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Abstract

We present a set of reduced equations in the limit of strong stratification. The
asymptotics lead to the hydrostatic primitive equations for the slow/large scale flow
and non-hydrostatic, quasi-linear equations for the perturbations. There is no closure
problem and the system conserves energy. We explore the properties of this coupled
system of equations by studying solutions of a two-dimensional toy problem. This
simple problem displays interesting dynamics with O(1) feedbacks between mean and
perturbations. Even in this toy problem, the Reynolds stresses and buoyancy fluxes are
not sign-definite in most of the regions of the parameter space.

1 Introduction

Strongly stratified turbulence has been used as a paradigm to interpret observations of
strongly stratified turbulent geophysical flows [7]. Turbulence dominated by strong stable
stratification occurs at scales larger than the Ozmidov scale, lO,

lO
def
=
( ε

N3

)1/2
, (1)

where ε is the kinetic energy rate of dissipation, and N is the buoyancy frequency. The
Ozmidov scale is the horizontal scale of the largest overturns in a stratified flow. At scales
much smaller than lO, the flow is essentially unaffected by stratification, whereas at scales
larger than lO the effects of stratification dominates.

In the ocean lO is O(1) m and in the atmosphere it is O(100) km [1, 3, 7]. At O(lO)
scales, the Rossby number of the flow is large and rotation is unimportant. The most
prominent coherent structures that emerge in strongly stratified turbulence are strongly
anisotropic. Indeed, stratified turbulence is often termed “pancake” turbulence [2, 7].

In the ocean, stratified turbulence is important at scales between 100 and 1 m and in the
atmosphere at scales between 10 km and 100 m [7]. Kinetic and potential energy horizontal
wavenumber spectra calculated from observations in the atmosphere and in the ocean are
consistent with predictions of stably stratified turbulence1. These scales are barely resolved
in regional models and not resolved at all in general circulation models. Understanding
of the dynamics of strongly stratified turbulence, and in particular how the small scale
stratified turbulence interacts with large scale flows, is important for parameterizing these
effects into numerical models.

1The spectra are also consistent with predictions of other theories, e.g. [4].



One approach towards understanding and modeling strongly stratified turbulence has
been direct numerical simulations [1, 3, 7]. Figure 1 shows different regimes of stratified
flows in the Re− 1/Fr space, where (for details and definitions see section 2).

Fr
def
=
U
NL

, (2)

is the horizontal Froude number (and 1/Fr2 is a measure of the strength of the stratification),
and

Re
def
=
U L
ν

, (3)

is the Reynolds number. Dimensional analysis suggests that strongly stratified turbulence
regime develops when ReFr2 > 1 [3].

Figure 1: The different regimes of stratified flows as a function of the Reynolds
number and the horizontal Froude number. Source: [3].

Direct numerical simulations with parameters of relevance to geophysical flows are cur-
rently unattainable through direct numerical simulations [1, 3]. Indeed, figure 1 shows that
current direct numerical simulations are decades away in parameter space from the regimes
of relevance to geophysical flows. Conclusions and extrapolations based on current low
ReFr2 simulations should be interpreted with care [1].

Here we take a different approach to study this problem. Inspired by the success of
multi-scale asymptotics to study turbulent flows with strong constraints [6], e.g rotating
convection [8], we dig deep into the scaling for strongly stratified flows and present a set
of reduced equations for its modeling (Section 2). To explore the main properties of this
system of equations and showcase its usefulness we study a toy initial value problem of
stratified shear instability (Section 3). A summary and inquiries for future research are
given in section 4.



2 Reduced Equations for Strongly Stratified Flows

Our starting point is the familiar Boussinesq equations. The momentum and mass conser-
vation equations are reduced to

∂tu+ u ·∇u = −∇p+ ν4u− b k̂ , (4)

and
∇ · u = 0 , (5)

where b
def
= − g

ρ0
ρ is the negative of the reduced gravity, commonly referred to buoyancy in

the oceanographic community (e.g., [9]), and k̂ is the unit vector in the vertical direction.
The system is closed with the thermodynamic equation

∂t b+ u ·∇ b = κ4 b−N2(z)w , (6)

where N2(z) = ∂B
∂z is the background buoyancy frequency.

We start by nondimensionalizing the Boussinesq equations (4)-(6). Let

(x, y) = (x?, y?)L , z = z?H , (u, v) = (u?, v?)U , t = t?
L
U
, p = p? U2 .

(7)

From the vertical momentum equation we find the scale for the buoyancy is

b = b?
U2

H
. (8)

To find a scale for the vertical velocity, we insist that the horizontal advection of buoyancy
balances, to lowest order, the vertical advection of background buoyancy in (6). Hence

w = w?
Fr2

α
U , (9)

where the horizontal Froude number is

Fr
def
=
U
NL

, (10)

and the aspect ratio of the flow is

α
def
=
H
L
. (11)

Using the scaling (7) through (9) in the Boussinesq equations (4) through (6), we obtain

∂t?u
?
h + u?h ·∇?u?h +

Fr2

α2
w?∂z?u

?
h = −∇?

hp
? +

1

Re

[
4?
hu

?
h +

1

α2
∂2z?u

?
h

]
, (12)

Fr2
[
∂t?w

?
h + u?h ·∇?w?h +

Fr2

α2
∂z?w

?

]
= −∂z?p? + b? +

Fr2

Re

[
4?
hw

? +
1

α2
∂2z?w

?

]
, (13)

∇? · u?h +
Fr2

α2
∂z?w

? = 0 , (14)



and

∂t?b
? + u?h ·∇?b? +

Fr2

α2
w?∂z?b

? = w +
1

Re Pr

[
4?
hb
? +

1

α2
∂2z?b

?

]
, (15)

where the Reynolds number is

Re
def
=
U L
ν

, (16)

and the Prandtl number is
Pr

def
=

κ

ν
. (17)

From now on, we drop the star super scripts — all variables are nondimensional unless
otherwise stated.

Note that a full quasi-two-dimensionalization of the system (to lowest order in Fr) de-

pends on the ratio Fr2

α2 [2]. If that ratio goes to zero as Fr → 0, then the system consists
of two-dimensional layers, with properties similar to two-dimensional turbulence. Alterna-
tively, a more interesting case is when the aspect ratio α adjust so that Fr

α = O(1) (see
appendix A for details). This implies that the vertical scale of the motion is

H ∼ U
N
. (18)

Notice that with this scaling, the potential energy of the flow has the same order of the
kinetic energy

b2

N2
=

Fr2

α2
U2 ∼ O(U2) , (19)

and therefore there is an approximate equipartition between kinetic energy and potential
energy.

We assume that the system evolves in two different sets of scales. That is, all fields
depend on fast/short scales (χh, τ) and slow/long (xh, t). A single vertical scale is assumed.
The fast time variable is

τ
def
= Fr−1 t , so that ∂t → ∂t + Fr−1∂τ . (20)

Similarly, the horizontal short spatial variable is

χ
def
= Fr−1 x , so that ∇x

h →∇x
h + Fr−1∇χ

h . (21)

Any field f depends on both fast/short and slow/long scales, and is decomposed into

f = f̄ + Frnf ′ + o(Frn) , (22)

where the overbar denotes the average over the slow/short scales (e.g. [6]):

f̄(x, t, z)
def
= lim

S,T→∞

1

S T

∫∫
A

∫
T
f(x, t, τ,χ, z)dτd~χ . (23)



Note that, by definition, f̄ ′ = 0. The correct power n depends on the dynamical field, and
is chosen in order to obtain a nontrivial balance. We have

uh = ūh + Fr1/2 u′h +O(Fr3/2) ,

p = p̄+ Fr1/2 p′ +O(Fr3/2) ,

b = b̄+ Fr1/2 b′ +O(Fr3/2) ,

w = w̄ + Fr−1/2w′ +O(Fr0) . (24)

Note that, in dimensional form, the fluctuations are isotropic, i. e., (u′h, w
′) ∼ Fr1/2 U .

Reduced equations for Fr� 1 and Re� 1

We now introduce the rescaled operators (20) and (21) into the nondimensional equations
(12) through (15), and average over the fast/short scales to obtain

∂tūh + ūh ·∇x
h ūh + w̄∂zūh = −∇x

h p̄+
1

Reb
∂2z ūh − ∂z(w′u′h) , (25)

0 = −∂zp+ b , (26)

∇x
h · ūh + ∂zw = 0 , (27)

and

∂tb̄+ ūh ·∇x
h b̄+ w̄∂z b̄ = −w̄ +

1

Reb Pr
∂2z b̄− ∂z(w′b′) , (28)

where the buoyancy Reynold number is Reb
def
= Fr2 Re .

The equations for the perturbations are obtained by subtracting the mean equations
above from Boussinesq equations (with Fr� 1 and Re� 1). We obtain, to lowest order,

∂τu
′
h + ūh ·∇χ

hu
′
h + w′∂zūh = −∇χ

hp
′ +

Fr

Reb

(
4χ
h + ∂2z

)
u′h , (29)

∂τw
′ + ūh ·∇χ

hw
′ = −∂zp′ + b′ +

Fr

Reb

(
4χ
h + ∂2z

)
w′ , (30)

∂τ b
′ + ūh ·∇χ

hb
′ + w′(∂z b̄+ 1) =

Fr

Reb Pr

(
4χ
h + ∂2z

)
b′ , (31)

∇χ
h · u

′
h + ∂zw

′ = 0 . (32)

In some calculations, it is convenient to rewrite the equations for the perturbations (29)
through (32) in terms of the slow/small scale independent variables. For future reference,
these equations are:

Fr
(
∂tu
′
h + ūh ·∇x

hu
′
h

)
+ w′∂zūh = −Fr∇x

hp
′ +

Fr

Reb

(
Fr24x

h + ∂2z
)
u′h , (33)

Fr
(
∂tw

′ + ūh ·∇x
hw
′) = −∂zp′ + b′ +

Fr

Reb

(
Fr24xh + ∂2z

)
w′ , (34)



Fr
(
∂tb
′ + ūh ·∇x

hb
′)+ w′(∂z b̄+ 1) =

Fr

Reb Pr

(
Fr24xh + ∂2z

)
b′ , (35)

Fr∇x
h · u′h + ∂zw

′ = 0 . (36)

Alternatively, the quasi-linear system above can be expressed in terms of a single variable
w′ [

Lχ − Fr

Reb Pr

(
4χ
h + ∂2z

)] [
Lχ
(
4χ
h + ∂2z

)
− ∂2z ūh · ∇

χ
h

]
w′ + (∂z b̄+ 1)4χ

hw
′

=
Fr

Reb

[
Lχ − Fr

Reb Pr

(
4χ
h + ∂2z

)] (
4χ
h + ∂2z

)2
w′ , (37)

where the quasi-linear operator is

Lχ
def
= ∂τ + ūh ·∇χ

h . (38)

The two-dimensional (x, z) version of (37) reduces to the Taylor-Goldstein equation in the
inviscid limit (see appendix B).

Conservation of energy

The coupled system (25)-(28) and (29)-(31) conserves total energy in the inviscid limit
(Re→∞)

dE

dt
= 0 , (39)

where the nondimensional total energy is

E =
1

2

∫∫∫ [(
|ūh|2 + b̄2

)
+ Fr

(
|u′h|2 + w′2 + b′2

)
+O(Fr2)

]
dV , (40)

and we assumed harmless boundary conditions such as no-flux or triple periodicity (see
appendix C for details). The dimensional potential energy has the form b2/N2. To lowest
order the kinetic energy is due to the horizontal flow. Consistent with our approximation,
the system is isotropic at O(Fr).

3 Decaying Problems

To begin exploring the reduced system, we study solutions of a very simplified problem.
We consider two-dimensional system (x− z) with solutions of the slow field independent of
the slow horizontal coordinate (x). In other words, the “pancakes” are infinitely long. A
different interpretation is that we are looking for the zeroth mode of the slow field, or the
x-average. Thus, the slow/long equations reduce to

∂tūh =
1

Reb
∂2z ūh − ∂zw′u′h , (41)

∂tb̄ =
1

Reb Pr
∂2z b̄− ∂zw′b′ . (42)



In the absence of perturbations, these equations simply reduce to the diffusion equation.
The initial conditions for this toy problem consists of two shear layers, with a strong

stratification across the shear regions, and very low stratification between the layers. The
two shear-layer set up was chosen for numerical convenience owing to its periodicity in z.
The functional forms are

ū(z) = tanh
[
m0

(
z − π

2

)]
− tanh

[
m0

(
z − 3π

2

)]
− 1 , (43)

and
b̄(z) = A0

(
tanh[m0(z − 3π

2 )]− tanh[m0(z − π
2 ])
(
z − π). (44)

Notice that the total background stratification is B(z) = z+b̄. In the following experiments,
we fix the mean shear m0 and vary the distance between the two shear layers (Figure 2).
We also fix Fr = 0.02 and Pr = 1.

The slow equations (41) and (42) together with the fast equations are solved (29) through
(36) are sovled numerically with a standard Fourier spectral method. The whole system
is solved in a single spatial scale and a single time scale. To compute the fluxes whose
divergences force the slow equations, we only average the perturbations in space; solutions
are not very sensitive to average both in space and time (see appendix D). The system is
marched forward using a fourth order implicit-explicit Runge-Kutta time stepper.

Figure 2: The initial condition for the toy decaying problem. We use various
values of h, the distance between the two shear layers. (Left) horizontal velocity
and (right) buoyancy.



3.1 Linear stability analysis

Using the stationary mean velocity (43) and stratification (44), we perform a linear stability
analysis of the quasilinear equations for the perturbations. Figure 3 shows the growth rates
for the base state profiles with h = 1 through h = 1/8 and various Reb. The growth rates
increase with Reb. For large h, where the two shear layers are virtually independent the
unstable modes span a wider region of the horizontal wavenumber space, whereas for small
h the unstable modes are confined to wavenumbers k < 10. The growth rate of the most
unstable mode increase with decreasing h. There is no dramatic transition of the stability
properties as a function of Reb, but the growth rates increase significantly for Reb > 10,
particularly at small h.

These modes are stratified shear instablities. Figure 4 depicts the wavestructure for the
most unstable modes in two cases: h = 1 and h = 8. The structure of the vertical velocity
clearly show the classic “tilt against the shear”. Also clearly depicted is the fact that with
h = 1 the shear layers are independent whereas with h = 1/8 they are coupled. These
modes are not classic Kelvin-Helmholtz instablities, e.g., Drazin & Reid [5]. In particular,
the vorticity structure of these instabilities are composed of opposite sign votices with a
phase shift.

3.2 Initial value problems

We now consider simulations of initial value problems. In particular, we discuss the structure
of different solutions with varying h and Reb. All simulations are initialized with the initial
conditions (Figure 2). The perturbations are initialized with a small seed (10−6) random
field.

Figure 5 shows the time series for the evolution of the kinetic energy (KE) and potential
energy (PE) of both slow/long fields and perturbations for an experiment with Reb = 10
and h = 1. With these parameters, the mean flow is signigicatlly damped by viscosity and
diffusivity. Nevertheless, even at low Reb, there is an interesting interaction between the
mean (slow/long) fields and the perturbations. Once the pertubartions pick the right phase,
they grow exponentially, with a rate consistent with the prediction of the linear stability
analysis (see dashed green line in figure 5). The perturbations peak at about t = 5, and
rapidly decay. This rapid decay is not accounted for by the viscous terms. Indeed, the
perturbations accelerate the flow in the initial phase of their decay (see snapshots of slow
velocity in the bottom panel of figure 5). For times larger than about 10, the perturbations
have decayed significantly, so that the mean flow diffusively tends towards a state of rest
with linear stratification.

Increasing Reb changed qualitatively and quantitatively that picture. For instance,
figure 11 shows the time series of the different components of energy for an experiment with
Reb = 200 and h = 1. As in the Reb = 10 case, the perturbations growth eponentially after
picking up the right phase, and the growth rate is consistent with the predictions for the
most unstable mode. However, at about t = 4, the perturbations saturate. Because there
are no non-linearities in the equatins for the perturbations, this saturation is due to a change
in the slow horizontal velocity and buoyancy profiles. The perturbations then plateau for
about 5 time units before they start decay. The initial decay is relatively fast, and it is
not accounted for by viscosity. Indeed, as the perturbations decay, they accelerate the slow



Figure 3: Growth rates for linear unstable modes for initial conditions with h = 1,
h = 3/4, h = 1/2, h = 1/4, and h = 1/8.

flow (see lower panel of figure 11), significantly changing its shape. At about t = 60, the
perturbations start decaying very slowly, consistent with the visous and diffusive rates. The
slow buoyancy profile is also significantly changed. In particular, regions initially strongly
stratified are mixed up, and part of the region initially nearly mixed are restratified.

Reducing h allows for the two shear layers to interact. In particular, with h = 1/8, the
initial condition is essentially a jet localized in the middle of the domain. With relatively



Figure 4: The wavestructure of the unstable modes for h = 1 (top) and h = 1/8
(bottom): (left) vertical velocity and (right) horizontal vorticity.

large Reb, the evolution of the energy is similar to the cases . The perturbations grow
exponentially, and then quickly saturate. The decay of the perturbations also occur in two
stages, first a relatively fast decay, followed by a slow viscous decay. However, in this case
the mean flow is not accelerated during the decay of the perturbations. That is, for this
particular case, the buoyancy flux and the Reynolds stress are sign-definite.

3.3 Bulk properties

To characterize the solutions of this model problem in parameter space, we calculate some
diagnostic bulk propoerties. In particular, the energy partition of the perturbations is

γ
def
=

PEfast
PEfast +KEfast

. (45)

This particular bulk property is of interest because it is a proxy of mixing efficiency. Because
we are dealing with unforced problem, this property is calculated when the perturbations
peak or saturate. Figure 11 shows the distribution of γ in the h− Reb space. Typically, γ
increases with h, with maximum values of 0.7 for h = 1 (and Reb ≥ 50); γ is about 0.35
for h = 1/8. More over, it is quite surprising that for Reb ≥ 50, γ is nearly independent of
Reb. There is no simple scaling arguments that collapse this data into a single curve. That
is, γ is not a simple function of h or the initial potential energy.



Figure 5: Solution to the IVP with Reb = 10 and h = 1. The upper panel show
the time series for different components of energy. The bottom panels depict the
evolution of the slow flow at different stages (marked in the energy plot). The
green dashed line depicts the linear growth for the most unstable mode.



Figure 6: Snapshot of the structure of the solution to the IVP with Reb = 10
and h = 1. The upper panel shows the horizontal vorticity field. The lower left
panel is a zoom-in of the upper panel in the region marked by the black square.
The lower right panel shows the snapshot of the slow horizontal velocity (green)
together with the initial condition.



Figure 7: Solution to the IVP with Reb = 200 and h = 1. The upper panel show
the time series for different components of energy. The bottom panels depict the
evolution of the slow flow at different stages (marked in the energy plot). The
green dashed line depicts the linear growth for the most unstable mode.



Figure 8: Snapshot of the structure of the solution to the IVP with Reb = 200
and h = 1. The upper panel shows the horizontal vorticity field. The lower left
panel is a zoom-in of the upper panel in the region marked by the black square.
The lower right panel shows the snapshot of the slow horizontal velocity (green)
together with the initial condition.



Figure 9: Solution to the IVP with Reb = 100 and h = 18. The upper panel show
the time series for different components of energy. The bottom panels depict the
evolution of the slow flow at different stages (marked in the energy plot). The
green dashed line depicts the linear growth for the most unstable mode.



Figure 10: Snapshot of the structure of the solution to the IVP with Reb = 100
and h = 1/8. The upper panel shows the horizontal vorticity field. The lower left
panel is a zoom-in of the upper panel in the region marked by the black square.
The lower right panel shows the snapshot of the slow horizontal velocity (green)
together with the initial condition.



We also calculate the gain of the perturbations

G
def
= 2× 106 × (KEfast + PEfast) , (46)

where we remind the reader that 10−6 is the magnitude of the initial random seed. First,
we note that G is relatively large (> 107) across the parameter space (Figure 11). The
pattern of G, however, has much more structure than the pattern of γ. As expected, the
gain typically increases with Reb. Also G is minumum for h = 1/8 likely because the initial
potential energy is much smaller than with larger h. G peaks for 1/2 ≤ h ≤ 3/4.

Figure 11: Bulk properties as a function of Reb and h. (Left) Energy partition
and (right) energy gain.

4 Final Remarks

In this study we have taken advantage of the strong anisotropy driven by strong stratification
to simplify the modeling of stratified turbulent flows. In particular, the asymptotics lead
to the hydrostratic primitive equations of oceanography for the slow fields coupled by the
vertical divergence of the Reynolds stress and buoyancy flux to a quasi-linear system for the
perturbations. Because the system is quasi-linear for the perturbations, there is no closure
problem; the system is closed.

Using a simple toy problem, we have demonstred the propertities and utility of this
reduced system. This example shows that the coupled system displays interesting dynamics
with O(1) feedbacks between mean and perturbations. We emphasize that the Reynolds
stresses and buoyancy fluxes associated with the perturbations are not sign-definite in many
regions of the parameter space.

Future work include introducing back variations in slow spatial coordinate, and there-
fore assessing the importance of vertical vorticity in the slow flow; comparisons with direct
numerical simulations; and three-dimensional solutions. It is our hope that these equations
would be used to study strongly stratified turbulent flows in regions of the parameter of
geophysical relevance, which are currently unattainable through direct numerical simula-
tions.
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A The self-similarity of strongly stratified flows

This appendix justifies the scaling choice Fr ∼ α, which implies that the vertical scale is
H ∼ U/N . Following [2] we consider the dimensional inviscid Boussinesq equations in the
limit Fr→ 0

∂tuh + uh ·∇huh + w∂zuh = −∇hφ , (47)

0 = −∂zφ+ b , (48)

∇h · uh + ∂zw , (49)

and
∂tb+ uh ·∇hb+ w∂zb = w , (50)

Equations (47) through (50) are invariant under the transformations

N = N∗/A , z = Az∗ , w = Aw∗ , and b = b∗/A , (51)

where A is a constant. Thus, for constant N , the solutions to (47) through (50) can be
determined from the solutions from the same equations with N∗ = 1. With A = 1/N , we
have

uh = u∗h(x, y, zN, t) ,

w =
1

N
w∗(x, y, zN, t) ,

b = Nb∗(x, y, zN, t) . (52)

Note that the vertical length scale is inversely proportional to the buoyancy frequency; as
the stratification increases the vertical scale decreases H ∝ 1/N . Thus, on dimensional
grounds, we have H ∼ U/N . This self similarity implies that Fr ∼ α, and therefore as
Fr → 0, the aspect ratio adjusts so that the ratio Fr/α remains O(1). This has profound
consequences for the dynamics because the system does not become two-dimensional as
Fr→ 0.

B The Taylor-Goldstein equation

Consider the inviscid two-dimensional (x, z) version of equation (37).

(∂τ + ū∂χ)
[
(∂τ + ū∂χ)

(
∂2χ + ∂2z

)
− ∂2z ū∂χ

]
w′ + (∂z b̄+ 1)∂2χw

′ = 0 . (53)

Now, we assume wave-like solutions w′ = ŵ(z)eik(x−cτ), to obtain

(ū− c)2
(
ŵzz − k2ŵ

)
+
[

(b̄z + 1)︸ ︷︷ ︸
≡N2(z)

− (ū− c) ūzz
]
ŵ = 0 , (54)

which is the celebrated Taylor-Goldstein equation. In a bounded vertical domain of length
2π, we assume no-normal flow at the boundaries, which reduces to

ŵ = 0 , z = 0, 2π . (55)



The Taylor-Goldstein equation has been significantly analyzed. Among the most important
results, the sufficient condition for stability due to John Miles and Lou Howard is that the
gradient Richardson’s number be greater than a quarter:

Ri
def
=

N2(z)

ū2z
>

1

4
. (56)

Also, again due to Lou Howard, the unstable phase speed cr
def
= Re{c} is bounded by

ūmin < cr < ūmax, and ci
def
= Im{c} is bounded by

c2i ≤
[
1
2 (ūmax − ūmin)

]2 − [cr − 1
2 (ūmax + ūmin)

]2
. (57)

An upper bound on the growth rate is

k ci ≤
k

2
(ūmax − ūmin) . (58)

C Conservation of energy

We form an equation for the kinetic energy of the slow/large flow by dotting the (25) and
adding to w̄ times (28) to obtain

Slow flow

∂t
1
2 |ūh|

2 = w̄b̄+ w′u′h · ∂zūh + ∇x
h · T x + ∂z T

z − 1

Reb
|∂zūh|2 , (59)

where
T x = −ūh

(
p̄+ 1

2 |ūh|
2
)
, (60)

T z =
1

Reb
∂z

1
2 |ūh|

2 + ūh · w′u′h − w̄p . (61)

and we used the continuity equation (27). Similarly, an equation for the potential energy
density is formed by multiplying (28) by b̄

∂t
1
2 b̄

2 = −w̄b̄+ w′b′∂z b̄+ ∇x
h ·Bx + ∂zB

z − 1

Re Pr
(∂zb)

2 , (62)

where
Bx = −ūh 1

2 b̄
2 , (63)

and

Bz =
1

Reb Pr
∂z

1
2b

2 +−w̄ 1
2 b̄

2 − b̄ w′b′ . (64)

The equation for the slow/large scale total energy is then

∂t
1
2

(
|ūh|2 + b̄2

)
= w′u′h · ∂zūh + w′b′∂z b̄+ ∇x

h · (T x +Bx) + ∂z (T z +Bz) . (65)



Fast flow

To obtain an equation for the energy density of the fast flow, we dot (33) with u′h, add to
w′ times (34), and average over the fast time to obtain

Fr ∂t
1
2

(
u′2h + w′2

)
= w′b′ − u′hw′∂zū

′
h + ∇x

h · T x2 + ∂z T
z
2 −

Fr

Reb

(
Fr2
∣∣∇x

hu
′
h

∣∣2 +
∣∣∂zu′h∣∣2) ,

(66)
where

T x2 = −Frūh

(
p′ + 1

2 |u
′
h|

2
+ 1

2w
′2
)

+
Fr3

Reb
∇x
h
1
2 |u
′
h|2 , (67)

T z2 = ūh · w′u′h − w̄p+
Fr

Reb
∂z

1
2 |u
′
h|2 . (68)

Similarly, we obtain an equation for the potential energy density of the perturbation

Fr ∂t
1
2b
′2 = −w′b′ − w′b′∂z b̄+ ∇x

h ·B2 + ∂zBz −
1

RebFr

(
Fr2|∇x

hb
′|2 + (∂zb

′)2
)
. (69)

where

Bx2 = −Fr12∇
x
h · ūhb′2 +

Fr3

Reb Pr
∇x
h
1
2b
′2 , (70)

Bz
2 =

Fr

Reb Pr
∂zb′2 . (71)

The equation for the total energy for the leading order perturbations is

Fr ∂t
1
2

(
|u′h|

2 + w′2 + b′2
)

= −w′u′h ·∂zūh−w′b′∂z b̄+∇x
h ·(T x2 +Bx2 )+∂z (T z2 +Bz

2) . (72)

D Sensitivity of numerical solutions to time averaging

Formally, the averaging over the small scales is defined over time and space (23). For
computational convenience, however, it is convenient to march coupled system of PDEs
without with a single time-scale without time-averaging. To test the sensitivity of the
evolution to the system to time-averaging, we perform two numerical simulations with the
same parameters (Fr = 0.1, Reb = 80, k0 = 4.5, m0 = 10). Time-averaging the small/fast
flow over 1/Fr has insignificant effect on the initial evolution of the slow flow (figure 12).
The secondary stage stage of evolution of the flow has quantitative differences, but overall no
dramatic qualitative differences. We therefore conclude that, for this set of parameters, not
averaging on time is not qualitatively misleading. It is not obvious whether such results hold
at smaller Froude numbers, but we nevertheless make this assumption for computational
feasibility.



Figure 12: Kinetic energy of the slow flow for experiments with (red) and without
(green) averaging. The results are very similar in the initial stages, but differ
quantitatively in the secondary, oscillatory state.
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