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1 Introduction

A snail propels itself by deforming a layer of mucus beneath it via muscular contractions
in its foot muscle. This unique form of locomotion allows snails to traverse almost any
obstacle, including the ability to climb steep inclines. Throughout the snail kingdom, there
exist a number of variations for the pattern of muscular forcing used by the foot to activate
locomotion and in particular, the two main classes of snails, namely land snails and water
snails, have adopted two very different patterns. Water snails prefer a method in which
its foot applies a predominantly vertical force upon the mucus layer as a wave travelling in
the opposite direction to that of locomotion. This retrograde locomotion generates forces
in a similar manner to that of a peristaltic pump, whereby the forcing surface undergoes
significant perpendicular deformation. Land snails prefer a method that applies a wave of
tangential muscular contractions that travel in same direction to that of locomotion. Unlike
the retrograde case, this prograde locomotion involves significant tangential contraction of
the base of the foot muscle, and little vertical deformation. These processes involve a
rich mixture between the fluid mechanics of the mucus layer and its interaction with the
muscular and elastic mechanics of the snail’s foot.

A further complication is introduced by the non-Newtonian rheology of snail mucus,
which is known to have an appreciable yield stress, i.e, a minimum stress necessary to
deform it. Evolution has lead to this rheology because it allows the snail to remain adhered
to a steep incline without having to apply any force to counteract its weight. By selectively
forcing the mucus in a wave-like pattern, the snail is able to climb the incline without
slipping. In this report we investigate the two forms of snail locomotion outlined above,
and further attempt to quantify the role of yield stress in locomotion.

Studies of locomotion in fluids began with the seminal work of Taylor [4], who considered
the low-Reynolds number problem of a two-dimensional surface surrounded by a Newtonian
fluid, that swims by exerting a normal force as a wave travelling in the opposite direction
to that of locomotion. By performing a biharmonic analysis of the flow in the limit of
a low-amplitude forcing, he relates the velocity of locomotion to the parameters of the
forcing. This problem was generalized by Katz [3] to include a rigid wall lying parallel to
the swimmer, which he investigates using both the biharmonic approach of Taylor, and a
lubrication theory for the thin-gap limit. More recently, Balmforth, Coombs and Pachman
[1] extend this lubrication theory to cases involving non-Newtonian fluids in the thin-gap
geometry. This study, which considers the effect of a yield stress, is of relevance to the
process of retrograde snail locomotion. A model of prograde snail locomotion is investigated
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Figure 1: Schematic of the foot and mucus layer in retrograde locomotion.

by Chan, Balmforth and Hosoi [2], in which they model the foot by prescribing its tangential
displacement.

In this project, we begin in section 2 with an investigation into the process of retrograde
snail locomotion that extends the work of Balmforth et al. [1] by solving the system as an
initial-value problem, and further explores the effect of the elastic parameters of the foot on
the locomotion velocity. We show that the system converges toward a steady state, which
we proceed to study by solving the associated eigenvalue problem. From our solutions, we
identify a critical yield stress above which locomotion does not occur, and further relate
the locomotion velocity to the parameters of the system. In section 3, we consider the case
of prograde snail locomotion in which we extend the work of Chan et al. [2] by developing
a fully dynamic model with both a muscular forcing and a consideration of the elastic
mechanics of the snail’s foot. We proceed to study the resulting system numerically and
derive some analytical results.

2 Retrograde locomotion

2.1 The foot

We assume a configuration in which a layer of mucus of average height H, is confined
between the foot’s surface at ŷ = Ŷ (x̂, t̂), and a stationary rigid wall at ŷ = 0, as depicted
schematically in figure 1. The foot is assumed to be composed of a linear elastic material,
of average thickness d, that lies in contact with the main body of the snail at ŷ = H + d,
which we assume to be a rigid solid that is able to translate horizontally with velocity Û(t̂).
Further, we allow the foot to subject itself to forces via internal muscular contractions, which
lead to elastic deformation and hence provide a means to activate its motion. Analysis of
snail anatomy has shown that these contractions are produced by a series of muscular fibres
inclined at varying angles that lie anchored just inside the main body of the snail and the
base of the foot. By choosing the contraction pattern of these inclined fibres appropriately,
the snail is able to force different points of its foot’s surface in a variety of directions and
patterns.
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In retrograde locomotion, the contraction pattern is such that the resultant muscular
forces act predominantly normal to the interface between the mucus layer and the foot, as
shown in figure 1. Anatomical studies of snails have shown that the top surface of the foot
does not deform significantly into the main body of the snail. Thus, we assume that the
main body of the snail acts as a rigid foundation, such that the top surface of the foot does
not penetrate the main body above. Assuming the foot is very slender d ≪ L, where L is a
characteristic length scale for its horizontal variation, the leading-order pressure in the foot
is given by

p̂ = Âf(x̂, t̂) + D̂R(Ŷ − H), (1)

where Âf represents the muscular forcing, Â is the amplitude of the forcing, and D̂R is
the vertical stiffness coefficient that can be expressed in terms of the elastic parameters of
the foot. The elastic force, represented by the second term on the right-hand side of this
equation, provides a restoring force that is proportional to the perturbation of the thickness
profile from H. Thus, we can consider the surface of the foot to be equivalent to a sheet
attached to the main body of the snail via Hookean springs of equilibrium height d, as
illustrated in figure 1, where D̂R represents the Young’s modulus of the springs. Based on
observations of wave-like patterns of muscular contraction that propagate along the feet of
water snails, we assume a forcing of the form

f = f(kξ̂), (2)

where ξ̂ = x̂ + ct̂. For positive wave speed c, equation (2) corresponds to a wave travelling
in the negative x̂-direction, chosen in anticipation that this will lead to steady locomotion
in the positive x̂-direction.

The absence of significant tangential forcing implies that we can assume that the foot
undergoes negligible horizontal deformation to leading order. In this case, the horizontal
velocity of the entire foot is equal to that of the main body of the snail Û , so that the
velocity of the foot’s surface is given uniformly by

ûs = Û(t̂). (3)

Having established the fundamentals of the foot mechanics in retrograde locomotion, we
proceed to consider the fluid mechanics of the mucus layer, which we subsequently relate
to the elastic mechanics of the foot via boundary conditions imposed at the foot–mucus
interface.

2.2 The mucus layer

We assume that the mucus layer is composed of an incompressible yield-stress fluid that is
subject to forcing from the foot above. We proceed to detail a model for the yield-stress
rheology of the fluid, and then simplify the theoretical analysis of the resulting equations by
applying a lubrication approximation. The general equations of force balance and continuity
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Figure 2: Relationship between the moduli of the deviatoric stress and rate-of-strain tensors
for a Newtonian (a) and Bingham (b) fluid.

for an incompressible fluid of velocity û = (û, v̂), are given by

∇ · τ̂ = ∇p̂, (4)

∇ · û = 0, (5)

where τ̂ is the deviatoric stress tensor, and p̂ is the pressure. A constitutive relation that
relates the deviatoric stress to the deformation of the fluid is necessary to close the system.
The simplest model of a yield-stress fluid is the Bingham model, in which one applies the
constitutive relation

{

τ̂ = µγ̇ + τ̂Y γ̇/|γ̇| (|τ̂ | > τY ),
γ̇ = 0 (|τ̂ | < τY ),

(6a, b)

where γ̇ ≡ ∇û + (∇û)T is the rate-of-strain tensor, |γ̇| ≡ √
γ̇ : γ̇ and |τ̂ | ≡

√
τ̂ : τ̂ are

the moduli of the rate-of-strain and deviatoric stress tensors respectively, the constant τY

is the yield stress, and µ is the coefficient of viscosity. Relation (6b) ensures that the fluid
does not deform if the magnitude of the deviatoric stress at a point does not exceed the
yield stress. If the magnitude of the deviatoric stress does exceed the yield stress, then
relation (6a) implies that the magnitude of the deviatoric stress in excess of the yield stress
is linearly proportional to the deformation of the fluid γ̇. We sketch this relationship in
figure 2, in which we compare it to the Newtonian subcase τY = 0.

Part of the integration of the boundary-value problem defined by equations (4)–(6)
involves identifying the locations of yield surfaces where the magnitude of the deviatoric
stress tensor attains the yield stress. These surfaces provide boundaries for rigid regions of
unyielded fluid, called rigid plugs, in which the magnitude of the deviatoric stress tensor
does not exceed the yield stress. Apart from along the yield surfaces, the stress inside
these rigid plugs does not form part of the solution described by the Bingham model. The
presence of the non-linear yield-stress term in equation (6a), and the need to identify yield
surfaces, have the potential to make problems involving Bingham fluids especially difficult
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to investigate theoretically. However, given that the thickness of the mucus layer is much
less than the characteristic length scale L of its horizontal variation, we can simplify the
equations of motion substantially by making a lubrication approximation H ≪ L. Under
this assumption, a scaling analysis of the terms in equation (4) implies that the vertical
shear stress τ̂ = τ̂xy is much greater than the other components of the deviatoric stress
tensor. Furthermore, the scaling between horizontal and vertical velocity gradients given
by the continuity equation (5) implies that the flow is predominantly horizontal. Thus, to
leading order in the lubrication approximation, the horizontal and vertical components of
equation (4) simplify to

τ̂ŷ = p̂x̂, (7)

p̂ŷ = 0, (8)

respectively, while the continuity equation (5),

ûx̂ + v̂ŷ = 0, (9)

remains unchanged. Furthermore, the constitutive relation (6) can be simplified to

{

τ̂ = µûŷ + τY sgn(ûŷ) (|τ̂ | > τY ),
ûŷ = 0 (|τ̂ | < τY ),

(10a, b)

where the direction of deformation is given simply by the sign of the vertical shear sgn(ûŷ).
The reduced equations (7)–(8) represent a balance between the divergence of vertical shear
stress and the horizontal gradient of the pressure, which is independent of the vertical
coordinate at each x̂-location.

For retrograde snail locomotion, equations (7)–(10) are subject to the following no-slip
conditions on the upper and lower surfaces

û = Û(t̂) (ŷ = Ŷ ), (11)

û = 0 (y = 0), (12)

respectively. Furthermore, the equation for the pressure at the foot’s surface (1), combined
with continuity of normal stress, implies that the fluid pressure is given by

p̂ = Âf + D̂RŶ (ŷ = Ŷ ), (13)

to leading order in the lubrication approximation, where we have absorbed the constant
D̂RH into the pressure. Equation (8) implies that the pressure given by (13) applies
throughout the vertical extent of the layer at each x̂-location. In the following analysis,
we assume a sinusoidal muscular forcing of the form

f = sin[k(x̂ + ct̂)] = sin(kξ̂). (14)

Noting that this forcing can be considered steady with respect to the variable ξ, we proceed
to use ξ in favour of the x̂-coordinate. Thus, we recast the system in terms of (ξ̂, t̂), and
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transform partial derivatives according to

∂

∂x̂
7→ ∂

∂ξ̂
, (15)

∂

∂t̂
7→ ∂

∂t̂
+ c

∂

∂ξ̂
. (16)

We proceed to assume that all variables in the system are 2π-periodic in kξ̂.
On the assumption that the only surface force applied on the main body of the swimmer

is from the mucus layer, we can derive an equation for the acceleration of the main body of
the snail in terms of the tangential force applied by the mucus along the underside of the
foot,

M̂
dÛ

dt̂
=

k

2π

∫

2π/k

0

pŶξ̂ + τ̂s dξ̂ = 〈τ̂0〉, (17)

where M̂ represents the mass of the main body of the snail per unit wavelength, τ̂0 ≡
τ̂(ξ̂, 0, t̂), τ̂s ≡ τ̂(ξ̂, Ŷ , t̂), and the angled brackets denote the average 〈φ〉 ≡ k

2π

∫

2π/k
0

φ dξ̂.
The second equality in (17) is derived by applying integration by parts to the pressure term,
and using equations (7)–(8) to rewrite the resulting integrand in terms of the stress at the
lower surface.

We can derive an evolution equation for the thickness profile by depth-integrating the
continuity equation (24) over the thickness of the layer, to yield

∂Ŷ

∂t̂
+

∂q̂

∂x̂
= 0, (18)

or in terms of (ξ̂, t̂),

∂Ŷ

∂t̂
+

∂Ŷ

∂ξ̂
+

∂q̂

∂ξ̂
= 0, (19)

where the flux is defined by q̂(ξ̂, t̂) =
∫ Ŷ
0

û dŷ.
We non-dimensionalize the system above according to

ξ̂ =
1

k
ξ, ŷ = Hy, Ŷ = HY, t̂ =

1

kc
t,

û = cu, Û = cU, τ̂ =
µc

H
τ, p̂ =

µc

kH2
p.

(20)

where dimensionless variables are denoted without the hat symbol. In terms of dimensionless
variables, equations (7)–(8) become

τy = pξ, (21)

p = A sin ξ + DY, (22)
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respectively, and the constitutive relation (6) becomes

{

τ = uy + Bsgn(uy) (|τ | > B),
uy = 0 (|τ | < B).

(23a, b)

The equations of average thickness and depth-integrated continuity become

〈Y 〉 = 1, Yt + Yξ + qξ = 0, (24)

the boundary conditions (11)–(12) become

u = U(t) (y = Y ), (25)

u = 0 (y = 0), (26)

and the equation-of-motion of the body (17) becomes

U̇ =
1

M
〈τ0〉, (27)

where

A =
kH2Â

µc
, D =

kH3D̂R

µc
, B =

HτY

µc
, M =

HckM̂

µ
, (28)

are the non-dimensional amplitude, non-dimensional stiffness, Bingham number, and non-
dimensional mass of the main body per unit wave length, respectively. The Bingham number
can be considered a non-dimensional yield stress.

The system above defines an initial-value problem for the evolution of the free boundary
Y (ξ, t) and the locomotion velocity U(t). To solve it, we can integrate equations (21)–(23)
subject to the boundary conditions (26)–(25) for the velocity profile, given Y (ξ, t) and
U(t) at each point in time. With the velocity profiles in hand, we evolve the thickness in
time using equation (24), and the locomotion velocity using equation (27), in which the
surface stress τ0 is established as part of the integration for the velocity profiles. The main
complication in the above procedure is the construction of the velocity field for a given
Y (x, t) and U(t), which we proceed to detail in the following section.

2.3 Construction of the flow profiles

To begin, we can integrate equation (21) with respect to y to yield

τ = τ0 + pξy, (29)

where τ0 is an as yet undetermined function of ξ. This expression for the stress applies
in any yielded parts of the flow. Combining equation (29) with the component of the
constitutive relation (23a) associated with the yielded regions, provides an equation for the
velocity profile in the yielded regions,

uy = τ0 + pξy − Bsgn(uy). (30)
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Integrating this equation provides

u = 1

2
pξy

2 + [τ0 − Bsgn(uy)]y + K, (31)

where K is a constant of integration, which shows that the velocity profiles in the yielded
regions of the flow are parabolae.

As part of the solution of the velocity profiles, it is also necessary to determine the
locations of any yield surfaces where |τ | = B, which provide the boundaries of any unyielded
regions of the flow governed by (23b). We can identify two potential yield surfaces y = η±
by setting τ = ±B in equation (29) to give

η± =
τ0

pξ
± B

|pξ|
, (32)

where the modulus of the pressure gradient has been used in the second term on the right-
hand side to ensure that η+ > η− independently of the sign of the pressure gradient. We
refer to η± as potential yield surfaces because it is possible for one, or both, of η± to lie
outside the domain of the fluid. Equation (32) implies that there exists a region η− < y < η+

in which the velocity is independent of the vertical coordinate. Within these regions, the
flow is dominated by the yield stress to leading-order in lubrication theory and thus exhibits
plug-like characteristics in the vertical direction. We remark that these regions are not true
rigid plugs unless their velocity is also independent of the ξ-coordinate. Thus, we refer to
regions bounded by the yield surfaces as pseudo-plugs if they are not strictly rigid.

By adding and subtracting the expressions for the potential yield surfaces (32) we deduce
that

η+ + η− =
2τ0

pξ
, η+ − η− =

2B

|pξ|
, (33a, b)

respectively. The latter of these equations provides the width of the pseudo-plug if it lies
fully inside the domain, or a maximum for its width if it intersects one of the side walls. The
former can be used to relate the positions of the potential yield surfaces to the unknown τ0.

As mentioned above, it is not necessarily the case that the potential yield surfaces
given by equation (32) lie inside the domain of the fluid 0 < y < Y . For example, if
η+ > 0 and 0 < η− < Y , then there exists a pseudo-plug in the region η− < y < Y
that intersects the upper surface. In this case the velocity of the pseudo-plug is equal
to the velocity of the side wall it is in contact with and the construction of the velocity
profile is different to, for example, the regime in which the pseudo-plug lies fully inside the
domain. Thus, the different arrangements arising from whether or not one or both of the
potential yield surfaces lie inside the domain require consideration on a case-by-case basis.
We summarize the equations for the five possible arrangements in appendix A. For the
purposes of demonstration, we proceed to construct the velocity profile for regime C, in
which the potential locations of the yield surfaces lie inside the boundary of the domain
0 < η± < Y .

We note, by substituting τ = ±B into the constitutive relation (23a), that

uy = 0 (y = η±), (34)
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on the boundaries of the pseudo-plugs, i.e. the vertical gradient of the velocity is continuous
at the potential yield surfaces. Combining this condition with the equation for the parabolic
profiles in the yielded regions given by (31), we can write down a profile of the form

u =







up + 1

2
pξ(y − η+)2 (η+ < y < Y ),

up (η− < y < η+),
up + 1

2
pξ(y − η−)2 (0 < y < η−),

(35)

where the plug velocity up = −1

2
pξη

2
− is established on applying condition (26). We deter-

mine the remaining unknown in the profile by applying the no-slip condition at the upper
interface (25) to give

U = 1

2
pξ[(Y − η+)2 − η2

−]. (36)

Using equation (33b) to eliminate η− in this equation, and rearranging for the location of
the upper yield surface, provides

η+ =
p2

ξY
2 − 2Upξ − 4B2

2|pξ|(Y |pξ| − 2B)
. (37)

The lower yield surface is then given by

η− = η+ − 2B

|pξ|
, (38)

using equation (33b). Having established the velocity profile (35), we can now derive the
flux

q = 1

6
pξ[(Y − η+)3 + η3

− − 3η2
−Y ], (39)

which can be used in equation (18) to find the rate-of-change of the thickness profile at
each ξ-location. For the evolution of the locomotion velocity, we calculate the integral on
the right-hand side of equation (27) using the expression

τ0 = 1

2
pξ(η+ + η−), (40)

which is given by rearranging equation (33a).
As shown in appendix A, different regimes have different expressions for the potential

yield surfaces. Thus, in constructing the flow profile we determine the regime at a particular
ξ-location by calculating the potential yield surfaces in all regimes and then choose the one
that is consistent with the regime definition. Note that although the potential yield surfaces
for regimes A and E are not used in the expressions for the velocity profiles or fluxes, they
are still relevant in the equation for τ0 given by (40), which we use to evaluate the right-hand
side of equation (27).

2.4 Initial-value problem

We solve the initial-value problem described by equations (21)–(27) numerically by applying
the Matlab time-integrator ode15s, and using fast Fourier transforms to evaluate spatial
derivatives. At each step of the time integration, we evaluate the pressure field using
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Figure 3: Locomotion velocity as a function of time in the cases (a) A = 1, B = 0.1, D = 1,
M = 1, (b) A = 1, B = 0.14, D = 1, M = 1, (c) A = 1, B = 0.1, D = 3, M = 1, and (d)
A = 1, B = 0.1, D = 0, M = 1.

equation (22), construct the flow profiles using the formulae in appendix A, and use the
resulting flux to determine the rate-of-change of the thickness profile using equation (18).
Further, we use the formulae for η± given in appendix A to evaluate the surface stress τ0

using equation (40), which we then use to determine the rate-of-change of the locomotion
velocity using equation (27). Our solutions for the evolution of the locomotion velocity in
the four cases (a)–(d) defined by

(a) A = 1, B = 0.1, D = 1, M = 1
(b) A = 1, B = 0.14, D = 1, M = 1
(c) A = 1, B = 0.1, D = 3, M = 1
(d) A = 1, B = 0.1, D = 0, M = 1

in which we apply the initial conditions

Y = 1
U = 0

}

(t = 0), (41)

are shown in figure 3. The corresponding evolutions of the thickness profiles in cases (a)
and (b) are shown in the space-time plots of figure 4.
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Figure 4: Space-time plots of the evolution of the thickness profile Y (ξ, t) for cases (a)
A = 1, B = 0.1, D = 1, M = 1, and (b) A = 1, B = 0.14, D = 1, M = 1.
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For case (a), we observe an initial transient during which the locomotor remains station-
ary for a short period after its muscles are activated. Although the locomotor is stationary
during this initial phase, its thickness profile is strongly time-dependent, as indicated by the
space-time plot in figure 4(a). At t ≈ 1.2, the locomotor rapidly accelerates to a maximum
velocity in the first half of the forcing period, and subsequently decelerates back to U = 0.
After completing a secondary phase of no locomotion, the locomotor subsequently remains
in forward motion with a velocity that converges toward a steady value. The oscillation
of the locomotion velocity is due to a periodic change in the direction of the tangential
stress on the locomotor due to the muscular force wave as it propagates along the foot. By
comparing solutions (a) and (c), we observe that a larger stiffness has the effect of reducing
the amplitude of the oscillation. In case (d), in which the foot is perfectly inelastic, the
locomotor does converge quickly toward a steady state, and appears to remain in a neutrally
stable oscillation for all time.

In the limit of large stiffness and large amplitude, the dominant balance in the pressure
equation (22) is between the muscular forcing and the stress due to elastic deformation,
which recovers the case of imposing the displacement of the foot surface. In this case it is
clear that increasing the stiffness has the same effect as reducing the amplitude. Thus, one
could hypothesize that increasing the stiffness always reduces the steady-state locomotion
velocity. However, we observe that the steady-state velocity of case (c) is greater than that
of case (a). This suggests that it is possible to improve locomotion by using a stiffer material
where the resultant force due to the muscular forcing and elastic stress is more efficient at
creating the tangential stresses on the lower surface of the foot that leads to locomotion.

The observed regions of no locomotion can be explained on the basis that after its inertia
vanishes, the locomotor must wait until the muscular and elastic forces can break the yield
stress at each ξ-locomotion in order to restart. In case (b), which has a greater Bingham
number than case (a), we observe that the locomotor goes through a similar initial transient
to that of case (a) but fails to restart on the second oscillation, subsequently converging
to a steady state with no locomotion. Thus, we can identify a critical Bingham number
B∗(A, D) that lies between the Bingham numbers of cases (a) and (b), which defines the
value above which no locomotion occurs in the steady state. We observe from the space-
time plot of figure 4(b) that after the locomotor becomes stationary, its thickness profile
continues to evolve in time and converges toward a steady-state in a similar manner to that
of case (a). Curiously, the locomotor in case (b) has been able to translate forwards despite
it coming to a standstill in the steady state, which suggests that it could still be able to
locomote by reducing its amplitude over time and then suddenly restarting it at periodic
intervals. We proceed to focus our attention on the eventual steady states of the system, in
which we identify the value of the critical value B∗.

2.5 Steady state

The steady states of the system can be established directly by considering the equations
in the case where the time-derivatives are set to zero. In this case, the thickness evolution
equation (19) becomes

∂

∂ξ
(Y + q) = 0, (42)
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Figure 5: Steady-state profiles in cases (a) A = 1, B = 0.1, D = 1, and (b) A = 1, B = 0.14,
D = 1. Regions of unyielded fluid are shown in blue.

339



0 0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

0.02

0.025

 

 

B

B∗

U

Q

Q in peristalsis

Figure 6: Steady-state locomotion velocity (red), flux (blue), and flux with a fixed locomotor
(green), which is relevant to the process of peristalsis, for different values of the Bingham
number, in the case A = 1, D = 1.

which integrates to give
Y + q = 1 − Q, (43)

where Q is the steady-state flux in the negative ξ-direction. This equation defines an eigen-
value problem for the unknown steady-state thickness profile Y , and the two eigenvalues Q
and U , for which we apply the two constraints

〈Y 〉 = 1, (44)

〈τ0〉 = 0, (45)

given by the mean thickness condition (24) and the steady form of (27), respectively. We
solve this eigenvalue problem numerically using a Newton-Raphson iteration scheme. Noting
that trial profiles converge rapidly to the Newtonian case B = 0, we initialize the scheme
with the Newtonian case and progressively increment B in sufficiently small steps to allow
convergence at each step.

Our solutions for the steady-states in cases (a) and (b) are shown in figure 5, and the
relationships between the locomotion velocity, flux and Bingham Number in the case A = 1,
D = 1, are shown in figure 6. In case (b), which lies in B > B∗, there is no locomotion in the
steady state. We see from 5(b) that the thickness profile becomes raised and depressed near
the points ξ = 0 and ξ = π, respectively, which correspond to regions where the pressure
gradient attains its maximum and minimum values. Furthermore, the yield surfaces touch
both the upper and lower boundaries close ξ = π/2 and ξ = 3π/2, which are regions where
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the pressure gradient becomes close to zero and subsequently changes sign. The plugs in
these regions span the vertical extent of the layer, which explains why the locomotor must
remain stationary. Although there is no locomotion, there is still fluid motion in the yielded
parts of the C-regions, which leads to a net pumping of fluid in the negative ξ-direction.
Note that although q = 0 in the rigid plugs, it is the steady flux in the wave frame q + Y
that is uniform in the above solutions, so it clear that a net transport of fluid is possible
with fluid crossing the yield surfaces. In cases such as this in which the locomotor does
not move, we can think of the system as being equivalent to that of a peristaltic pump, in
which a condition of no horizontal translation on the upper surface would be imposed at all
times.

We observe from figure 6 that the flux eventually vanishes at another critical value of
the Bingham number. This can be verified by noting that fluid motion stops when the yield
surfaces of the C-regions touch the boundaries of the domain everywhere, which first occurs
when η+(π) = 1. Thus, by setting U = 0 in equation (88) of appendix A, we deduce that

1

2
Y +

B

|pξ|
= 1, (46)

at ξ = π, on simplification. Further, noting that Y is uniformly equal to one in the fully
unyielded steady-state system, equation (22) implies that the pressure gradient at this point
is given by pξ(π) = −A. Substituting this value into equation (46) provides the critical value

B = 1

2
A. (47)

The steady state profile for case (a), displayed in figure 5(a), shows that the pseudo-
plugs near ξ = π/2 and ξ = 3π/2 do not fully span the vertical extent of the layer. Thus,
the locomotor is able to break the yield stress at each ξ-location, leading to a positive
locomotion velocity. Figure 6 shows that the locomotion velocity increases as the Bingham
number is reduced from B∗, with slow growth in the vicinity of B∗, and approximately linear
growth near the Newtonian case B = 0. In figure 6, we also compare the corresponding flux
in the steady state to that of the peristaltic case, which shows that as the Bingham number
is decreased from B∗, the flux soon starts to decrease, but the flux in the peristaltic case
continues to increase.

3 Prograde locomotion

3.1 The foot

The defining difference between retrograde and prograde locomotion is given by whether
the resultant forcing applied by the foot muscle is predominantly tangential or normal to
the surface of the foot. For prograde locomotion, we assume that the contraction pattern
of the inclined muscular fibres in the snail’s foot is such as to provide a predominantly
tangential resultant force at the base of the foot. In this case equations (1)–(3), which were
relevant in the retrograde case, no longer apply. Assuming that the main body of the snail
acts as a lubricated rigid foundation that does not allow vertical penetration but does allow
tangential slip with a no-stress condition, it can be shown that the elastic deformation of
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Figure 7: Schematic of the foot and mucus layer in prograde locomotion.

the foot is predominantly horizontal to leading-order in d ≪ L. Thus, we assume that the
base of the foot can undergo significant tangential contraction so that, unlike the retrograde
case, we do not impose the condition that the base of the foot moves with the locomotion
velocity (3). Instead, we impose a tangential-stress condition,

τ̂ = Âf(x̂, t̂) + D̂P ûsx̂, (48)

where Âf is the tangential muscular forcing, Â is the amplitude of the forcing, and the
stiffness coefficient D̂P can be related to the elastic properties of the foot. The latter term
on the right-hand side of this equation represents the elastic force derived from the relative
compression of neighbouring points on the foot’s surface. Thus, we can think of the foot as
a large collection of vertical sections joined by Hookean springs, as illustrated in figure 7.
Motivated by observations, we assume a travelling-wave forcing of the form

f = f(kξ̂), (49)

where ξ̂ ≡ x̂ − ct̂. For positive wave speed c, this corresponds to a wave that propagates
in the positive x̂-direction, chosen in anticipation that this will lead to locomotion in the
positive x̂-direction.

The absence of significant vertical deformation implies that we can assume that the
surface of the foot remains in its vertical equilibrium position

Ŷ = H, (50)

at all times. Assuming that the muscular fibres of the foot are anchored inside the main
body of the snail, we can define the locomotion velocity of the main body of the snail as
the average of the surface velocity,

Û = 〈ûs〉. (51)

The equations above describe the mechanics of a snail’s foot undergoing prograde locomo-
tion. We proceed to consider the dynamics of the mucus layer due to the new conditions
(48)–(51), and highlight the differences to the retrograde case.
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3.2 The mucus layer

In the prograde case, the mechanics of the mucus layer is complicated by the fact that there
is no longer a simple expression for the pressure, but is simplified by the fact that it is
no longer necessary to evolve the thickness profile in time. The equations of force balance
and continuity (7)–(10) are equally relevant in the prograde case, but we no longer assume
the surface velocity condition (11) or the pressure condition (13). Instead, equation (48)
combined with continuity of tangential stress at the foot’s surface, provides a shear-stress
condition

τ̂ = τ̂s = Âf + D̂P ûsξ̂ (ŷ = H). (52)

We can non-dimensionalize the relevant equations (7), (8), (10), (12), (19), (50) and
(52) according to

ξ̂ =
1

k
ξ, ŷ = Hy, Ŷ = HY, t̂ =

1

kc
t,

û =
HÂ

µ
u, τ̂ = Âτ, p̂ =

Â

kH
p,

(53)

where dimensionless variables are denoted without the hat symbol. The resulting non-
dimensional equations of force balance are

τy = pξ, (54)

py = 0, (55)

with constitutive relation,

{

τ = uy + Rsgn(uy) (|τ | > R),
uy = 0 (|τ | < R),

(56a, b)

and boundary conditions,

τ = τs = f + Dusξ (y = 1), (57)

u = 0 (y = 0). (58)

The thickness and depth-integrated continuity equations are given by

Y = 1, qξ = 0, (59)

respectively, where in the equations above,

R =
τY

Â
, D =

kHD̂P

µ
, (60)

are the yield-stress–amplitude ratio, and the non-dimensional stiffness, respectively. The
non-dimensionalization above shows that the absence of a scaling between the rate-of-change
of the thickness profile and the divergence of flux in the depth-integrated continuity equation
(59) implies that unlike the retrograde case, it has been possible to incorporate the yield
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stress and amplitude into a single parameter R. We remark that the limit of large stiffness
recovers the case of imposing the tangential displacement of the foot’s surface.

3.3 Eigenvalue problem

The depth-integrated continuity equation (59) can be integrated to give

q = Q, (61)

where Q is the flux of fluid in the positive ξ-direction. Thus, the prograde system has been
reduced to an eigenvalue problem for the unknown pressure gradient pξ and eigenvalue Q,
that we solve subject to the periodicity constraint

〈pξ〉 = 0. (62)

As in the retrograde case, the main complication is in the construction of the velocity
profiles when a yield stress is present. However, before discussing the effects of yield stress,
we begin by considering the simpler Newtonian case.

Newtonian solution

In the Newtonian case R = 0, we can relate the flux Q and locomotion velocity U to the
forcing function analytically. To show this, we begin by integrating equation (70), with the
constitutive relation (56) with R = 0, to give the parabolic velocity profile

u = 1

2
pξy

2 + (τs − pξ)y, (63)

in which we have applied the condition of no-slip at the base (58). The associated formula
for the flux is then given by

q = 1

2
τs − 1

3
pξ = Q, (64)

which is uniformly equal to Q according to (61). Taking the ξ-average of this equation
yields

Q = 1

2
〈τs〉, (65)

on applying the continuity constraint (62). Substituting the expression for the surface stress
(57) gives

Q = 1

2
〈f + Dusξ〉 = 1

2
〈f〉, (66)

noting that the average of the elastic term vanishes. Thus, we have established the flux in
terms of the imposed tangential forcing. To determine the associated locomotion velocity,
we evaluate the velocity of the fluid at the surface by setting y = 1 in equation (63) to give

us = τs − 1

2
pξ. (67)

Now, taking the ξ-average of this equation yields

U = 〈us〉 = 〈τs〉 = 〈f + Dusξ〉 = 〈f〉, (68)
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on noting again that the average of the elastic term is zero.
Expressions (66) and (68) show that both the flux and the locomotion velocity are

linearly related to the mean value of the imposed forcing function f . Thus, we are motivated
in our analysis of the non-Newtonian case to prescribe a forcing with a non-zero mean. In
this regard, we proceed to impose

f = sin2 ξ, (69)

which has mean value 〈f〉 = 1

2
. We remark that in adopting this forcing, it is not possible

to balance the tangential stress exerted on the main body of the snail without the snail
placing the front or back of its foot in contact with the ground to provide a frictional force
to balance that of the muscular contractions. The resulting process of locomotion is similar
to that of an inchworm, which is known to be adopted occasionally by some land snails.

As a side note, we remark that it is possible to locomote in the case 〈f〉 = 0 if a yield
stress is present. To demonstrate this, consider a forcing pattern with small regions of high
magnitude forcing in the positive ξ-direction, and with larger regions of low magnitude
forcing in the negative ξ-direction, constructed with 〈f〉 = 0, such that only regions of the
forcing directed in the direction of locomotion will break the yield stress. Then it is clear
that the velocity of the foot surface will be either stationary or directed only in the positive
ξ-direction. The mean surface velocity will thus be positive, providing locomotion. Such
a pattern may correspond to that adopted commonly by land snails, in cases where the
surface of the foot does not make direct contact with the ground.

The effect of yield stress

The effect of yield stress can be established by considering the eigenvalue problem defined
by equations (61)–(62), with the forcing (69), in the general case R ≥ 0. To simplify the
analysis, we assume D = 0 with the expectation that the resulting system will encapsu-
late the behaviour of the general case. We solve the eigenvalue problem for the unknown
pressure gradient numerically using a Newton-Raphson iteration scheme initialized using
the Newtonian solution discussed above. In each iteration, we construct the flow profiles
with the pressure gradient form the previous step using an analogous procedure to that
outlined in section 2.3. The first step of the integration of the flow profiles can be achieved
by integrating (54) subject to (57) to give

τ = f + pξ(1 − y), (70)

from which we deduce that the potential yield surfaces are given by

η± = 1 − f

pξ
± R

|pξ|
, (71)

in all regimes. The other formulae associated with the construction of the velocity profiles
are summarized in appendix B. For our solution, we plot the dependence of the locomotion
velocity and flux on the yield-stress–amplitude ratio R in figure 8, and some examples of
yield-surface plots and pressure-gradient profiles for specific values of R are shown in figures
9 and 10, respectively.

In all cases of R, we can define a region of the fluid |ζ| < ζD, where ζ ≡ ξ − π/2, and
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Figure 8: Locomotion velocity and flux in prograde locomotion (a), and a blow-up (b) of
the region R∗ < R < 1, in which we plot the asymptotic approximation (80) for U .
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ζD is defined by
R = cos2 ζD, (72)

in which the fluid in contact with the foot must be yielded because the imposed tangential
forcing at these points exceeds the yield stress. Conversely, the region of the fluid |ζ| > ζD

in contact with the foot y = 1 must be unyielded. In order to provide a non-zero flux,
it is necessary that the structure of the yield surfaces is such that there is a pseudo-plug
extending from the top surface and a flow near the lower surface, corresponding to regime
D in appendix B; this is evident in the example profiles of figure 9. Furthermore, we can
deduce from equation (70) that the pressure gradient is always negative in the D-region,
|ζ| > ζD, and positive elsewhere, which is verified by the pressure-gradient plots of figure
10.

The case R = 0.2, shown in figure 9(a), is fully yielded except in the pseudo-plugs of
the D-regions discussed above. As R is increased, there is a critical point R ≈ 0.253, where
a pseudo-plug emerges from the base at ζ = 0. This B-region, shown in figure 9(b) for the
case R = 0.6, proceeds to grow as R is further increased. We observe from figure 8 that
the flux remains approximately half the locomotion velocity in the region 0 < R . 0.4 and
beyond this point, the ratio of the flux to the locomotion velocity begins to decrease at
a much faster rate. At R ≈ 0.762, a C-region appears inside the B-region with a yielded
region emerging at the base, and a groove in the upper yield surface, as shown in figure
9(c) for the case R = 0.8. At this stage, the regime progression across the period can be
summarized

D → E → A → B → C → B → A → E → D, (73)

where the letters correspond to the regime definitions given in appendix B. The fully-
yielded A- and E-regions, which are too narrow to be discerned clearly in figure 9(c), lie
near locations where the pressure gradient changes sign, as can be verified by plot (c) in
figure 10. As R is increased further, there is a critical point R∗ where the pseudo-plugs in
the D-regions touch the base and become rigid plugs that span the thickness of the layer.
At this point, the flux vanishes and the velocity of the foot’s surface us becomes zero within
the region |ζ| > ζD. However, the remaining motion of the foot in the C-region |ζ| < ζD

is still able to drive a small locomotion velocity. The behaviour of the flux and locomotion
velocity for R∗ < R < 1 is shown in figure 8(b).

The onset of locomotion

It is clear that there is no fluid motion if R > 1 because in this case the shear stress does
not exceed the yield stress anywhere in the fluid. As mentioned above, a C-region emerges
about ζ = 0 as R is decreased from 1, such that although the fluid flux remains zero, the foot
is still able to drive locomotion. This can be contrasted with the retrograde case in which
the flux is always non-zero when locomotion occurs. We proceed to solve the eigenvalue
problem for the pressure gradient in the case R∗ < R < 1 by applying the constraint Q = 0
in place of the periodicity constraint (62). The latter is abandoned because a solution for
the pressure gradient inside the rigid plugs is not determined as part of the Bingham model.
We can assume that the periodicity constraint is accounted for via an elastic force balance
within the rigid regions that we need not consider explicitly.
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Figure 9: Yield-surface profiles in the cases (a) R = 0.2, (b) R = 0.6, (c) R = 0.8, and (d)
R = 0.9. Regions of unyielded fluid are shown in blue.
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Figure 10: Pressure-gradient profiles in the cases (a) R = 0.2, (b) R = 0.6, (c) R = 0.8,
and (d) R = 0.9. For case (d), the pressure gradient remains undetermined in the region
|ζ| > |ζD| under the Bingham model.

In the C-region, the condition of zero flux implies that

(1 − η+)3 + η2
−(η− − 3) = 0, (74)

using equation (90) from appendix B. Eliminating η± in favour of the unknown pressure
gradient using equations (71), and recalling that pξ > 0 for |ζ| < ζD, gives

(f − R)3 − (2pCξ + f + R)(pCξ − f − R)2 = 0, (75)

which is an algebraic equation for the pressure gradient pCξ in the C-region. We solve this
cubic equation numerically using the Matlab routine fzero. From our solution, we can
identify two positive roots if R < 1, which in the limit of R → 1, are given by

pCξ ∼ f + R ±
[

(f − R)3

3(f + R)

]1/2

, (76)

to leading order. It can be verified numerically that the lesser root always leads to an
inconsistent solution with η− < 0. Thus, we use the greater root to calculate the yield
surface profiles. Our solution for the yield surface profile in the case R = 0.9 is shown
in figure 9(d), and the corresponding pressure gradient is shown by plot (d) in figure 10.
Furthermore, we use the non-dimensional form of equation (51) to evaluate the locomotion
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velocity

U =
2

π

∫ ζD

0

us dζ, (77)

in which the surface velocity is given by

us = 1

2
pξ[(1 − η+)2 − η2

−] =
(pξ − 2R)(2f − pξ)

2pξ
, (78)

which we have established using equation (89) given in appendix B. We use the resulting
solution for U to extend the plot in figure 8(b) to the region R∗ < R < 1.

In the limit R → 1, an approximation for the surface velocity can be derived by substi-
tuting the leading-order form of the pressure gradient given by equation (76) into equation
(78) to give

us ∼ 1

4
(1 − R − ζ2)2. (79)

Using this expression to evaluate the integral in equation (77) provides

U ∼ 4

15π
(1 − R)5/2, (80)

on noting that ζD ∼
√

1 − R from equation (72). Figure 8(b) shows that this approximation
gives good agreement with the exact solution.

The onset of flux

The critical value R∗ defines the point at which the flux first vanishes. Moreover, this point
corresponds to the point when both the periodicity constraint (62) and the flux constraint
Q = 0 are satisfied simultaneously. In reference to the profiles shown in figure 8, we note
that as R approaches R∗ from below, this critical point is reached when the lower yield
surface η− in the D-region first touches the lower surface such that η− = 0. Thus, the
pressure gradient in the D-region at the critical point can be found by setting η− = 0 in
equation (71) to give

pDξ = f − R∗, (81)

recalling that pξ < 0 for |ζ| > ζD. The pressure gradient in the C-region is given by the
numerical solution to (75) described above, which along with (81), enters the continuity
constraint (62) according to

∫ ζD

0

pCξ dζ +

∫ π/2

ζD

pDξ dζ = 0, (82)

where we have taken the integral over half the period using the fact that the solution is
symmetric about ζ = 0. On substituting the pressure gradient in the D-region given by
equation (81), and evaluating the second integral, this equation reduces to

∫ ζD

0

pCξ dζ = (R∗ − 1

2
)(π

2
− ζD) + 1

4
sin(2ζD). (83)
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We solve the integro-algebraic system defined by equation (75) with R = R∗ and (83)
numerically by treating R∗ as a shooting parameter. For each trial in this method, we solve
the algebraic equation (75) for pCξ using the Matlab routine fzero. Our solution gives the
critical value R∗ ≈ 0.888.

A near-exact derivation of this result can be derived semi-analytically with less work by
making use of the fact that R∗ ≈ 1, and recalling that in the limit R → 1, equation (76)
implies that the pressure gradient in the C-region is given approximately by

pCξ ≈ f + R∗. (84)

Substituting this expression into equation (83), and simplifying, provides

∫ π/2

0

f dζ + R∗(2ζD − π
2
) ≈ 0, (85)

and hence
π
4

+ R∗(2ζD − π
2
) ≈ 0. (86)

Using equation (72) to eliminate R∗ in this equation leaves the algebraic equation

π
4

+ (2ζD − π
2
) cos2 ζD = 0, (87)

which can be solved numerically for the solution ζD ≈ 0.343, with corresponding critical
value R∗ ≈ 0.887 calculated using equation (72). Given that this value is very close to the
exact value derived previously, we can conclude that the above approximation is successful
at describing the region of the parameter space in which R is close to R∗.

4 Conclusion

We have investigated theoretically and numerically models for retrograde and prograde snail
locomotion using a dynamic formulation that accounts for both the elastic and muscular
mechanics of the snail’s foot, and the yield stress of the mucus layer. Our solution of the
initial-value problem in the retrograde case shows an initial transient that involves a highly
oscillatory locomotion velocity, with the potential for extended periods of no locomotion.
We observe a transition toward a steady state in the wave frame of the forcing, which we
investigate by finding solutions of the associated steady-state eigenvalue problem. For given
values of the non-dimensional forcing amplitude and stiffness, we identify a critical value
of the Bingham number above which there is no locomotion in the steady state. In our
analysis of prograde locomotion, we find that the locomotor is able to pump fluid in the
direction it is travelling only below a critical value of the yield-stress–amplitude ratio, which
we have identified in the case of zero stiffness. Beyond this point, the flux vanishes but the
snail is still able to locomote.

A notable difference between the two forms of locomotion we have studied is that the flux
in the retrograde case is directed in the opposite direction to that of locomotion, while in
the prograde case, the snail is able to pump fluid in the direction it is travelling. Given that
mucus production is a substantial chemical cost to the snail, this difference may account
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for why land snails have favoured the prograde form of locomotion. Furthermore, we can
hypothesize that a water snail predominantly uses ambient water as a lubricating fluid, and
only occasionally produce mucus if, for example, it needs to climb a steep incline.

A Regimes in retrograde locomotion

Regime A: (pξU > 0, η± < 0)

u = 1

2
pξy(y − U) +

Uy

Y
, q = 1

2
UY − 1

12
pξY

3,

η+ = 1

2
Y − U

pξY
, η− = η+ − 2B

|pξ|
.

Regime B: (pξU > 0, η− < 0 < η+ < Y )

u =

{

1

2
pξ(y − η+)2 (η+ < y < Y ),

0 (0 < y < η+),

where the pseudo-plug is stationary.

η+ = Y −
√

2U

pξ
, η− = η+ − 2B

|pξ|
.

q = 1

6
pξ(Y − η+)3.

Regime C: (0 < η± < Y )

u =







up + 1

2
pξ(y − η+)2 (η+ < y < Y ),

up (η− < y < η+),
up + 1

2
pξ(y − η−)2 (0 < y < η−),

where the plug velocity is given by up = −1

2
pξη

2
−,

η+ =
p2

ξY
2 − 2Upξ − 4B2

2|pξ|(Y |pξ| − 2B)
, η− = η+ − 2B

|pξ|
, (88)

q = 1

6
pξ[(Y − η+)3 + η3

− − 3η2
−Y ].

Regime D: (pξU < 0, 0 < η− < Y < η+)

u =

{

up (η− < y < Y ),
up + 1

2
pξ(y − η−)2 (0 < y < η−),
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where the plug velocity is given by up = −1

2
pξη

2
−.

η− =

√

−2U

pξ
, η+ = η− +

2B

|pξ|
,

q = 1

6
pξη

2
−(η− − 3Y ).

Regime E: (pξU < 0, η± > 1)

u = 1

2
pξy(y − U) +

Uy

Y
, q = 1

2
UY − 1

12
pξY

3,

η− = 1

2
Y − U

pξY
, η+ = η− +

2B

|pξ|
.

B Regimes in prograde locomotion

The potential yield surfaces at y = η± are given by

η± = 1 − τs

pξ
± R

|pξ|
,

in all regimes.

Regime A: (pξ > 0, η± < 0)

u = 1

2
pξy

2 + (τs − pξ − R)y,

q = −1

3
pξ + 1

2
(τs − R).

Regime B: (pξ > 0, η− < 0 < η+ < 1)

u =

{

1

2
pξ(y − η+)2 (η+ < y < 1),

0 (0 < y < η+),

where the pseudo-plug is stationary.

q = 1

6
pξ(1 − η+)3.

Regime C: (0 < η± < 1)

u =







up + 1

2
pξ(y − η+)2 (η+ < y < 1),

up (η− < y < η+),
up + 1

2
pξ(y − η−)2 (0 < y < η−),

(89)

where the plug velocity is given by up = −1

2
pξη

2
−.

q = 1

6
pξ[(1 − η+)3 + η3

− − 3η2
−]. (90)
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Regime D: (pξ < 0, 0 < η− < 1 < η+)

u =

{

up (η− < y < 1),
up + 1

2
pξ(y − η−)2 (0 < y < η−),

where the plug velocity is given by up = −1

2
pξη

2
−.

q = 1

6
pξη

2
−(η− − 3).

Regime E: (pξ < 0, η± > 1)

u = 1

2
pξy

2 + (τs − pξ − R)y,

q = −1

3
pξ + 1

2
(τs − R).
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