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1 Introduction

Breaking of internal waves, i.e. the nonlinear transfer of energy from internal waves to
turbulence, drives deep ocean mixing. Both the sources and sinks of internal wave energy
in the world ocean, however, are spatially variable. It is estimated that roughly half of
internal wave energy in the ocean is produced by the movement of the barotropic tide
around topography, which generates internal waves with the same frequency. Where and
when mixing due to the internal tide occurs, depends on two factors: the strength of the
internal tide generated around a particular piece of topography, and the mechanisms that
cause this internal tide to cascade into smaller scales, which then break and cause mixing.
The magnitude and distribution in time and space of neither of these is well understood.

Much research is currently focused on how efficiently a particular topographic structure
generates an internal tide. Furthermore, it is not well understood how far, in each case, a
particular internal tide will propagate, and where and by what mechanisms it will deposit
its energy. Recent studies(e.g. [1], [2]) have suggested that mixing due to internal wave
breaking happens to a large extent in “hotspots” near rough topography.

MacKinnon and Winters [3] showed, using an idealized model, that an internal tide of
M2 frequency seems to efficiently break into waves of roughly half the M2 frequency, and
smaller vertical scale, suggesting that Parametric Subharmonic Instability (or PSI, i.e. the
class of resonant wave-wave interactions wherein energy is transferred from a primary wave
to two recipient waves of half the primary frequency and smaller vertical scale, and the range
of interactions where the secondary waves are near this half-frequency) could be a significant
mechanism of energy transfer to smaller scales. The efficiency of this interaction increased
dramatically as the waves approached the critical latitude where the M2/2 frequency equals
the inertial frequency (f). The results of MacKinnon and Winters suggest not only that PSI
could be a significant mechanism of energy transfer out of the internal M2 tide, but also that
this mechanism is strongly latitude-dependent. Though PSI has previously been thought
too slow ( [4]) to be an important mechanism for the transfer of energy into smaller-scales,
MacKinnon and Winters argue that it might be much faster than previously thought in the
nearfield of the generation site, where the internal tide is coherent.

In regards to latitude dependence, it is not clear why the efficiency of these interactions
should increase so much near the critical latitude. One factor could be the fact that, near
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the critical latitude, the waves with frequencies close to the subharmonic frequency have
group velocities near zero, and, by breaking close to where they are generated, could create
a “hotspot”, where mixing is several times stronger than at lower latitudes. It is not yet
known, however, how the efficiency of PSI interactions themselves actually changes with
latitude, regardless of the group velocity of the resulting subharmonic waves. If PSI is
indeed a significant factor in internal wave breakingg, its latitude dependence must be
carefully examined.

The purpose of this paper is to find the intrinsic dependence of PSI interactions on
latitude, or, more precisely, on the inertial frequency, f .

This will be done by rederiving the well-known triad equations for the case of internal
waves with rotation of the earth (Section 2), and then integrating them numerically (Sec-
tion 3). Section 4 then compares the results of the numerical integration to the established
analytical solutions to the problem.

The greater purpose of this study is to help improve understanding of the spatial and
temporal structure of tidal mixing, that is, how and where energy is transferred out of the
internal tide. This is necessary in order to better understand the structure of the global
ocean circulation, which requires both a map of the tidal generation sites, as well as a
dynamical understanding of how much energy from the internal tide is lost to dissipation.
Before PSI is dismissed as a dissipation mechanism, it must be considered for a coherent
primary wave, and its latitude dependence examined. Understanding of this dependence is
necessary for the correct modeling of energy dissipation of the internal tide.

2 Resonant Triad Model of Weakly Nonlinear Interactions

2.1 Derivation

We begin with the governing equations,

∂u

∂t
+ u · ∇u − fv = − 1

ρ0

∂p

∂x
(1)

∂v

∂t
+ u · ∇v + fu = − 1

ρ0

∂p

∂y
(2)

∂w

∂t
+ u · ∇w = − 1

ρ0

∂p

∂z
− ρ′g (3)

∂ρ′

∂t
+ w

dρ0

dz
= 0 (4)

∇ · u = 0. (5)

One possible way to approximate weakly nonlinear interactions is via a resonant triad model.
It is helpful to nondimensionalize by characteristic length, velocity, and time scales, so that
different scales of motion can be examined. We thus scale the variables by typical velocity
u∗, length scale k∗, and the time scale ω−1

∗ of our primary wave, a typical propagating
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internal tide. Thus,

(u, v, w)T = u∗(ũ, ṽ, w̃)T (6)

x =
x̃

k∗
(7)

t =
t̃

ω∗
(8)

where tildes indicate nondimensional quantities. The pressure-gradient terms on the right
hand side must have the same dimensions as the left hand side. If we assume that the linear
terms are dominant, the pressure-gradient terms must scale like the linear terms on the left
hand side:

p =
ρ0u∗

k∗t∗
p̃. (9)

We also define a nondimensional inertial and buoyancy frequencies, respectively,

f = f̃ω∗, (10)

N = Ñω∗ (11)

which are both scaled with respect to the linear wave motion.
Plugging (6) - (9) into (1) - (5), we have

dũ

dt̃
= − 1

ρ0

dp̃

dx̃
− u∗k∗

ω∗
ũ · ∇ũ + f̃ ṽ, (12)

and similar equations for ṽ and w̃. The nonlinear terms in these equations will be small if
the quantity

ε :=
u∗

ω∗/k∗
(13)

is small. (13) shows that ε is the ratio of typical particle speed to the typical phase speed
of the waves.

Equations (1)-(5) can be combined into a single equation:

∂tt(−∇2 − ∂zz)w − N2∇2w − f2∂zzw

−ε[∇2(u · ∇b) − ∂t∇2(u · ∇w) + ∂xzt(u · ∇u) + ∂yzt(u · ∇v) −
f∂yz(u · ∇u) + f∂xz(u · ∇u)] = 0 (14)

A useful tool for describing the impact of weakly nonlinear interactions on the linear
dynamics is to define multiple time scales of motion. Having already defined a typical time
scale of the primary wave, and nondimensionalized the governing equations by this time
scale, we now introduce a comparatively slow timescale,

τ = εt∗t̃, (15)

with corresponding nondimensional time

τ̃ = εt̃. (16)

166



τ̃ is defined with respect to the magnitude of the nonlinear terms.
The time derivatives in (14) then become

∂

∂t
→ ∂

∂t
+ ε

∂

∂τ
(17)

∂2

∂t2
→ ∂2

∂t2
+ 2ε

∂2

∂t∂τ
+ ε2 ∂2

∂τ2
(18)

Substituting the right hand sides of (17) and (18) into (14), the O(ε0) balance is

∂tt(−∇2 − ∂zz)w − N2∇2w − f2∂zzw = 0. (19)

This is the linear component, and admits wave solutions like

w = wie
i(kix+liy+miz−ωit) = Σwie

iθi , (20)

with ωi subject to the dispersion relation

ω2
i =

N2
(

k2
i + l2i

)

+ f2m2
i

k2
i + l2i + m2

i

(21)

Substituting the linear solution (20) into the linear parts of (1) - (5), we can find polar-
ization relations which relate u, v, p, and b to the prognostic variable, w:

u = gu(w) =

(

m(ikω − fl)

iω(k2 − l2)

)

w (22)

v = gv(w) =

(

m(ikω − fk)

iω(k2 − l2)

)

w (23)

p = gp(w) =

(

ω2 − N2

mω

)

w (24)

b = gb(w) =
−iN2

ω
w (25)

The O(ε) balance is

2
∂2

∂t∂τ
(∇2 + ∂zz)w =

−∇2(u · ∇b) − ∂t∇2(u · ∇w) + ∂zxt(u · ∇u) + ∂zyt(u · ∇v) − f∂zy(u · ∇u) + f∂zx(u · ∇v),(26)

where ∇2 is the horizontal Laplacian.
In order to model the nonlinear interaction as described by (26), we will seek solutions

like

w =
∑

z(τ)ei(kix+liy+miz−ωit) +
∑

z∗i (τ)e−i(kix+liy+miz−ωit) =
∑

zi(τ)ie
iθi + c.c. (27)

(27) is a sum of solutions to the linear problem. The complex amplitudes zi(τ) = wi(τ)eiφi

are allowed to vary on the slow timescale, to reflect the nonlinear interactions between the
component waves.
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(27) can then be substituted into (26) . Individual terms on the right hand side will
then look like

u · ∇s = u1(
∂s2

∂x
+

∂s3

∂x
+ ...) + u2(

∂s1

∂x
+

∂s3

∂x
+ ...) + v1(

∂s2

∂y
+

∂s3

∂y
+ ...) + ...

= u1 (k2s2 + k3s3 + ...) + u2 (k1s1 + k3s3 + ...) + v1 (l2s2 + l3s3 + ...) + ...

=
∑

i

ui

∑

j 6=i

kjsj +
∑

i

vi

∑

j 6=i

ljsj +
∑

i

wi

∑

j 6=i

mjsj (28)

where s is can be one of the four system variables u, v, w, b.
Using the polarization relations (22)-(25), individual terms in (28) can be written in

terms of the amplitudes zi and phases θi of each component wave, e.g.

uikjsj = zigu (zi) eiθikjgs (zj) zje
iθj . (29)

Consequently, derivatives of terms like u · ∇s will bring down factors of ki + kj , li + lj ,
mi + mj , and ωi + ωj .

Plugging (27) into the left hand side of (26) gives

2i
∑

k

ωk

(

k2
k + l2k + m2

k

) ∂zk

∂τ
eiθk . (30)

If we now consider the evolution of a particular wavenumber component (k0, m0, ω0)
by averaging both the left hand side and the right hand side over the period of that wave,
the terms on the right hand side that will balance the left hand side will be ones where

θi + θj = θ0. (31)

The simplest possible nonlinear interaction we can consider is therefore a triad of waves
where (31) holds, or, more specifically, where

k1 + k2 = k0 (32)

l1 + l2 = l0 (33)

m1 + m2 = m0 (34)

ω1 + ω2 = ω0. (35)

The equations for this interaction found by truncating (26) for the triad of waves, so
that (27) becomes

w =
3
∑

i=1

zi(τ)eiθi(t) + c.c. =
3
∑

i=1

wi(τ)ei(θi(t)+φi(τ)) + c.c. (36)

Plugging (36) into (26) and factoring out the complex exponentials in the individual
terms as in (29) and (30), and applying the resonance condition (31), such that the phases
of the individual waves, eiθi divide out, we are left with equations for the evolution of the
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complex wave amplitudes, zi(τ), on the “slow” time scale (see Appendix for details). The
resulting model is then given by

ż0 = −iΓ0z1z2 (37)

ż1 = −iΓ1z0z
∗
2 (38)

ż2 = −iΓ2z0z
∗
1 (39)

where the ∂τ time derivative has been replaced with a dot. For each wave, the corresponding
interaction coefficient Γi is a function of the wavenumbers of the two interacting waves. The
interaction coefficients are derived in the appendix.

2.2 Comments

1. It is important to remember that the system (37) - (39) describes the coupled fluc-
tuations of the amplitudes of the three waves, not the waves themselves. However,
the individual fields of each variable can be found, for each wave, by substituting the
amplitudes wi of each wave, and the appropriate wave numbers, into the polarization
relations (22) - (25). The frequency of the actual waves will be proportional to that
of the triad interaction by a factor of ε.

2. The appropriate combinations of wavenumbers cannot be arbitrary, but must be cho-
sen so that both the dispersion relation (21) and the resonance condition for each
dimension (32) - (35) are satisfied. Thus, for example, given some horizontal struc-
ture described by (fixed) horizontal wave numbers ki and li, decreasing ωi means that
the corresponding set of available vertical wavenumbers mi will have larger values.

3. While the triad equations (37) - (39) can be easily integrated numerically, it is trickier
to find resonant sets of wavenumbers and frequencies which also satisfy the disper-
sion relation. For example, suppose that the frequency, ω0 and spatial wavenumbers
k0, l0, m0 of the primary wave are known. This leaves eight unknown parameters,
but the system is then constrained by four resonance equations (32) - (35) and two
dispersion relations, leaving two degrees of freedom. Thus, given the primary wave, it
is only possible to choose two more wavenumbers in either one of the two secondary
waves, say, for example, k1 and l1. In this case, k2 and l2 will be given by the appro-
priate resonance conditions, and m1, m2, ω1, and ω2 must be found by solving the
system of equations given by the remaining resonance conditions (34), (35), and the
dispersion relations (21) for wave 1 and wave 2. Such a system is impossible to solve
analytically, but can be solved numerically.

4. It is easily seen from the triad equations (37) - (39) that the amplitude of energy
exchange for each wave is proportional to the interaction coefficient for that wave –
the wave with the smallest interaction coefficient exchanges the least amount of energy.
It is also clear from the triad equations that the amplitude of energy exchange also
depends on the initial amplitudes of the waves themselves, and their phases relative
to each other.
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5. The rate of change of each wave amplitude, and therefore the triad interaction fre-
quency, is also a function of the initial amplitudes, and the interaction coefficients.
It is this interaction frequency, and its dependence on the three sets of wavenum-
bers, on which this study focuses. It will be computed numerically in section 3, and
analytically in section 4.

2.3 Methodology

In this study, we are interested in systems where the secondary waves (waves 1 and 2) have
horizontal structures similar to that of the primary wave (wave 0), frequencies that are
fractions of the primary wave frequency, and the appropriate vertical structures that result
from satisfying both the dispersion relation (21) and the resonance conditions (32) - (35) .
We therefore fix the parameters of the primary wave, with ω0 = 1 and k0, l0, and m0 equal
to three values given in Table 1. In order to simplify the problem, we choose l0 = l1 = l2 = 0,
thus reducing the problem to two dimensions while preserving the presence of the planet’s
rotation. This leaves one degree of freedom, which we choose to be ω1. Now, varying ω1, the
corresponding ω2, k1, and k2, m1, and m2 can be computed from the problem’s constraints.
We are thus in effect varying the frequency of the secondary waves and computing the
corresponding horizontal and vertical structures.

For a given ω1, there exists a set of possible combinations of m1 and k1, with consequent
parameters for wave 2 given by the resonance condition. This is shown graphically in
Figure 1, a plot of the vertical wavenumbers m1 that satisfy each choice of ω1. This so-called
resonant trace has four different branches, two of which have large vertical wavenumbers
as ω1,2 → ω0. The interaction coefficients in (37)-(39), and thus the interaction frequency,
will be different for each branch.

The interaction frequency along these resonance traces will also depend on the other
parameters in the dispersion relation, namely the buoyancy frequency, N , and the inertial
frequency, f . Since the focus of this study is on the effect of latitude on the triad interaction,
N will be kept constant (N = 10, in nondimensional units), while f will vary from 0 to
ω0/2. For given f > 0, only those triads with ω1,2 ≥ f will be allowed by the dispersion
relation, thus truncating the resonant trace outside of the interval [f, ω0 − f ].

3 Numerical Results

Figure 2 shows the exchange of energy between three waves satisfying the resonance condi-
tions, for a simple case where f = 0 and the primary wave is about an order of magnitude
larger than the two daughter waves. The wavenumbers of the resonant triad in this example
are given in Table 1. The corresponding fluctuation of a single wave, wave 0, is shown in
Figure 3, where we have chosen ε = 0.05. Figure 4 shows the composite wave field w(x, z)
for the same example, at t = 0 and again at a time halfway through the period of the wave
interaction. At the half-period time, the vertical structure is considerably smaller, simply
because Wave 2 (m2 = 13.36) is dominant.

In this example, the frequency of energy exchange is about 0.75, on the nondimensional
slow timescale. This means that exchange of energy between the triad members happens
at a fraction of 0.75ε of the frequency of the primary wave, ω0.
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Figure 1: Pairs of frequency and vertical wavenumber satisying the resonance condition and
dispersion relation, for ω0 = 1 and l0 = l1 = l2 = 0.

Wave Initial Amplitude Initial Phase ω k m Γi

wi φi

0 1.0 3 -1 -1 10 -40.3
1 0.04 5 0.49 .12.1 -246 -4.74
2 0.02 5 0.51 -13.1 256 -5.34

Table 1: Initial values, wavenumbers, and interaction coefficients of the component waves
in a sample resonant triad.
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Figure 2: Exchange of energy between the three waves in a resonant triad. In this example,
f = 0, and the wave frequencies are ω0 = 1, ω1 = 0.2, ω2 = 0.8. Initial wave amplitudes
and phases are given in Table 1.
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Figure 3: Amplitude fluctuation of the primary wave, for a triad oscillation with f = 0,
and the wave frequencies and amplitudes as in Fig. 2.
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Figure 4: Fields of the variable w as a composite of the three interaction waves in the triad,
at the initial time (left) and at t = T/2, where T is the period of the triad interaction.
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Figure 5 examines the interaction frequency for triads with ω0 = 1, and values of ω1

varying over the interval [f, ω0/2] (with ω2 changing in the other direction, to satisfy (35)).
This plot has different characteristic curves, corresponding to the different branches of
the resonant trace (Fig. 1). As shown in Figure 1, for a given value of ω1, and taking
l0 = l1 = l2 = 0, there are typically three or four possible wave number combinations
that satisfy both the dispersion relation and the resonance condition. Hence, a plot of
the interaction frequency as a function of ω1 has several different characteristic curves
of interaction frequency. Four different increasing values of f are shown. Triads where
m1 > 5m0 are indicated with an x. These indicate daughter waves with small vertical
structure, the waves most likely to break and cause mixing.

For f = 0 the interaction frequency varies slowly with ω1,2, with a minimum at ω1,2 =
ω0/2. For increasing f , however, one of the resonant curves develops a sharp rise in the
interaction frequency as ω1,2 → ω0/2. These are precisely those resonant triads where
m1 > 5m0. As f approaches ω0/2 (the critical latitude), the band of available values of
ω1,2 becomes smaller. This result is well known. It is surprising, however, that the overall
interaction frequency seems to increase with increasing f .

Figure 6 shows the interaction frequency as a function of the three interaction coeffi-
cients, for the case f = 0. For each particular Γi, there exists usually more than one set of
corresponding Γj , Γk, and thus more than one corresponding interaction frequency, making
these figures difficult to interpret.. The dependence of the interaction coefficients on the
resonant sets of wavenumbers (see Appendix), is similarly complicated. We now appeal to
known analytical solutions to the triad equations to shed light on why the above numerical
results are what they are.

4 Analytical Solution

It is possible to find an analytic solution to the system of triad equations (37) - (39), by
deriving the system’s invariants and transforming it into a single ODE.

First, it is helpful to transform the wave amplitudes so as to make the equations sym-
metric. This can be done by defining three “stretched” new wave amplitudes,

z0 =
ζ0

2
√

Γ1Γ2
(40)

z1 =
ζ1√

2Γ0Γ2
(41)

z2 =
ζ2√

2Γ0Γ1
(42)

The triad interaction equations then become

ζ̇0 = −iζ1ζ2 (43)

ζ̇1 = − i

2
ζ0ζ

∗
2 (44)

ζ̇2 = − i

2
ζ0ζ

∗
1 , (45)

plus the three complex conjugate equations.
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Figure 5: Interaction frequency for all possible resonant triads over a range of values of
ω1,2, with everything else held constant. Points marked with an x denote triads where the
vertical wavenumer of wave 1 is greater than five times that of wave 0.
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Figure 6: Interaction frequencies as a function of the three interaction coefficients, computed
for a range of resonant triads with f = 0 and ω0 = 1.
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Two invariants to the system are easily found. One is the energy,

|ζ0|2 + |ζ1|2 + |ζ2|2 = A0, (46)

and another is given by one of the Manley-Rowe relations:

|ζ1|2 − |ζ2|2 = A1. (47)

Taking the time derivative of (43), and substituting (43) - (45) and their complex con-
jugates, and (46), gives

ζ̈0 = −i
d(ζ1ζ2)

dt
= −1

2
ζ0

(

A0 − |ζ0|2
)

. (48)

This equation can be integrated twice to find an equation for ζ0(t). (48) can be separated
into its complex and imaginary components. Letting

ζ0 = u0e
iφ, (49)

(48) becomes

ü0 + iu̇oφ̇0 + iφ̈0u0 + iφ̇0u̇0 − φ̇0
2
u0 = −1

2
u0

(

A0 − u2
0

)

. (50)

The imaginary component of (50) is easily integrated:

φ̈0

φ̇0

+ 2
u̇0

u0
= 0

→ ln φ̇0 + ln u2
0 = A2

→ φ̇0u
2
0 = A3 (51)

The real component of (50) can now be rewritten using (51):

ü0 −
A3

u3
0

= −1

2

(

A0u0 − u3
0

)

. (52)

This can be integrated as well, to give

u̇0
2 +

A2
3

u2
0

= −A0

2
u2

0 +
1

4
u4

0 + A4. (53)

Now writing x = u2
0, we have

ẋ2 = x3 − 2A0x
2 + 4A4x − 4A2

3

=: −2π(x). (54)

Now (54) can be written as an integrable ODE, of the form

1

2
(dx/dt)2 + π(x) = 0,
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Figure 7: The complete elliptic integrals K and E as a function of the parameter m.

where π(x) is a cubic function, with roots a > b > c.
If π(x) has three real roots and b < x(0) < a, solutions x(t) oscillate in a “potential

well” bounded by the roots a and b. These oscillatory solutions are proportional to Jacobi
Elliptic functions, with a period of

T = 2

√

6

a − c
(cK(m) + (a − c)E(m)) , (55)

where K and E are the complete elliptic integrals of the first and second kind, respectively,
and

m =
a − b

a − c
. (56)

These are plotted in figure 7.
While this expression for the period is somewhat complicated, it can be interpreted in

terms of the roots of π(x), or the shape of the potential well. Assuming, for example, that
the third root, c, stays constant, and letting c = 0, if the distance between the two largest
roots increases (that is, if the size of the potential well increases), the parameter m will
increase as well, E will go to zero, and T will decrease. If the distance between the largest
and smallest root (a− c) increases relative to a− b, then m → 0, which means K, E → π/2,
and, again, T will decrease. The interaction frequency, therefore, can be interpreted in
terms of the shape of π(x).

The roots of π(x) depend on the invariants in (54), which in turn depend on the initial
wave amplitudes, as well as the interaction coefficients, which of course also depend on f .
Figure 8 shows π(x) plottted for ω1 = .4, and two values of f . As f approaches ω1, the
shape of π(x) changes for one of the four solutions– the distance between the largest and
smallest root becomes bigger, corresponding to a smaller interaction period (and higher
interaction frequency).

Figure 9 shows the interaction frequency, computed analytically, for a range of ω1, at
four different values of f approaching the critical latitude, as in Figure 5.
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and ω1 = 0.2. f = 0 in the top panel, and f = 0.2 in the bottom panel.
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As in the numerical integration of the triad equations and the above analytical reasonin,
the interaction frequency at the subharmonic peak increases as f increases – thus showing
that the behavior found in section 4 was not simply a numerical peculiarity.

5 Conclusions

This study has investigated the rate of energy transfer via triad resonance out of the internal
M2 tide .

• We have shown numerically that the efficiency of PSI increases as the waves approach
the critical latitude where the Coriolis parameter f equals half the primary frequency,
ω0.

• This property is not simply a consequence of the fact that ω0/2 waves have zero
group velocity at the critical latitude, but seems to be an intrinsic property of the
triad equations.

• Since the triad equations are integrable, and analytical solution can be found, and
the relationship between the system parameters, particularly f , and the interaction
frequency can be examined more closely.

This study is a simple exercise intended to cast the more or less established and known
properties of PSI into the context of the internal tide. Several things remain to be ex-
amined. A closer examination of the analytical solution and its relationship to f may be
possible, especially if it is possible to cast the potential function π(x) and its roots in a more
transparent form. The problem should also be extended to the three dimensional (li 6= 0)
case. The realistic numbers corresponding to the nondimensional results shown above (that
is, an estimate of ε) also need to be considered.
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7 Appendix

To derive the triad equations (37)-(39), we substitute (36) into (26), and apply the resonance
condition,

θ0 = θ1 + θ2. (57)

The modulation of wave 0 by the other two waves can be found by plugging

z0(τ)eiθ0(t), (58)

where z0(τ) is the slowly-varying, complex amplitude of wave 0, into the left hand side of
(26), and expanding each term on the right hand side in terms of waves 1 and 2. The left
hand side then becomes

2
∂2

∂t∂τ
(∇2 + ∂zz)z0e

iθ0 = 2iω0

(

k2
0 + l20 + m2

0

) ∂z0

∂τ
eiθ0 . (59)

On the right hand side of (26), the first gradient term becomes

−∇2(u · ∇b) = −∇2

(

u1
∂b2

∂x
+ v1

∂b2

∂y
+ w1

∂b2

∂z
+ u2

∂b1

∂x
+ v2

∂b1

∂y
+ w2

∂b1

∂z

)

= −∇2i [(u1k2 + v1l2 + w1m2)b2 + (u2k1 + v2l1 + w2m1)b1] .

Substituting the polarizations relation between u and w, (22), and between b and w,
(25), the right hand side becomes

−i∇2A0w1w2,

where

A0w1w2 = [k2gu(w1) + l2gv(w1) + m2gw(w1)]gb(w2)

+ [k1gu(w2) + l1gv(w2) + m1gw(w2)]gb(w1) (60)

Expanding the complex amplitudes and applying (57), the right hand side becomes

−i∇2A0z1z2e
iθ1eθ2 = −i∇2A0z1z2e

iθ0

= i
(

k2
0 + l20

)

A0z1z2e
iθ0 . (61)

The other terms on the right hand side of (26) can be expanded in a similar way:

−∂t∇2(u · ∇w) =
(

k2
0 + l20

)

ω0B0z1z2e
iθ0 (62)

∂zxt (u · ∇u) = −m0k0ω0C0z1z2e
iθ0 (63)

∂zyt (u · ∇v) = −m0l0ω0D0z1z2e
iθ0 (64)

−f∂zy (u · ∇u) = ifm0l0C0z1z2e
iθ0 (65)

f∂zx (u · ∇v) = −ifm0k0D0z1z2e
iθ0 . (66)
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Now setting the expanded left hand side (59) equal to the combined terms on the right
hand side (61) - (66), and we can solve for the rate of change of the complex amplitude of
wave 0:

∂z0

∂τ
=

−i

2ω0κ0

[

κ2
H,0(iA0 + ω0B0) − m0ω0(k0C0 + l0D) + ifm0(l0C0 − k0D0)

]

z1z2

=: −iΓ0z1z2 (67)

where

κ2
0 = k2

0 + l20 + m2
0

κ2
H,0 = k2

0 + l20.

Equations for the modulation of waves 1 and 2 can be computed in a similar way, with
a similar set of parameters [A1, B1, C1, D1] and [A2, B2, C2, D2] comprising the interaction
coefficients Γ1 and Γ2.
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