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1 Introduction

The Ekman layer was first described by Walfrid Ekman in his 1902 doctoral dissertation [2]. It is now a
general term for a horizontal frictional boundary layer in a rotating frame of reference. These boundary
layers are ubiquitous in geophysical fluid dynamics, at the bottom of the atmosphere, in the ocean surface
layer, and (we think) above the seabed. The critical feature of these boundary layers is that the combination
of rotation and friction induces flow across lines of constant pressure, causing convergence in some regions
and divergence in others. Where there is convergence, fluid is forced vertically out of the boundary layer,
a phenomenon known as Ekman pumping. This small vertical velocity from the surface Ekman layer of the
ocean is thought to drive much of the ocean circulation.

Ekman derived the solution for linear flows, neglecting the effects of momentum advection. Because the
Ekman layer is so central to oceanic circulation, the details of its physics are of great interest to the fluid
dynamics community, and several efforts have have been made to understand its higher order behavior. In
1964, Benton, Lipps, and Tuann [1] examined the nonlinear modifications to the Ekman layer for a flow with
locally uniform shear far from the boundary, calculating the corrections numerically to five orders of Rossby
number. Inspired by this example, Eliassen (1971) [3] showed that nonlinear effects tended to suppress the
pumping of fluid out of the boundary layer in the center of a cyclonic vortex. This result was of considerable
interest, as it has been observed on many occasions that the center of cyclones in the atmosphere, like the
eyes of hurricanes, tend to be relatively cloud–free. If the Ekman layer was inducing downwelling—sucking
fluid out of the far field instead of pumping it in—this might explain the clear–eyed cyclones. In 2000,
Hart [4] calculated analytically the nonlinear corrections to the Ekman pumping up to five orders of Rossby
number. However, he restrict himself to unidirectional flows, that is flows that do not vary in the along–flow
direction and where one of the velocity components is zero. He was able to show that Eliasson’s result was
in fact an artifact of the assumption of locally uniform shear adopted from Benton et al. As a result, it was
unlikely that Ekman dynamics explained the paucity of clouds in cyclone centers.

All of these authors restrict their discussion to a limited class of flows, usually unidirectional flows. This
simplifies the computation significantly, but it excludes important physics: the effects of curvature and the
advection of material properties such as vorticity. However, we expect the lowest order nonlinear correction
to the Ekman pumping velocity to be proportional to the advection of vorticity. To redress the oversight
of previous studies, I will here calculate the weakly nonlinear form of the Ekman layer, and discuss the
effect that including vorticity advection has on the structure of the boundary layer and the vertical velocity
induced. I confine myself to discussing a case with no–slip boundary conditions, analogous to the ocean
bottom. Though this is the less physically relevant case for ocean circulation, it is mathematically simpler
and so a good starting point. I’ll begin by reviewing the linear Ekman layer in Section 2, followed by the
expansion in Rossby number in Section 3, including the weakly nonlinear solution for the Ekman pumping.
Section 4 will discuss an illustrative example to help build intuition. Section 5 contains an alternative
derivation of the weakly nonlinear solution for the illustrative example. I will conclude in Section 6.
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2 The Linear Ekman Layer

We begin with the dimensionless Navier–Stokes equations for a homogeneous, steady flow:
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In these equations, our dimensionless parameters are the Rossby number, ε = U0
2ΩL , and the Ekman number,

E = ν
ΩL2 , where Ω is the rotation rate of the frame, ν is the frictional parameter, L is a length scale, and

U0 is a velocity scale taken from the flow far from the boundary. In the inviscid interior flow far from the
boundary, both E and ε can be considered small, so to lowest order, the above system of equations becomes:
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These are the standard equations of geostrophic balance, where rotational and pressure effects balance each
other in the horizontal and there is no vertical motion. We will assume that the flow far from the boundary
always satisfies these equations, and we will denote the geostrophically balanced far field velocities U(x, y)
and V (x, y). The continuity equation implies that wz = 0. If we imagine that somewhere there is a horizontal
boundary that fluid cannot penetrate, we know that w = 0 everywhere.

Though the interior is inviscid, there must be a region near the boundary in which the frictional terms
are of the same order as the rotational terms. Therefore, we introduce a new stretched coordinate ζ, defined
so that the region where friction is important—the boundary layer—is the region where ζ is O(1):

z =
√

Eζ (5)
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We similarly rescale our vertical velocity so that:

∂w

∂z
=

∂W

∂ζ

Our equations of motion (??) – (??) then become:
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The scale over which frictional effects are important has now been included in our governing equations, so
we can neglect all terms that are still of order E. This gives:
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To solve these equations, we assume that the Rossby number ε is small and expand all of our varying
quantities in it:

u = u0 + εu1 + . . .

p = p0 + εp1 + . . .

...

To O(1), we get:
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These equations describe the linear Ekman layer problem. To solve it, we recall first that:

U = −∂p0

∂y

V =
∂p0

∂x

We can then define an auxiliary variable, Λ0 such that:

Λ0 = (u0 − U) + i(v0 − V )

The x– and y–momentum equations (??) — (??) then can be compactly expressed:

∂2Λ0

∂ζ2
− 2iΛ0 = 0

This second–order equation has two solutions, but we are only interested in the solution that is bounded as
ζ →∞, that is as we move away from the boundary:

Λ0 = −λe−ζ(1+i) (14)
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Applying the no slip boundary condition and converting back into real velocities, we find λ = U + iV , and:

u0 = U + e−ζ (−U cos ζ − V sin ζ) (15)
v0 = V + e−ζ (U sin ζ − V cos ζ) (16)

We can find W0 using the continuity equation (??):

W0 =
1
2

∂U
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We find the constant of integration by applying a no normal flow boundary condition at the bottom boundary.
In this, ω = ∂V

∂x −
∂U
∂y is the relative vorticity of the far field flow. We see that even infinitely far from the

boundary, friction has induced a vertical velocity W0 = 1
2ω that is proportional to ω, the vorticity of the

flow.
We have now completed the linear Ekman layer problem. We can see why it is worth pressing on to

a weakly nonlinear solution by taking a look at the vorticity equation, found by taking the curl of the
momentum equations (??) —(??):
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Far from the boundary, where the effects of friction given by the right hand side of the equation are small,
the vertical velocity gradient is balanced by the advection of vorticity. This strongly suggests that advective
effects will play an important role in the weakly nonlinear solution. Let’s calculate it.

3 Rossby Number Expansion

To find the weakly nonlinear correction, we examine our governing equations (??) to (??) to O(ε):(
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As in the linear problem, we can define an auxiliary variable Λ1 = u1 + iv1, and express the x– and y–
momentum equations in terms of it:
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Advection by the first–order velocity field becomes the forcing we apply to the order ε velocities. Note that
we include the pressure p1 with the forcing terms because it does not induce any cross-isobar flow, and so
will not induce any change in the Ekman pumping or boundary layer structure. We assume that they cancel
with the advection terms that do not decay to zero far from the boundary. After much long and tedious
algebra, we find that these forcing terms can be expressed:

∂2Λ1

∂ζ2
− 2iΛ1 = ae−ζ(1−i) + be−ζ(1+i) + ce−2ζ (23)

where

a = iλω − 2U
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(24)
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(25)
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∂x
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∂y

)
(26)

Solving this differential equation, and once again applying the no–slip boundary condition Λ0 = 0 at ζ = 0,
we find a solution:

Λ1 =
i
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2(1 + i)
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4
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c
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)
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Note that the term with an underbrace is a secular term that arises because the forcing resonates with the
homogeneous solution. Since it grows with ζ, if you go sufficiently far from the boundary the expansion in ε
will become disordered and so invalid. However, we can use the approximation ex ≈ 1+x to combine it with
the homogeneous solution, and interpret it as a modification to the structure of the boundary layer. While
this may seem presumptuous, it yields the same boundary layer thickness as approaching this problem with
a multiple–scale expansion, so it is probably true. The multiple–scale approach is shown in Section 5. With
this approximation, we find for the total velocity field of the fluid to order ε:

Λ = (u− U) + i(v − V ) = Λ0 + εΛ1 + O(ε2)

= −
(

λ + ε
( i

4
a +

c

4− 2i

))
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[
−ζ

(
1 + i + ε

b

2λ(1 + i)
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︸ ︷︷ ︸
+ε

i

4
ae−ζ(1−i) + ε

c

4− 2i
e−2ζ (28)

This is admittedly difficult to interpret. However, we can see that the thickness of the boundary layer is
modified by the exponential term indicated with an underbrace. We can also use Λ and the continuity
equation to calculate the Ekman pumping out of the boundary layer for an arbitrary geostrophic flow.
Continuity (??) tell us:

W = −
∫ [

∂u

∂x
+

∂v

∂y

]
dζ

= − ∂

∂x

(
<

[∫
Λdζ

])
− ∂

∂y

(
=

[∫
Λdζ

])
We are interested in the value of W as we move far away from the boundary—the amount of fluid that is
actually pumped out of the boundary layer and into the interior fluid. We can see from equation (??) that
we will find a solution of the form:

Λ = − (λ + ε(θ + µ)) e−ζ(1+i+εβ) + εθe−ζ(1−i) + εµe−2ζ (29)
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In this, θ = ia/4, β = b/(2λ(1 + i)), and µ = c/(4− 2i). This integrates very easily to give:∫
Λdζ =

λ + ε(θ + µ)
1 + i + εβ

e−ζ(1+i+εβ) − ε
θ(1 + i)

2
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µ

2
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We find the constant of integration C(x, y) by applying the boundary condition W (ζ = 0) = 0. Since all of
the terms in Λ decay with increasing ζ, W (ζ →∞) = C(x, y). Evaluating this by hand is not anyone’s idea
of fun, so I use a computer algebra program, Maple 11, to find:
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This is the weakly non-linear solution for the Ekman pumping induced by a no–slip boundary in a rotating
frame. As with many of the things I have presented in this essay, it is rather difficult to interpret. We notice
that that there is no direct dependence on vorticity advection, though all the terms of the vorticity advection
enter the above expression. Therefore, we will now turn to a simplified example to build intuition about the
effects of nonlinearity on the Ekman layer.

4 An Illustrative Example

We can gain great insight into the effect of advection on the boundary layer by exploring the simplest test
flow in which advection is present:

U = U(y)
V = constant

This is the unidirectional flow examined by Hart, Pedlosky, and others, modified by a constant cross–stream
velocity. The thickness of the boundary layer is controlled by the decaying exponential in Λ. It is the real
part of the exponential designated by an underbrace in equation (??). It is:

Λ ∝ exp
[
−ζ + εζ

1
4
ω

(
1− 2V 2

U2 + V 2

)]
(32)

In this flow, the relative vorticity ω = −∂U
∂y . If the cross–flow velocity V goes to zero, this reduces to the

solution for a unidirectional flow derived by Hart [4] and by Pedlosky [5] in the invited lectures of this year’s
summer school. That is, we find that the thickness of the Ekman layer is modified proportionally to the
vorticity of the flow: where the vorticity is positive the Ekman layer is thicker, and where the vorticity is
negative the Ekman layer is thinner. If, on the other hand, the cross–flow velocity V is very large, the
thickness of the Ekman layer is modified in the opposite direction, thicker where the vorticity is negative
and thinner where the vorticity is positive.

For this flow field, we find a solution of the form given in (??), with:

β = − 1
4λ

(
(i− 1)U

∂U

∂y
+ (i− 3)V

∂U

∂y

)
(33)
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Figure 1: Streamlines for the Illustrative Example. Plan View.

θ =
1
4

(
U

∂U

∂y
− iV

∂U

∂y

)
(34)

µ =
3i + 1

10

(
U

∂U

∂y
+ V

∂U

∂y

)
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Integrating, and taking the limit as ζ →∞, we find

W∞ = −1
2

∂U

∂y
− ε

7
40

((∂U

∂y

)2

+ U
∂2U

∂y2

)
+ ε

13
40

V
∂2U

∂y2︸ ︷︷ ︸ (36)

The final term, indicated with an underbrace, looks like the advection of vorticity. However, it is unclear
if that is the appropriate physical interpretation because the general solution given in equation (??) is not
directly proportional to vorticity advection.

To better understand the effects we’ve derived, let’s examine a specific flow:

U = cos ky

V = constant

The streamlines of this flow are shown in Figure ??.
This flow makes an ideal test case because it is not computationally demanding, but has the physical

characteristics we’re interested in investigating: regions of positive and negative vorticity and fluid advected
between them. The boundary layer thickness is given by:

Λ ∝ exp
[
−ζ + εζ

1
4
k sin ky

(
1− 2V 2

cos2 ky + V 2

)]
This is shown in Figure ?? for three cases: no advection, weak advection, and strong advection. The Ekman
pumping is:

W∞ =
k

2
sin ky − ε

7
40

k2 − ε
13
40

V k2 cos ky

This solution is shown in Figure ?? for a variety of cross-flow velocities, V . Increasing the cross-flow velocity
shifts the phase of the Ekman pumping from being in phase with the vorticity of the flow to being π out of
phase with it. Note that the nonlinear correction to the Ekman pumping acts asymmetrically. It is somewhat
intensified in regions of positive vorticity and weakened in regions negative vorticity because the vertical
velocity induced by vorticity reinforce the Ekman pumping in regions of positive vorticity and suppress
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Ekman pumping in regions of negative vorticity. The weakly nonlinear correction is also proportional to the
curvature of the sinusoidal flow—as k increases, that is as the length scale of the oscillations decrease, the
fluctuations in vorticity become more pronounced and the Ekman puming stronger.

5 Multiple Scale Expansion

Another way to derive a weakly nonlinear solution to the Ekman layer is by separating the vertical scales
of the boundary layer, the far–field flow, and the transition region between them. As in the Rossby number
expansion, we start with the boundary layer coordinate ζ = z/

√
E, as defined in equation (??). We also

define a coordinate that is of order one in the transition region between the boundary layer and the interior
flow:

η = εζ =
ε√
E

z

We assume that the scale of ζ and η are so widely separated that we can treat them as independent variables.
Therefore:

∂

∂z
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∂
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+
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E

∂
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E
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ε

E
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E
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Our equations of motion (??) – (??) then become:
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∂x
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To order 1, we recover the same linear Ekman problem we discussed previously. It’s solution is found in
equation (??). However, instead of saying that the coefficient λ varies only in x and y, we allow it to vary
in the transitional vertical coordinate η, as well. This coordinate is so dilated with respect to the boundary
layer that variations in η seem constant within the boundary layer. If we let the coefficient λ = A + iB, the
no slip boundary condition gives us A(ζ = 0) = −U and B(ζ = 0) = −V . The Ekman pumping becomes:

W0 = C(x, y, η) +
1
2

(
∂B

∂x
− ∂A

∂y
+

∂B

∂y
+

∂A

∂x

)
e−ζ cos ζ

+
1
2

(
∂B

∂x
− ∂A

∂y
− ∂B

∂y
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∂x

)
e−ζ sin ζ (39)

Since A and B now are considered to vary vertically, we can not assume that ∂A
∂x + ∂B

∂y = 0. To determine A
and B we must solve the next order problem, which as governing equations:(

u0
∂u0

∂x
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∂u0

∂y
+ W0

∂u0

∂ζ

)
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∂x
+

1
2
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∂ζ2
+ 2

∂2u0

∂ζ∂η

)
(

u0
∂v0
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)
+ u1 = −∂p1

∂y
+

1
2

(
∂2v1

∂ζ2
+ 2

∂2v0

∂ζ∂η

)
0 = −∂p1

∂ζ
− ∂p0

∂η

∂u1

∂x
+

∂v1

∂y
+

∂W1

∂ζ
+

∂W0

∂η
= 0
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We can again combine the x– and y–momentum equations to find an inhomogeneous differential equation
for Λ1 = u1 + iv1, analogous to equation (??):

∂2Λ1

∂ζ2
− 2iΛ1 = 2

[∂p1

∂x
+ i

∂p1

∂y
+ u0

∂u0

∂x
+ v0

∂u0

∂y
+ W0

∂u0

∂ζ
− ∂2u0

∂ζ∂η
+

+iu0
∂v0

∂x
+ iv0

∂v0

∂y
+ iW0

∂v0

∂ζ
− ∂2v0

∂ζ∂η

]
(40)

As in the single–scale expansion, we find that some of the forcing terms are of the same form as the ho-
mogeneous solution, ∝ exp[−ζ(1 + i)]. These forcing terms are dangerous, because they yield solutions
proportional to ζ exp[−ζ(1 + i)], giving terms in the final velocity like (1 + εζ) exp[ζ(1 + i)]. When η = εζ
is of order one, our expansion becomes disordered, that is terms of order ε are not smaller than those of
order 1. In order to avoid this, we insist that all forcing terms of this form, called secular terms, sum to
zero. This is the condition for the existence of a well–behaved expansion in Rossby number, so it is called
the solvability condition. It is:

∂λ

∂η
+

1
1 + i

(
U

∂λ

∂x
+ V

∂λ

∂y

)
− λ

(
C(x, y, η) +

ω

2i(1 + i)

)
= 0 (41)

This partial differential equation can be converted to a group of ordinary differential equations using the
method of characteristics. We define a characteristic parameter s such that:

∂x

∂s
= U (42)

∂y

∂s
= V (43)

∂η

∂s
= 1 + i (44)

Our solvability condition (??) now reduces to:

dλ

ds
− λ

(
(1 + i)C(x, y, η)− i

1
2
ω

)
= 0 (45)

It is straightforward to integrate an equation of this form and find λ, but in order to do so we need an
expression for C(x, y, η). We find it using a vorticity equation formed from the x– and y–momentum
equations (??) and (??). Far from the boundary, where things are no longer changing over scales of ζ, the
vorticity equation to order ε is:

u0
∂ω0

∂x
+ v0

∂ω0

∂y
− ∂W0

∂η
= 0

Far from the boundary, u0 = U and v0 = V , so we integrate to find that:

W0

∣∣∣
ζ→∞

= C(x, y, η) =
(

U
∂ω

∂x
+ V

∂ω

∂y

)
η + C ′(x, y) (46)

The Ekman pumping to order ε should be proportional to the vorticity advection in the interior. We can
use the no normal flow boundary condition at the bottom to find C ′(x, y) = − 1

2ω. Unfortunately, this is as
far as it is possible to go in the general case. In order to solve the equation for s (??), we need to know
the specific geostrophic flow U and V . Let’s consider the same flow that we discussed in Section 4, as an
illuminating example: U = cos ky and V = constant. This flow is relatively simple to evaluate, but still has
the crucial characteristic that it has varying vorticity and fluid being advected from regions of one vorticity
to regions with a different local vorticity. Equations (??) and (??) give y = V x + y0 and η = (1 + i)s.
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Putting these into C(x, y, η) from equation (??), we can solve equation (??) by direct integration in s. One
finds eventually that:

λ = λ0 exp
[
− (1 + i)Ukη sin ky − U

V
(2i− 1

2
) cos ky +

+
U

V
(2i− 1

2
)(cos(ky − V kη

2
) cosh

V kη

2
+ +i sin(ky − V kη

2
) sinh

V kη

2

]
This solution is only accurate to order ε, so we approximate all of the functions containing an η = εζ to
order ε, for example sinhx ≈ x. The details of the flow field calculated are less important that the induced
variations in the thickness in the boundary layer. To find that, we apply our boundary conditions at ζ = η = 0
to find λ0 and take the real part of the exponential above, giving:

Λ ∝ exp
[
−ζ + εζ

1
4
ω

(
1− 2V 2

U2 + V 2

)]
(47)

This is exactly the same boundary layer thickness that we calculated using the single–scale expansion,
shown in equation (??). The fact that one can calculate it in two different ways substantially reinforces one’s
confidence that it might be correct.

Unfortunately, the two–scale method proved to be both less general and more complicated than a simple
single–scale expansion. However, it was useful for confirming our previous efforts. Moreover, it provided
us with the prediction that the Ekman pumping should be proportional to the vorticity advection in the
interior flow. Our simplified single–scale expansion suggests that this may be the case, though we would
have to calculate the fully general Ekman pumping to see if that were actually true.

6 Conclusions

In this study, we found the weakly nonlinear correction to the Ekman boundary layer of an arbitrary
horizontal flow over a plate. Previous studies had concentrated on unidirectional flows of the form U = U(y),
V = 0. Guided by the intuition that the Ekman pumping out of the boundary layer should be related to
the advection of vorticity, a quantitiy that goes to zero in the case of unidirectional flow, we performed
an expansion in Rossby number. We found that both the structure of the boundary layer and the Ekman
pumping were strongly effected to order ε by advection. We derived a general expression for the weakly
nonlinear Ekman pumping for an arbitrary far–field flow, and studied a simple example in detail. In our
example, both the Ekman pumping and the modification to the thickness of the boundary layer were shifted
in phase by the introduction of vorticity.

There are a number of interesting applications for continued research in this area. Repeating these
calculations for a stress boundary condition, analgous to the surface of the ocean, should be straight–forward
mathematically. Once that is done, there are a number of high–resolution data sets already collected that
might allow us to see if the non–linear corrections derived here are important in oceanographic contexts. In
areas of very high wind stress, such as storms, or in areas where there is a strong and narrow current like
the Gulf Stream, these corrections may prove to be significant.

I would like to acknowledge the help of my advisor Joe Pedlosky, for his advice and assistance, and
for the stimulating principle lectures; the rest of the GFD faculty, and the GFD fellows for the wonderful
atmosphere of Walsh Cottage. Finally, I would like to thank Claudia Cenedese and John Whitehead for all
their efforts organizing the summer school.
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Figure 3: x–velocity in the boundary layer for varying strengths of advection for ky = π
4 . Dashed lines

indicate the linear Ekman solution, and solid lines indicate weakly nonlinear solution. All of the velocities
have been rescaled by the maximum far–field velocity. Note that the boundary layer may be either thickened
or thinned, depending on the strength of the advection.
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Figure 4: Advection velocity in the boundary layer for varying strengths of advection for ky = π
4 . As in

Figure ??, dashed lines give the linear solution and solid lines give the weakly non-linear solution. For the
strong advection case of V = 10, the velocities have been rescaled by V .
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Figure 5: Ekman pumping. The dashed black line gives the vorticity of the far–field flow. The introduction of
vorticity advection shifts the phase of the Ekman pumping by π/2. Note also that there is a weak asymmetry
in the Ekman pumping between areas of positive and negative vorticity.
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