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1 Introduction

In the modern world, population extinctions are often seen in somewhat of a negative light.
However, within an evolutionary context their action has been instrumental in the sculpting
of the modern biosphere. Removing old forms clears the way for the emergence of new
species with novel traits. Despite such importance, the mechanisms by which extinctions
play out in nature are still mysterious. For example, the Earth offered up 5 mass extinction
events within the past half-billion years, but it is unknown whether similar biodiversity
would exist today were it not for these events. Perhaps the smaller-scale stochastic forcing
of climate and competition would have sufficed.

Traditionally, environmental forcing has been considered in two broad ways. Commonly,
a coloured noise term is added to the equations of population dynamics, which represents
environmental forcing over a given autocorrelation time [1, 2, 3]. Though not a population
model, it has been shown that cells may undergo transitions between two bistable states
over a timescale that is minimised by an appropriate choice for the autocorrelation time of
the noise [3]. Such a dependence on timescale is interesting when one considers that both
the cell problem and the extinction problem reduce to a mean ‘exit time’ problem [4], where
one asks what the mean time is for stochastic dynamics to take a system through a given
point (zero individuals in the case of extinction).

Another way of looking at environmental stochasticity is to consider that most en-
vironmentally driven extinction occurs during particularly detrimental events, known as
Catastrophes. The typical strategy for analysis of these is to suppose that catastrophes
come along at a prescribed rate ν and instantaneously remove a given fraction of the pop-
ulation 1− p each time they do so [5]. This method may be related to the former method
by noting that the autocorrelation time and 1/ν are qualitatively similar. Accordingly, just
as there is an autocorrelation timescale that minimizes transition times in cells, there may
exist a frequency over which catastrophes are the most detrimental in terms of population
extinctions - a most catastrophic catastrophe.

The importance of the correlation time and/or the time between catastrophic events
is of great interest because it suggests that despite the forcing being intrinsically random,
the randomness has more of an effect upon some timescales than others. To emphasise the
significance of this fact, consider a deterministic environmental forcing such as the day night
or seasonal cycles. Many species have adapted their life cycles to take advantage of these



predictable timescales, be it the breeding of mammals in spring or the growth-mortality
daily cycles of phytoplankton [6]. It is less obvious whether a stochastic forcing, with no
deterministic periodicity, can select for a specific timescale within a population.

To investigate the influence of time-scale upon population extinctions we model bio-
logical populations that experience stochastic catastrophic events with a typical frequency.
To illustrate the problem, consider a favourable environment that is nevertheless struck
randomly by deleterious events during which the death rate is enhanced. If these events
are extremely rare, but last a long time, such as mass extinction events, the mean time to
extinction of a given population might simply be the time until the next bad event. Con-
sequently, if the events become more frequent, the extinction time goes down. Eventually,
we reach a point where the events are not long-lived enough to make extinctions likely each
time an event occurs. The extinction time then begins to lengthen as populations are usu-
ally able to survive through at least one event, having to wait for several before extinction
occurs. This argument suggests that there is a frequency of stochastic events that minimises
the extinction time.

2 Modelling Stochastic Populations

Not only are populations typically influenced by a stochastic environment, their dynamics
are intrinsically stochastic. Specifically, births and deaths occur with a given probability,
with the probability dependent upon the number of individuals. There always exists a pos-
sibility that no individual will reproduce over the individuals’ lifetimes and thus extinction
may occur by chance. Such intrinsic randomness is known as demographic stochasticity,
distinct form environmental stochasticity. We investigate a population subject to both
forms of stochastism.

We set up the problem as follows. Suppose there is a probability Pn(τ) that a population
possesses n members at a time τ . Upon advancing time forward by one unit, the probability
at each n will change in one of two ways. Probability may enter from some other n, which
in the case of births means a probability flow from n− 1 to n and deaths come from n+ 1.
Alternatively, births and deaths at level n remove probability from Pn. We may write this
process succinctly as

Pn(τ + 1) =
∑

m

πnmPm(τ), (1)

where πnm is the probability that the population moves from m to n. Population models
usually consider only nearest neighbours to exchange probability, such as might be expected
from single birth and death events. However, we retain generality at first.

One of the terms in the sum multiples Pn(τ) and so we pick it out

Pn(τ + 1) = πnnPn(τ) +
∑

m6=n
πnmPm(τ). (2)

The probability of staying at the same n (πnn) is just 1 minus the probability of transferring
to anything else, or

πnn = 1−
∑

m6=n
πnm. (3)



Accordingly, we arrive at the discrete-time master equation

Pn(τ + 1)− Pn(τ) =
∑

m6=n

(
πnmPm(τ)− πmnPn(τ)

)
. (4)

It is often more convenient to take the continuous-time limit of equation (4), but we must
then recast the probabilities πmn as rates of probability flow Rmn. Upon doing so, we obtain
the Master Equation

dPn(t)

dt
=
∑

m 6=n

(
RnmPm(t)−RmnPn(t)

)
, (5)

which may be written in matrix-vector form as

ṗ(t) = Qp(t), (6)

where we have defined the transition matrix Q and the vector p each of the elements of
which corresponding to the probability at a given population level.

2.1 Birth-death model

Having set-up the Master Equation, we now prescribe forms for the elements of the transition
matrix Q. We require a death rate, δn and birth rate βn as a function of individual
number. Probability leaves step n if a birth or a death occurs, such that Rn+1,nPn = δn
and Rn−1,nPn = βn. Probability is gained by way of deaths from n + 1 and births form
n− 1 such that the Master equation becomes

dPn(t)

dt
= −(βn + δn)Pn + βn−1Pn−1 + δn+1Pn+1. (7)

We will choose the exact forms for βn and δn below. For now, suppose that there exists
a stochastic, environmental variable I that modulates the death rate according to

δn = δ(0)n + I(t)n, (8)

where δ
(0)
n is the death rate when I = 0.

Despite being probabilities, we have now introduced stochastic functions into β and δ
themselves, removing the usefulness of the Master Equation. Strictly speaking, we must
instead introduce a second stochastic dimension, described by a co-ordinate I. However, for
simplicity, we choose to allow I to take one of only two values, corresponding to a “good”
state and a “bad” state. The good state has I = 0 whereas in the bad state, I = aA, where
A > 0 is a constant and a is a constant with dimensions of inverse time that scales the
organisms’ generational overturning rate (see below).

The benefit of our two state system is that we can get around the requirement for a
second dimension by defining two separate probability distributions, P+

n and P−n , where the
former corresponds to the bad state and the latter the good state (the “plus” represents an
enhanced death rate). We suppose that the system switches from the bad to the good state
randomly, but with a typical frequency α. Conversely, the system switches from good to



bad at rate εα where ε < 1 corresponds to an environment that is in the good state more
often than the bad state on average. 1 Note that the mean value of I(t), which we refer to
as Ā is given by

Ā =
ε

1 + ε
A. (9)

We are now in a position to write separate master equations for P+
n and P−n . In partic-

ular, we add a probability flow of αP+
n from the plus state to the minus state and likewise

a flow of εαP−n from the minus state to the plus state. Including these terms, we obtain
the Master Equations:

dP+
n (t)

dt
= −(βn + δ(0)n + aAn)P+

n + βn−1P
+
n−1 +

(
δ
(0)
n+1 + aA(n+ 1)

)
P+
n+1 − αP+

n + ε αP−n

dP−n (t)

dt
= −(βn + δ(0)n )P−n + βn−1P

−
n−1 + δ

(0)
n+1P

−
n+1 + αP+

n − ε αP−n . (10)

These equations describe the probabilistic trajectory of a population subject to the stochas-
tic forcing described above. An alternative view points to consider trajectories of the pop-
ulation size. We do not adopt such an approach, but a typical realisation is illustrated in
figure 6, where we plot the number of individuals (scaled by the carrying capacity) as a
function of time under the influence of stochastic catastrophic events.

2.2 Matrix approach

It is more convenient to analyse the equations above in matrix form. Accordingly, we recast
the Master Equations into the form:

d

dt

(
P+
n

P−n

)
=

(
M

(0)
mn + aAOmn − αImn εαImn

αImn M
(0)
mn − αεImn

)(
P+
n

P−n

)
, (11)

where M
(0)
mn is a tridiagonal matrix that represents birth and death rates in the good state.

To include the environmentally-enhanced death rate, we define the matrix

OmnPn ≡ (n+ 1)Pn+1 − nPn, (12)

along with the identity matrix, given by Imn.
In order to complete the specification of the problem, we prescribe functional forms for

the birth and death rates. We choose to have the birth rate grow linearly with n while
the death rate grows quadratically, forcing an “equilibrium” number n = K (the carrying

capacity) at which δ
(0)
n = βn. The carrying capacity here corresponds to the stationary

solution of the good state in the limit where dynamics are deterministic. Specifically, we
define

δ(0)n = an

(
n

K

)

βn = an (13)

1Switching between states in this manner is known as a Telegraph Process [4].
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Figure 1: A typical realisation of the population size, n, normalised by the carrying capac-
ity K = 60 under the action of stochastically distributed catastrophic events. The events
typically last long enough to initiate a significant decline in the population numbers. The
typical switching frequency α = 1, with time measured in units of 1/a. More rapid fluctua-
tions would increase the extinction time because each catastrophe becomes significantly less
detrimental. On the other hand, a slowing of the events would decrease extinction time,
until the events’ severity is offset by their scarcity.

and so as before, a measures the typical rate at which births and deaths proceed. Note
that in this form, the linear environmental augmentation of death rate (An) naively appears
commensurate with a decrease in birth rates. This statement is only true in the deterministic
case; as we show below, adding both deaths and births generates more noise in the system
than simply subtracting births, even if the resulting “deterministic” growth rate is the same
in both cases.

2.3 Numerical solution

With all parts of the problem defined, we can now integrate equation (11) numerically to
describe the time evolution of Pn under our specified stochastic forcing. The most important
quantity to be extracted from the model is the extinction rate Re which for now we simply
define as

Re ≡
1

P0

dP0

dt
. (14)



We present the time evolution of P0 in Figure (3) along with its rate of change, using the
initial condition that P+

n = 0 and P−n is drawn from the quasi-stationary distribution that
would describe Pn in the absence of environmental forcing. This choice leads to a transient
period, during which, probability flows from the minus state to the plus state until a quasi-
steady state is reached for both. The timescale of the transient dynamics is related to how
quickly equilibrium is established in the bad state.
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Figure 2: The quasi-steady distribution for the plus state (P+
n , blue) and the minus state

(P−n , red) resulting from an environmental perturbation with frequency α. Notice the pile-
up of probability in the extinct state and the peak at n = K, but only for the minus state.
The plus state only has a maximum at the origin.

In many problems, the transient period, which depends upon initial conditions, is of
great importance. For example, initial conditions are crucial in computing the probability
that any given event will lead to extinction. Additionally, if a system possesses multiple
(quasi-) steady states, the initial configuration may determine where the long-time state
will decay to. These complications do not apply to our considerations here, where we are
interested in the long-term mean extinction time appropriate to an ensemble of populations
under the influence of the environmental forcing prescribed above. Essentially, we neglect
the probability that extinction occurs before the transient evolution decays.

Repeating the numerical integrations for a wide parameter-space would be time con-
suming. Instead, we take advantage of the quasi-steady evolution by seeking the lowest (in
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Figure 3: The flow of probability into the extinct state for the parameters of Figure 2. On
the left is the rate of extinctions where the right indicates the probability of being extinct at
a given time. After a brief transient period, extinctions begin to occur at a fairly constant
rate. It is this quasi-steady rate we seek.

magnitude) eigenvalue λ0 of the matrix on the RHS of equation (11). The inverse of λ0
gives us approximately the mean time to extinction (MTE) of the population as we show
next.

2.3.1 Mean time to extinction

After a time t, the probability a population is not extinct P(Te > t) is simply the sum over
all n > 0 of Pn,

P(Te > t) =
∑

n>0

Pn(t), (15)

and the probability distribution for extinction times is simply the (negative) time derivative
of P(Te > t). Suppose now that each Pn may be written as a sum of eigenmodes

Pn =
∑

m

Pnme
−λmt, (16)

such that the mean extinction time can be written as

T̄e = −
∑

n>0

∑

m

Pmn

∫ ∞

0
T

[
∂e−λmT

∂T

]
dT

= −
∑

n>0

∑

m

Pmn
1

λm
, (17)

where the second equality only holds when all λm > 0, i.e., there is no truly stationary
solution except certain extinction (P0|t=∞ = 1). The transient state is rapid compared to
the long-term quasi-steady decay of probability and so we may say that λ0 � λ1 < λ2,
etc. In other words, the sum over m above collapses to a single term, that of m = 0.
Furthermore, the eigenvectors Pmn are unit-normalized, such that the double summation
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reduces to a single inverse eigenvalue and the mean extinction is given by

T̄e ≈ λ−10 (18)

which is equivalent to our ascertain above.

2.4 Eigenvalue

We now compute the lowest eigenvalue numerically for a range of parameters. If Ā & 1, we
find that the mean extinction time decreases monotonically with α (Figure 4). However,
this is not the case we are interested in because such detrimental mean values make it
unlikely a population would exist in the first place and, furthermore, the transient solution
would become of significance in that case. Below, we consider only Ā < 1, where the mean
growth rate is not always negative, leaving room for stochastic periods of recovery. We
present the results in Figure 5.

We immediately point out that there exists an α corresponding to a minimum in the
mean extinction time. Such a minimum is reminiscent of several important results from
the literature. For example, from the field of cell biology, cell-differentiation is sometimes
thought to proceed by way of a transition from one stable state to another [7]. Theoretical
models have shown that noise-induced transitions between the states can be minimised by
autocorrelating the noise over some critical timescale [3]. The mean extinction time of a
metapopulation can be maximised in an analogous fashion by allowing some critical degree
of migration between populations [8].
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the minimum. We explain the origin of the minimum in the text.

The specific cases above are related to a more general problem - the mean first passage
time of a particle over a potential barrier whose height fluctuates between a high and a low
state [9]. Referred to as “Resonant Activation” (RA), the optimum stochastic frequency was
found to be similar to the time it takes to escape when the barrier is at its lowest. Returning
to our problem, the analogous conclusion would be that the worst α would correspond
with the extinction time in the bad state. We find numerically that this statement is
approximately correct at large A (with the agreement being better at larger K). However,
for A > 1 but not significantly so, a better approximation is to solve for the α that makes
the variance equal to the turnover time, or

σ2 =
2AĀa2

α(1 + ε)2

= a

→ αres ≈ 2AĀa

(
1− Ā

A

)−2
. (19)

We do not yet have a theory to explain this correspondence.

2.5 Origin of “resonance”

In Figure 5, we highlight the dominant influence upon extinction time as a function of α.
As α→ 0, the mean extinction time is the mean of the extinction time in the bad state and
good state [10]. Owing to the greatly reduced extinction time in the bad compared to the



good state, along with ε < 1, the mean extinction time in the small α limit simply becomes
approximately the extinction time in the good state, T̄−e .

Increase α such that its inverse α−1 . T̄−e and we enter the regime where a population
will not typically go extinct before it encounters a bad state. However, once the bad
state hits, with high probability, the population goes extinct before another good state is
encountered. Accordingly, the mean extinction time in this regime is roughly the mean time
to enter a bad state (1/εα), plus the extinction time in the bad state:

T̄e ∼ 1/εα+ T̄+
e . (20)

Eventually, α becomes sufficiently large that the most probable trajectory makes it through
at least one bad event, recovering during the subsequent good state. Accordingly, the mean
extinction time will begin to rise above the extrapolation of 1/εα+T̄+

e . The α at which such
a transition occurs corresponds approximately to the case when T̄+

e ≈ 1/α. Substituting
this condition into the small-α expression above, we arrive at an estimate for the minimum
extinction time

T̄ (min)
e ≈ T̄+

e

(
1 +

1

ε

)
. (21)

Unfortunately, this approximation is only good to within an order of magnitude or so.
One more regime may be described analytically: the limit α → ∞. In this regime,

the environment switches so rapidly that the population only “sees” the mean value of

environmental forcing Ā. Accordingly, the extinction time T̄
(∞)
e corresponds with that which

would be calculated in a stationary environment where δn is modulated by Ān. Notice that

there is no guarantee in general that T̄
(∞)
e > T̄

(min)
e , as is apparent from Figure 4. Rather,

a minimum exists only if the mean state is sufficiently favourable, or, that increasing α
above αres allows the population sufficient time to recover in the good periods, otherwise,
increasing α is monotonically more detrimental.

2.6 Implications/Applications

The existence of a minimum extinction time is of potential significance in a variety of
ways. First, our results suggest that even stochastic forcing can lead to selection upon a
population’s reproductive timescale. Recall that all times here are essentially scaled by a,
the organism’s life cycle turnover rate. If the population is forced at αres, it can increase its
mean extinction time by changing a, with an increase in a corresponding with movement
to the left in Figure 4. This result is interesting because, naively, one would not expect a
population to be able to adapt in this way because its biology cannot ‘know’ when the next
bad event will occur.

On a longer timescale, the existence of a ‘most catastrophic catastrophe’ at αres implies
an important realisation. Of all extinctions throughout evolution history, it appears that
to a first approximation, more populations have been removed by fluctuations over roughly
the timescale of a life-cycle than any other timescale, though exactly what that timescale
is depends upon the species. Considering annual life cycles, fluctuations on a year to year
timescale, such as droughts or ice extent, have removed more populations than extremely
rare events such as the bollide impact that sealed the dinosaurs’ fate. However, as far as



recovery goes, the aftermath of a mass extinction probably leads to qualitatively differ-
ent evolutionary trajectories than occur subsequent to the various background extinctions
trickling in as a result of stochastic forcing at αres.

Also of significance, global warming is thought increase the frequency of extreme events.
An important issue is knowing how these changes may impact different species. This work
suggests that each species’ life-cycle timescale is crucial to understanding their extinction
risks. For example, as the frequency of events changes, it may enter the resonance of some
species, whilst leaving the resonance of others, actually reducing their extinction risks.

The final implication we mention here is with regard to treating infectious diseases. An
extinction is good when it means wiping out an illness. Suppose multiple populations are
infected by a pathogen, for which treatment is available, but only at a limited supply rate.
An important question is how to best distribute the medicine to minimise the extinction
time - the time it takes to wipe out the disease. The minimum here may inform how to
best go about such treatments.

3 Continuum Limit and Fokker-Planck Approximation

In the form thus far adopted, i.e., discrete population numbers, we are unable to write down
any simple, closed-form expressions for extinction times. However, we highlighted several
regimes where the extinction time of the full system was dominated by the plus state, the
minus state, or some well-defined combination thereof. Analytic approximations for these
extinction times may be obtained, but only in large-K limit. In such a limit, we may
approximate the population size as a continuum, thereby re-casting the master equation in
terms of a Fokker-Planck equation, from which, the mean extinction time may be drawn.
It must be cautioned that the continuum results will not be quantitatively the same as the
discrete problem [10], but in most cases the general qualitative nature is preserved.

Above, the population may be thought of as occupying one of a semi-infinite number of
“steps” n at any one time. Now suppose we define a new variable

x ≡ n

K
, (22)

such that the space between steps is reduced by a factor K. If we make K large, meaning
that the equilibrium population size is large, the space of x becomes closer to a continuum.
The continuum version of the master equation is derived by considering that probability
may flow into position x from other x′ at a rate W (x−x′)R(x′)ρ(x′), but flow out at a rate
R(x)ρ(x), with ρ(x) taking the place of Pn as the probability density function. It evolves
according to the equation

dρ(x)

dt
= −R(x)ρ(x) +

∫ ∞

0
R(x′)W (x− x′)P (x′)dx′. (23)

Upon comparison with the birth-death process above, we see that the function W (x − x′)
forces probability to only flow between nearest neighbours, corresponding to an interval
∆x = 1/K. Accordingly, W takes the form of two Dirac delta functions, one at x + 1/K
and one at x− 1/K. We may now integrate equation 23, then perform a Taylor expansion



to order O(1/K)2 about x such that

dρ(x)

dt
≈ ∂

∂x

[
− f(x) +

1

2K

∂

∂x

(
g2(x)

)]
ρ(x) (24)

where we have defined the “drift” f(x) and “diffusion” g(x) using the continuous analogues
of δn and βn above:

f(x) = β(x)− δ(x) g(x)2 = β(x) + δ(x)

= ax(1−A− x) = ax(1 +A+ x). (25)

The Fokker-Planck equation and functions f(x) and g(x) make be applied to the good state
by setting A = 0, the bad state using A = A and the mean, large-α limit using A = Ā.
Within each of these regimes, we may calculate an approximate expression for the MTE.
However, the functional form of the solution depends upon whether A > 1 or A < 1. We
do not consider the case where A ∼ 1.

3.1 Asymptotic solutions

In what follows, we solve for the MTE by supposing that the PDF is stationary, but that
there exists a current at x→∞ that is balanced by extinctions at the origin. The equation
to to solve is

∂ρ

∂t
= − ∂

∂x

[
a x (1−A− x) ρ

]
+

1

2K

∂2

∂x2

[
a x (1 +A+ x) ρ

]
(26)

which we rewrite as

∂ρ

∂t
= − ∂

∂x

[
u(x) ρ

]
+

1

2K

∂2

∂x2

[
v(x) ρ

]

= −∂J
∂x

(27)

We now solve the steady-state equation to extract the conserved current

J = − 1

2K

∂

∂x

[
v(x)ρ(x)

]
+ u(x)ρ(x), (28)

which has the general solution

ρ = −2KJ

a

1

x(x+ 1 +A)
e2KF(x)

∫ x

0
e−2KF(x

′)dx′, (29)

where

F(x) ≡
∫
u(x)

v(x)
dx =

∫
1−A− x
1 +A+ x

dx

=

∫ [
− 1 +

2

1 +A+ x

]
dx

= −x+ 2 ln(1 +A+ x)

(30)



and so the solution for ρ reads

ρ =
2KJ

a
e2K(2 ln(1+A+x)−x) 1

x(x+ 1 +A)

∫ x

0
e−2K(2 ln(1+A+x′)−x′)dx′. (31)

The current J is obtained by requiring that the integral over all space of the PDF is unity:
∫ ∞

0
ρ dx = −2KJ

a

∫ ∞

0
e2K(2 ln(1+A+x)−x) 1

x(x+ 1 +A)

∫ x

0
e−2K(2 ln(1+A+x′)−x′)dx′dx

= 1 (32)

We cannot solve this equation exactly, however, we may make progress by analysing the
large K case. Specifically, where F(x) is positive, exp(2KF(x)) is very large and vice versa,
such that we can approximate which regions of the integral make the largest contribution.
The expansions must be carried out separately for A > 1 and A < 1. The reason is
that when A is smaller, ρ will be Gaussian-like about x = 1 − A, where the deterministic
dynamics would reach a stead state. However, if A > 1, this argument breaks down because
the deterministic dynamics do not possess a steady solution and the PDF becomes pressed
up against the origin. The integral above behaves very differently within these two regimes

3.1.1 Calculation for A < 1

We begin with A < 1, such that the PDF has a Gaussian-like peak around x = 1 − A.
The second integrand (the one over x′ in 31) is approximately constant within the region
of interest (under the Gaussian). More precisely,

∫ x

0
e−2K(2 ln(1+A+x′)−x′)dx′ ≈

∫ x

0
e−4K ln(1+A)

∫ ∞

0
e−2K

1−A
1+Ax

′
dx′

= e−4K ln(1+A) 1

2K

1−A
1 +A . (33)

Therefore, the integral becomes

1 ≈ − 1

2K

1 +A
1−Ae

−4K ln(1+A) 2KJ

a

∫ ∞

−∞

1

2(1−A)
e2K(2 ln(2)−1+A)e−

1
2
Ky2dy

= − J

2a

1 +A
(1−A)2

e2K(2 ln 2−1+A−2 ln(1+A)
√

2π

K

→ J = −
√
Ka

(1−A)2

1 +A

√
2

π
e−2Kc1

c1 ≡ 2 ln 2− 1 +A− 2 ln(1 +A), (34)

and so the mean extinction time

−J−1 ≈ 1 +A
a(1−A)2

√
π

2K
exp

(
2K[2 ln 2− 1 +A− 2 ln(1 +A)]

)
(35)

with the most crucial result being the square root combined with an exponential. This
expression, for A < 1, is most applicable to the good state and the mean states.



3.1.2 Calculation for A > 1

We return to the original equation to solve:

∫ ∞

0
ρdx = −2KJ

a

∫ ∞

0
e2K(2 ln(1+A+x)−x) 1

x(x+ 1 +A)

∫ x′

0
e−2K(2 ln(1+A+x′)−x′)dx′dx,

(36)

where, this time, A > 1 and so the PDF is pressed up against x = 0 (see numerics for
P+). Accordingly, the second integral will receive most of its contribution from x ≈ 0. The
first integral must again be expanded about small x′ but is no longer approximately
constant within the region of interest. Accordingly, we expand the exponent but do not
approximate it as linear in x:

∫ x

0
e−2K(2 ln(1+A+x′)−x′)dx′ ≈

∫ x

0
e−4K ln(1+A)e−2K

1−A
1+A

x′dx′

= e−4K ln(1+A) 1 +A

1−A
1

2K

(
1− e−2K

1−A
1+A

x

)
. (37)

We deviate once again from the A < 1 case by expanding the exponential term in small x
rather than about the maximum in x (because the maximum is now at x < 0). Specifically,
we approximate

e2K(2 ln(1+A+x)−x) ≈ e4K ln(1+A)e2K
1−A
1+Ax (38)

which after substitution yields

1 ≈ −J
a

1 +A
1−A

∫ ∞

0

1

x(1 +A+ x)

(
e2K

1−A
1+Ax − 1

)
dx, (39)

which is a relatively simple form as some exponential terms have cancelled out.
Next, we define the positive quantities

B ≡ A− 1

A+ 1

λ ≡ 2K(A− 1) (40)

and a positive variable

ξ ≡ 2KBx (41)

such that the integral becomes

1 ≈ J

a
2K

∫ ∞

0

1

ξ(ξ + λ)

(
e−ξ − 1

)
dξ. (42)

Integrating by parts:

a

2KJ
≈ 1

λ

∞

0

[
ln

(
ξ

ξ + λ

)
(e−ξ − 1)

]
+

1

λ

∫ ∞

0
ln

(
ξ

ξ + λ

)
e−ξdξ. (43)



whence the boundary term vanishes, leading to the compact integral

a

2KJ
≈ 1

λ

∫ ∞

0
ln

(
ξ

ξ + λ

)
e−ξdξ. (44)

Adding and subtracting ln(λ) yields

aλ

2KJ
=

∫ ∞

0
ln

(
ξ

λ

)
e−ξdξ −

∫ ∞

0
ln

(
1 +

ξ

λ

)
e−ξdξ

= −γ −
∫ ∞

0
ln(λ)e−ξdξ −

∫ ∞

0
ln

(
1 +

ξ

λ

)
e−ξdξ

≈ −γ − lnλ−
∫ ∞

0

(
ξ

λ
+

ξ2

2λ2

)
e−ξdξ

= −γ − lnλ− 1

λ
− 1

λ2
. (45)

Finally, the mean extinction time, neglecting 1/K terms, becomes

−J−1 ≈ 1

a(A− 1)

(
γ + ln(2K(A− 1))

)
(46)
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fro small x0 rather than taken to be constant. Owing to these separate regimes, depending upon A, we now analyse
the form for ⇢ in these two regimes separately.

We must treat the integrals di↵erently depending upon whether A > 1 or A < 1. We begin with A < 1, such that
the pdf has a Gaussian-like peak around x = 1�A. The second integrand is approximately constant within the region
of interest (under the Gaussian). More precisely,

Z x

0

e�2K(2 ln(1+A+x0)�x0)dx0 ⇡
Z x

0

e�4K ln(1+A)

Z 1

0

e�2K 1�A
1+A x0

dx0

= e�4K ln(1+A) 1

2K

1 � A
1 + A (23)

which is approximately the area contained under the curve in figure ??.
Therefore, the integral becomes

1 ⇡ � 1

2K

1 + A
1 � Ae�4K ln(1+A) 2KJ

a

Z 1

�1

1

2(1 � A)
e2K(2 ln(2)�1+A)e�

1
2 Ky2

dy

= � J

2a

1 + A
(1 � A)2

e2K(2 ln 2�1+A�2 ln(1+A)

r
2⇡

K

! J = �
p

Ka
(1 � A)2

1 + A

r
2

⇡
e�2Kc1

c1 ⌘ 2 ln 2 � 1 + A � 2 ln(1 + A), (24)

and so the mean extinction time

J�1 ⇡ 1 + A
a(1 � A)2

r
⇡

2K
exp

�
2K[2 ln 2 � 1 + A � 2 ln(1 + A)]

�
(25)

with the most crucial finding being the square root combined with an exponential. This expression may used for
A < 1, most appropriate to the good state and the mean states. Before analysing the limiting cases, we now derive
the analogous solution for A > 1 before comparing to the discrete solution.

4.2. Calculation for A > 1

We return to the original equation to solve:

Z 1

0

⇢dx = �2KJ

a

Z 1

0

e2K(2 ln(1+A+x)�x) 1

x(x + 1 + A)

Z x0

0

e�2K(2 ln(1+A+x0)�x0)dx0dx. (26)

This time, A > 1 and so the pdf is pressed up against x = 0 (see numerics for P+). Therefore, the second integral
will receive most of its contribution from x ⇡ 0. The first integral must again be expanded about small x0 but is no
longer approximately constant within the region of interest. Accordingly, we expand the exponent but do not
approximate it as linear in x:

Z x

0

e�2K(2 ln(1+A+x0)�x0)dx0 ⇡
Z x

0

e�4K ln(1+A)e�2K 1�A
1+A x0

dx0

= e�4K ln(1+A) 1 + A

1 � A

1

2K

✓
1 � e�2K 1�A

1+A x

◆
. (27)

We deviate once again from the A < 1 case by expanding the exponential term in small x rather than about the
maximum in x (because the maximum is now at x < 0). Specifically, we approximate

e2K(2 ln(1+A+x)�x) ⇡ e4K ln(1+A)e2K 1�A
1+A x (28)

which after substitution yields

1 ⇡ �J

a

1 + A
1 � A

Z 1

0

1

x(1 + A + x)

✓
e2K 1�A

1+A x � 1

◆
dx, (29)

which is a relatively simple form as some exponent terms have cancelled out.
We define a positive quantities

6

B ⌘ A � 1

A + 1
� ⌘ 2K(A � 1) (30)

and a positive variable

⇠ ⌘ 2KBx (31)

such that the integral becomes

1 ⇡ J

a
2K

Z 1

0

1

⇠(⇠ + �)

✓
e�⇠ � 1

◆
d⇠. (32)

We now integrate by parts to obtain

a

2KJ
⇡ 1

�

1

0


ln

✓
⇠

⇠ + �

◆
(e�⇠ � 1)

�
+

1

�

Z 1

0

ln

✓
⇠

⇠ + �

◆
e�⇠d⇠. (33)

The boundary term vanishes and so the integral becomes fairly compact

a

2KJ
⇡ 1

�

Z 1

0

ln

✓
⇠

⇠ + �

◆
e�⇠d⇠, (34)

where we now add and subtract ln(�) to obtain

a�

2KJ
=

Z 1

0

ln

✓
⇠

�

◆
e�⇠d⇠ �

Z 1

0

ln

✓
1 +

⇠

�

◆
e�⇠d⇠

= �� �
Z 1

0

ln(�)e�⇠d⇠ �
Z 1

0

ln

✓
1 +

⇠

�

◆
e�⇠d⇠

⇡ �� � ln��
Z 1

0

✓
⇠

�
+

⇠2

2�2

◆
e�⇠d⇠

= �� � ln�� 1

�
� 1

�2
. (35)

Therefore, the mean extinction time, neglecting 1/K terms, becomes

�J�1 ⇡ 1

a(A � 1)

✓
� + ln(2K(A � 1))

◆
(36)

5. APPENDIX: MATRIX APPROACH

In what follows, we consider the Pn as N -dimensional vectors. From the master equation above, we may write

d

dt

✓
P+

n
P�

n

◆
=

✓
M+

mn � ↵I ✏↵I
↵I M�

mn � ↵✏I

◆✓
P+

n
P�

n

◆
, (37)

where we have already made the continuous-time approximation. The situation above has “+” corresponding to the
enhanced death rate state. However, our relatively simple choice of environmental impact facilitates a simplification
of the M matrix, similarly to what was done above. Accordingly, we define

M+
nm = Mnm � aAOnm (38)

and it is now worth making some explicit definitions in order to solidify dimensions, which is what the a is. Specifically,

�n =
a

K
n2 + aÃ(t)n

�n = an (39)

and so a measures the typical rate of births and deaths and is the parameter to be compared to ↵ as far as rates go.
The form above allows the environmental stochasticity in death rates to be factored in with birth rates but note that
it is okay for A > 0, making birth rates appear negative. All this means is that the environment is so bad that the
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Figure 6: Asymptotic solutions for extinction time in both cases A < 1 and A > 1. We ex-
clude the region near A as our expansions were not valid there. There is a reasonable degree
of matching between the two regimes, which could be improved by utilised an expansion of
A about unity.

Using the above expressions from extinction time, we may approximate the dynamics
of the full, environmentally-forced system in the α → 0, small α and α → ∞ limits. De-
termining whether a minimum extinction time exists or not requires a comparison between



the extinction time at αres and the extinction time at α→∞, which requires an expression
for the extinction time near A = 1, as this is where the numerics suggest the minimum
disappears. We do not yet have an expression in this regime. However, such a calculation
is fairly straight forward and becomes applicable in the case where low extinction times
characterise even the mean state.

4 Stochastic Calculus Form

The goal of this section is to obtain a stochastic differential equation that approximates
the evolution of the population size, which now takes the form of a stochastic variable
Xt

2. A well-known result is that the probability density function satisfying a Fokker-
Planck equation of the form 24, describes a trajectory given by the so-called Itô Stochastic
Differential equation

dXt = f(Xt)dt+
[
g(Xt)/

√
K
]
· dWt, (47)

where Wt describes a Weiner Process, whose time derivative produces delta-correlated Gaus-
sian White Noise. Notice that if we suppose K →∞, the equation aproaches a deterministic
differential equation with the population increasing simply as the different between births
and deaths (f(Xt)).

The form above suggests that the noise associated with random births and deaths is
intrinsically white, or at least can be modelled as such. More specifically, there exist two
different interpretations of stochastically-forced systems - Itô and Stratonovich. In the Itô
interpretation, one considers the system to be forced by noise that exactly satisfies both the
Martingale and Markovian conditions [11]. The former implies that the expectation value
at some future time equals the current state, whereas the latter suggests that the future
state depends only upon the current conditions. The Stratonovich interpretation supposes
that no real noise precisely satisfies these criteria and so deriving the noise term requires
considering some real noise before taking the white-noise limit. These two interpretations
yield different functional forms for the SDE.

Now suppose we wanted to add environmental forcing to the Itô SDE above. Owing
to the ‘realness’ of environmental forcing, it has previously been suggested that one adds
a noise term using Stratonovich calculus [12] thereby mixing the interpretations. In what
follows, we do not explicitly make this assumption, but rather, we derive an SDE describing
the environmentally forced situation, taking particular limits upon α. What we find is an
expression that appears to mix the Itô and Stratonovich interpretations, but only within
the appropriate limits, suggesting that merely postulating an extra, Stratonovich term is
not adequate in most scenarios.

4.1 Mixed interpretations

In order to proceed we must obtain an approximate solution for the full probability

Pn = P+
n + P−n , (48)

2As a convention, the subscript ‘t’ in the field of stochastic calculus refers to ‘as a function of time’, rather
than ‘time derivative’.



which is easier at first for the discrete case. To do so, we add the Master equations (10) to
obtain

dP+
n

dt
=
(
Mmn + aAOmn − αImn

)
P+
n + εαImn(Pn − P+

n )

dPn
dt

= MnmPn + aAOnmP
+
n . (49)

First, we define a matrix

Cmn ≡ −(Mmn + aAOmn − α(1 + ε)Imn), (50)

such that the master equation for the bad state becomes

dP+
n

dt
+ CmnP

+
n = ε α ImnPn. (51)

For convenience, we now make somewhat of an abuse of notation, using C in favour of Cmn,
in terms of which, the general solution to the equation above is

P+
n (t)− e−C(t−t0)P+

n (t0) = ε α

∫ t

t0

e−C(t−s)Pn(s)ds, (52)

where it must be remembered that C is subject to the rules of matrix algebra.
As noted above in the eigenvalue problem, we are interested in the quasi-steady be-

haviour. Accordingly, it is appropriate to take as our lower bound t0 → ∞, thereby elim-
inating the boundary term on the LHS. Furthermore, we may solve the integral on the
RHS by way of the following arguments. The matrix C possess a full spectrum of positive
eigenvalues, however, by taking the limit t0 → −∞, we are essentially stating that the
time-evolution of Pn is dominated by the lowest (in magnitude) eigenvalues. Consequently,
we may suppose that the integral over all past times s on the RHS obtains the majority of
its contribution from the recent past, i.e., small t−s. Accordingly, we Taylor expand about
s = t:

P (s) ≈ P (t) + (s− t)dP
ds

∣∣∣∣
t

+O(s− t)2. (53)

Upon substitution into the general solution (52) we integrate to arrive at the result

P+
n ≈ εα

(
C−1Pn + C−2

dPn
dt

)
. (54)

Finally, we may insert this expression into the master equation for Pn to obtain one single
equation for the dynamics, which after some rearranging, takes the form

dPn
dt

=

(
1− aAεαOmnC−2mn

)−1(
Mmn + aAεαOC−1mn

)
Pn. (55)

We now carry out similar Taylor expansions as before to obtain the continuum approx-
imation to the above equation. However, in addition, we suppose that α and A are large, a



condition satisfied by the white-noise limit of our chosen environmental forcing. The final
expression, up to terms with second derivatives, is

∂ρ(x, t)

∂t
≈ ∂

∂x

[
− ax(1− Ā− x) +

1

2K

∂

∂x

(
ax(1 + Ā+ x)

)]
ρ(x, t) +

1

2

∂

∂x

[
σ
∂

∂x
σ

]
ρ(x, t),

(56)

where the notation is such that all terms to the left of ρ(x, t) operate upon it. Here,
σ2 = a2A2ε/(α(1 + ε)2) is the variance of the noise.

There are two crucial things to note about the form above. First, if one truly considers
α = ∞, then the equation becomes that of the mean state. Importantly, the mean envi-
ronmental state acts upon the demographic stochasticity. However, with α large but finite,
an extra term arises on the right that has the form one would infer from a Stratonovich
interpretation of white noise with variance σ2. Accordingly, by prescribing a real source
of noise, we could extract the Stratonovich form, but only by making approximations that
exclude some of the more interesting aspects of the dynamics, i.e., the the minimum at αres.
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