler), τ̂(k) = Cε̂−2/3 (2D Euler). (56)

Since the turnover time describes the time required for energy (enstrophy) to pass through
wavenumbers of magnitude k and µ(k) = ln(k) is the natural scale-invariant measure as-
sociated with k, the total time for energy (enstrophy) to move from k = 1/Lf to k = ∞
is

∫ ∞

1/Lf

τ(k)dµ(k) < ∞ (3D Euler),

∫ ∞

1/Lf

τ̂(k)dµ(k) = ∞ (2D Euler). (57)

Analogously, characteristic lines in the case p = 2 go to infinity in finite time, while those
for p = 1 go to infinity in infinite time (see Figure 4)!

It is worth noting that in the derivation of the PDE (47) we have made some smoothness
assumptions on solutions of the IVP in the simple model. These assumptions can be justified
if α > 0 but are quite wrong if α < 0. To see this, let α = −1 and consider the IVP
an(0) = 11n=1 for p = 0. Then for 0 < t ≪ 1 one has that an ≫ am for n < m, and so

ȧn(t) ≃ −an−1(t) for n ∈ N, with a0 = 0.

This implies that for small values of t,

an(t) ≃ (−1)n−1tn.

The solution of the IVP is thus initially highly oscillatory and cannot be approximated by
a smooth function in any strong sense.
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