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Abstract

In this report, we review an elegant technique, known as the Bogoliubov method,
for deriving amplitude equations in pattern forming systems, through detailed solution
to the classical problem of Rayleigh-Bénard convection, with both free and rigid upper
and lower boundaries. The computation is facilitated by the use of a newly proposed
diagrammatic technique. The resulting equation is a nonlocal pattern equation, which
reduces to the 1D Swift-Hohenberg equation for 2D convection. We show that the
nonlocal pattern equation is variational by finding a Lyapunov functional.

Subsequently, we formulate a few properties of steady state solutions of general
variational PDE, and test their utility in pattern prediction for models including the
Swift-Hohenberg equation.

Finally, we describe normal form theory for Hopf bifurcation in the context of pattern
equations, and point out possible extensions of the diagrammatic technique.

1 Introduction

In the principal lectures, we learned much about water waves, mostly described by the
Korteweg-de Vries (KdV) equation, the nonlinear Schrödinger (NLS) equation, and their
generalizations. Both the KdV equation and the NLS equation are Hamiltonian, and thus
admit travelling wave solutions with particle-like behavior (“solitons” in the usual sense).

However, if we need to take dissipation (e.g. viscosity, heat diffusivity) and/or forcing
(e.g. mechanical vibrations, heat flux) into account, the Hamiltonian structure will likely
be destroyed. In hydrodynamics, this happens in the subject of instability [4], within which
the Rayleigh-Bénard convection is a prototypical problem.

Near the onset of the Rayleigh-Bénard instability, one can derive an equation for the
amplitude of the nearly marginal modes [7]. A systematic procedure (referred to as the
Bogoliubov method) for deriving such amplitude equations for a class of instability problems
is formulated in [5]. We find that this procedure possesses a mode interaction structure that
makes it feasible for expression in terms of Feynman diagrams. Therefore, throughout the
derivation we draw these diagrams wherever applicable, and in the end we sketch how this
diagrammatic technique can be generalized to other situations, e.g. Hopf bifurcation.

Insofar as the Rayleigh-Bénard convection is concerned, we get a nonlocal equation for
the amplitude. We show that this equation possesses a Lyapunov functional F , and thus
exhibits features of a gradient dynamical system, namely that the system always evolves
towards a local minimum of F . We discover a set of conditions that any solution at a local
minimum must satisfy, as long as it is embedded in a zero free-energy background. We
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also review the implications of the variational principle for behavior of steady solution near
the boundary, as well as a conservation law that follows from Noether’s theorem (cf. [12]
§9.2.1). We point out that the latter has a natural interpretation in terms of the former.

2 Rayleigh-Bénard Convection

In this section, we formulate in detail the Rayleigh-Bénard convection problem with fixed
temperature boundaries.

2.1 Boussinesq Equations

The convection problem is described by the following standard set of non-dimensionalized
hydrodynamic equations (cf. [4] II.§7)

∂tv + (v · ∇)v + w∂zv = −∇Π + �(Δ + ∂2
z )v, (1)

∂tw + (v · ∇)w + w∂zw = −∂zΠ + �(Δ + ∂2
z )w + R�θ, (2)

∂tθ + (v · ∇)θ + w∂zθ = (Δ + ∂2
z )θ + w, (3)

∇ · v + ∂zw = 0, (4)

where ∇ = x̂∂x + ŷ∂y (x̂ and ŷ are the two horizontal unit vectors), Δ = ∇2, v is the
horizontal velocity, wẑ is the vertical velocity (ẑ is the vertical unit vector), and θ and Π
are the deviations of the temperature and pressure from their static values. The Prandtl
number � and the Rayleigh number R are defined as usual. Typically, we can impose either
free or rigid boundary conditions, defined as

w = 0, θ = 0; ∂2
zw = 0 (free) or ∂zw = 0 (rigid) on z = ±1

2
. (5)

Let us denote the full velocity as u = (v, w), and the full vorticity as ω = ∇×u, where
∇ = x̂∂x + ŷ∂y + ẑ∂z. The full vorticity equation is then (cf. [13] §5.5)

Dω

Dt
= (ω · ∇)u + �∇2ω + ∇ × (R�θẑ). (6)

From (5), we get the following boundary conditions on the vertical vorticity ζ ≡ (∇×v) · ẑ

∂zζ = 0 (free) or ζ = 0 (rigid) on z = ±1
2
. (7)

The significance of ζ is that, given w and ζ, we can uniquely determine v up to a gauge
using the relations ∇ · v = −∂zw, ∇ × v = ζẑ. Therefore, (ζ, w, θ) provides a complete
description of the state of the fluid. Now we formulate linear theory based on this set of
variables.

2.2 Linear Theory

Taking the ẑ-component of (6) and linearizing, we get an uncoupled equation for ζ

∂tζ = �∇2ζ.
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In view of (7), if we take the boundaries at z = ±1/2 both to be rigid surfaces, then all the
vertical vorticity modes are strongly damped. However, for two free boundaries, there is a
solution with ζ constant in space and time corresponding to a rigid, undamped rotation of
the whole fluid. In a finite system, such modes of motion play no role, and the only motions
consisting of purely vertical vorticity are viscously damped. These will be slave modes,
in the jargon of dynamical systems theory. Hence we shall not allow for their nonlinear
excitation here and so make the approximation

ζ = 0 for all t. (8)

The case of one rigid and one free boundary is mathematically similar to two rigid bound-
aries. The case of nonzero ζ is studied in [17] and [21].

Now the fields w and θ completely specify the state of the fluid. To write the Boussinesq
equations only in terms of w and θ, we shall keep (3) but for (1) and (2), we need to eliminate
Π by −∂z∇·(1)+Δ(2). The linear parts of these two equations are

∂t(∂2
z + Δ)w = �(∂2

z + Δ)2w + R�Δθ, ∂tθ = w + (∂2
z + Δ)θ. (9)

It is thus convenient to work in the Fourier space with

♦(x, z, t) =
∫

♦k(z, t)eik·xdk,

where ♦ = w, θ or v. We may define Uk ≡ (wk, θk)T and write (9) succinctly as

∂tMkUk = LkUk, (10)

where

Mk =
(

∂2
z − k2 0

0 1

)
, Lk =

(
�
(
∂2

z − k2
)

2 −k2R�
1 ∂2

z − k2

)
, (11)

and the boundary conditions follow from (5)

Uk = 0, (1, 0)∂2
zUk = 0 (free) or (1, 0)∂zUk = 0 (rigid) on z = ±1

2
. (12)

This linear problem is separable, and we may seek solutions of the form Φk(z)est. For
either free or rigid boundaries, there is a pair of Φk(z) with l nodes for each l = 0, 1, 2, · · · .
One lowest vertical mode, denoted by φk(z), can go unstable with growth rate denoted
by σk. The other lowest vertical mode, denoted by ϕk(z), and the higher vertical modes,
denoted by χ±

k,l(z) (l = 1, 2, · · · ), are always stable with growth rate denoted by τk and ω±
k,l.

The functions φk, ϕk and χ±
k,l form an orthogonal basis with the inner product

〈Uk, Ũk〉 ≡
∫ 1

2

− 1
2

(
w∗

k(k2 − ∂2
z )w̃k + R�θ∗kk

2θ̃k

)
dz,

where ∗ denotes complex conjugate.
It follows from (10) that the linear problems for φk, and its adjoint φ†

k, are

Lkφk = σkMkφk, L
†
kφ†

k = σkM
†
kφ†

k,
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where the adjoint operators are the transposes of the original ones, and the adjoint boundary
conditions coincide with the original ones (σk can be shown to be real for our range of R).

The critical point is (Rc, kc) = (27π4/4, π/
√

2) for free boundaries, and (Rc, kc) =
(1708, 3.116) for rigid boundaries (cf. [4] II.§15(b)). For (R, k) near (Rc, kc), we have the
expansion [7] for free boundaries

σk =
k2

c�

� + 1

(
3(

R

Rc
− 1) − (k2 − k2

c )
2

k4
c

)
, (13)

and for rigid boundaries

σk =
19.65�

� + 0.5117

(
(

R

Rc
− 1) − 0.3593

(k2 − k2
c )2

k4
c

)
. (14)

The solution at (Rc, kc) and its adjoint are, for free boundaries

φkc(z) = φ̂kc cos(πz), φ̂kc =
(

1
1
/(

3kc
2
) ) ;

φ†
kc

(z) = φ̂†
kc

cos(πz), φ̂†
kc

=
(

1
−9k4

c�

)
.

For rigid boundaries

φkc(z) =
(

Wkc(z)(
k2

cR
)−1/3Θkc(z)

)
, φ†

kc
(z) =

(
Wkc(z)

−�
(
k2

cR
)

2/3Θkc(z)

)
,

where the functions Wkc and Θkc are defined by

Wkc(z) = cos q0z + (A1 + iA2) cos i(q1 + iq2)z + (A1 − iA2) cos i(q1 − iq2)z,

Θkc(z) = cos q0z + (B1 + iB2) cos i(q1 + iq2)z + (B1 − iB2) cos i(q1 − iq2)z,

with q0 = 3.974, q1 = 5.194, q2 = 2.126, A1 = −0.03076, A2 = −0.05196, B1 = 0.06038 and
B2 = −0.0006647.

2.3 Nonlinear Terms

In the Fourier space, vk can be expressed in terms of wk, by (4) and (8), as

vk =
ik
k2

∂zwk. (15)

With this, we can work out the nonlinear terms in (1-4). First, we transform (3) into the
form

∂tθk = wk + (∂2
z − k2)θk +

∫∫
Nθδ(k − p − q)dpdq. (16)

To determine the nonlinear part Nθ, we note that −w∂zθ yields −wq∂zθp, and −(v · ∇)θ
yields

−(v · ∇)θ = −
∫

(iv · p)θpeip·xdp,
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where, by (15)

−(iv · p) =
∫

p · q
q2

∂zwqeiq·xdq.

We then obtain
Nθ =

p · q
q2

θp∂zwq − wq∂zθp. (17)

As for (1) and (2), let us recall that we need to first eliminate Π by −∂z∇·(1)+Δ(2).
The resulting equation has four nonlinear terms on the right

(A)∂z∇ · ((v · ∇)v); (B)∂z∇ · (w∂zv); (C) − Δ((v · ∇)w); (D) − Δ(w∂zw). (18)

The incarnation of this equation in the Fourier space is

∂t(∂2
z − k2)wk = �(∂2

z − k2)2wk − k2R�θk +
∫∫

Nwδ(k − p − q)dpdq. (19)

The contributions of (18) to Nw can be worked out by switching to index notation, doing
the Fourier transform, and finally returning to vector notation. The results are

(A)(
(p · q)2

p2q2
+

p · q
p2

)∂z(∂zwp∂zwq); (B) − (
p · q
q2

+ 1)∂z(wp∂2
zwq);

(C) − (p · q + 2
(p · q)2

p2
+

q2

p2
p · q)wq∂zwp; (D)(p2 + 2p · q + q2)wp∂zwq.

To simplify the expression, we can exchange p and q in any term. The overall sum is

Nw = (2
(p · q)2

p2q2
+

p · q
p2

− 1)∂zwp∂2
zwq − (

p · q
q2

+ 1)wp∂3
zwq

−(2
(p · q)2

q2
+ (

p2

q2
− 1)p · q − p2 − q2)wp∂zwq. (20)

In terms of Uk ≡ (wk, θk)T , we may write (16) and (19) succinctly as

∂tMkUk = LkUk +
∫∫

N δ(k − p − q)dpdq, (21)

where N ≡ (Nw,Nθ)T , and the boundary conditions are given in (12).

3 The Expansion Procedure

In this section, we follow [5] §6 to employ the Bogoliubov approach to derive the pattern
equation for the convection problem. Note that the results differ from [5] in some details.
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3.1 The Diagrammatic Notation

We can express (21) diagrammatically, with the replacement U → ◦, as

∂t M = L + N .

This type of diagram, regarded for now simply as a device to keep track of terms in pertur-
bation series, bears some resemblance to Feynman diagrams in quantum field theory. The
lines carry momenta, or wave vectors, although these are typically not labelled. The vertices
conserve momenta, as reflected by the δ-function of wave vectors. Each diagram corresponds
to a unique term in the perturbation series. At any given order, one first draws all possible
(Feynman) diagrams consistent with certain physical laws, and then translates these dia-
grams back to algebraic expressions with a prescribed set of Feynman rules. As Feynman
diagrams are frequently used in particle physics [16], condensed matter physics [15] as well
as the theories of turbulence in fluids [25] and wave propagation in random media [10], we
hope that their use here will simplify the calculation of modal interactions in convection.

The diagrams are largely self-explanatory except for a few conventions. All the symbols
in the diagrams are vertices except for the special operator ∂t. For any vertex, the lines
immediately to its left (right) are called incoming (outgoing) lines, and the number of
incoming (outgoing) lines is called the indegree (outdegree) of that vertex. We observe that
all the vertices have outdegree one, but the indegree can be one (e.g. M, L) or more (e.g.
N ). If only such vertices are present, the diagram necessarily takes the form of a tree,
consisting of the root connected to the leaves via the stems. These diagrams differ from
those in quantum field theory, where particles can be either created or annihilated, thereby
making loops possible. Note that the leftmost incoming line(s) entering the leaves and the
rightmost outgoing line exiting the root are not shown explicitly. The total number of leaves
is the order of the diagram, consistent with perturbation theory practice.

How to translate a diagram back to an algebraic expression? The case of a first order
diagram is obvious. For an n-th order diagram (n ≥ 2), we first label the wave vectors
entering the leaves as, say, p1, · · · ,pn, and the wave vector exiting the root as, say, k.
Then we label the wave vectors on the stems in terms of p1, · · · ,pn, using conservation of
wave wave vectors at the vertices. Any vertex corresponds to a function the wave vectors on
its incoming lines and the sub-diagrams connected to it through these lines (N is a somehow
complicated example). With these guidelines, for any tree diagram, we can start from its
root, traverse its stems and finally reach its leaves. The expression that we get, multiplied
by δ(k− p1 − · · · − pn) and integrated over p1, · · · ,pn, is the final result. We remark that
the wave wave vectors carried by the intermediate stems are automatically integrated out,
so only the δ-function describing the overall wave vector conservation remains.

Now things are ready for deriving the amplitude equation. For this purpose, we need to
eliminate the fast modes and keep the slow modes, much like the process of center manifold
reduction in bifurcation theory for ODE. However, in generalizing the procedure to PDE,
we encounter an inherent difficulty. Before dealing with the convection problem, we explain
the reduction procedure with an illustrative example, where this difficulty clearly figures.
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3.2 Irremovable Resonances

To illustrate the procedure we consider the following equations [24] whose structures are
reminiscent of (21)

∂tfk = σkfk +
∫∫

fpgqδ(k − p − q)dpdq,

∂tgk = γkgk +
∫∫

fpfqδ(k − p − q)dpdq,

which, with the replacements f → ◦, g → ◦, can be represented diagrammatically as

∂t = σ + N , (22)

∂t = γ + N , (23)

where σk = σ − (k2 + k2
1)

2 and γk = γ − (k2 + k2
2)

2 with γ < 0 and |σ| 
 |γ|. The vertex
N here simply takes the product of the two sub-diagrams connected to it.

We seek a near-identity coordinate change (here Fk is the coordinate on the “center
manifold”)

fk = Fk +
∫∫

Ik(p,q)FpFqdpdq + · · · ,

gk = Gk +
∫∫

Jk(p,q)FpFqdpdq + · · · ,

represented diagrammatically, with F → •, G → •, as

= + I + · · · , (24)

= + J + · · · , (25)

which turns (22-23) into the standard form

∂tFk = σkFk +
∫∫

Φk(p,q)FpFqdpdq + · · · ,

∂tGk = (γk +
∫

Ψk(p)Fpdp + · · · )Gk + · · · ,

represented diagrammatically as

∂t = σ + Φ + · · · , (26)

∂t = (γ + Ψ + · · · ) + · · · . (27)

In order that (24-25) produce (27) from (23) (or equivalently, a functional analogue of
a center manifold exists in a loose sense), we must satisfy, at second order

2 Jσ
= γJ + N . (28)

Two points should be noted in the interpretation of the first diagram. First, the factor
of 2, known as the symmetry factor in quantum field theory, refers to the two distinct
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Figure 1: The curve of resonances. We plot σ + σk+k1x̂ in red and γk in blue, with their
intersection implying resonances. Parameters: k1 = 1, k2 = 2, σ = 0.1, γ = −5.

ways to permutate the incoming edges of J . Graphically these two permutations can be
combined, but algebraically they represent two different terms involving the two arguments
of J . Second, the vertex σ has indegree and outdegree both one, so it simply propagates the
wave vector through itself. At any such vertex, the line is deliberately bent to signify the
presence of the vertex. In contrast, for a vertex with indegree two (or more) and outdegree
one (e.g. J ), its presence is already apparent from the topology of the diagram.

It follows that (28) translates to the condition∫∫
(Dk(p,q)Jk(p,q) − δ(p + q − k)) FpFqdpdq = 0, (29)

where Dk(p,q) = σp + σq − γk. There are resonances when

p + q − k = 0, Dk(p,q) = 0.

These resonances cannot occur if both |p| and |q| are near k1, but they do occur when we
take, say, only p = k1x̂. We can find the curve of resonances (Fig. 1) with the graphical
procedure (cf. [2], [27]) mentioned in Lecture 12 – Triad Resonances.

It is an open question whether these resonances are artifacts of the procedure, although
there is evidence that they indeed are [24].

To get the pattern equation, we introduce (25) into (22). On the center manifold, by
definition, • = 0. In addition, we have the freedom to identify ◦ with •. Therefore, the
pattern equation truncated to third order is

∂t = σ + NJ , (30)

which translates to

∂tFk = σkFk +
∫∫∫

J (q, r)δ(k − p − q − r)FpFqFrdpdqdr,
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where J is determined from (29) by the method of steepest descent [24].

3.3 Nonlinear Expansions

Now we attempt to apply center manifold reduction to the Boussinesq convection problem.
A crucial observation is that once we admit that an effective (or functional) center manifold
exists, all physical quantities depend only on the amplitudes of the slow modes. This is the
spirit of the Bogoliubov method that we use.

Since the growth rate σk depends continuously on k, one needs to introduce a cutoff in
k to define which modes are slow. We will choose the cutoff for computational convenience,
but point out that no choice is truly justified due to the lack of spectral gap.

3.3.1 Setup

The key idea is the expressibility of Uk as the functional power series

Uk = Akφk +
∫∫

dpdqApAqU (2)
k (p,q; z) + · · · , (31)

where Ak satisfies

∂tAk = σkAk +
∫∫

dpdqApAqΓ(2)
k (p,q) + · · · . (32)

We can express (31) and (32) diagrammatically with A → • as

= φ + U + U + · · · ,

∂t = σ + Γ + Γ + · · · .

We substitute into (21) and gather terms of the same order in Ak. The linear condition
M

σ φ = Lφ

is satisfied for a suitable choice of φk. At each higher order, the kernel must cancel out
because Ak is arbitrary. Let N (m) denote the coefficient of the δ-function in the kernel of
N at the m-th order. To approximate, we take Ak to have infinitesimal support around the
critical circle |k| = kc. Therefore, we can set the corresponding growth rate σk = 0.

3.3.2 Second order

M

Γ φ = L
U + N

φ

φ
.

Setting the kernel of the gathered second order terms to 0, we get

−LkU (2)
k = N (2)(p,q)δ(k − p − q) − Γ(2)

k (p,q)Mkφk.
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Figure 2: Plot of Û (2)
w,0, Û (2)

θ,0 , Û (2)
w,−1 and Û (2)

θ,−1 as functions of z and cp,q.

The solvability condition (N (2) being odd does not contain the lowest vertical mode)

0 = −Γ(2)
k (p,q)〈(φ†

k)T |Mkφk〉

determines that Γ(2)
k (p,q) = 0. Here 〈·|·〉 denotes the usual inner product. We are left with

an always solvable equation

−LkU (2)
k = N (2)(p,q)δ(k − p − q).

Here, p and q are constrained to lie on the critical circle but k is not. If we introduce the
shorthand cp,q ≡ p · q/

√
p2q2, then

Nθ = cp,qθp∂zwq − wq∂zθp,

Nw = (2c2
p,q + cp,q − 1)∂zwp∂2

zwq − (cp,q + 1)wp∂3
zwq − 2k2

c (c
2
p,q − 1)wp∂zwq.

The matrix Lk = Lp+q also depends on cp,q. These lead to

U (2)
k (p,q; z) = Û (2)(�, z, cp,q)δ(k − p − q).

For free boundaries, we have the relatively simple expression

Û (2)(�, z, cp,q) =
1 − cp,q

(5 + cp,q)3 − 27
4 (1 + cp,q)

(
3(1+cp,q)(3+2(5+cp,q)�−1)

4π
2(5+cp,q)2+9(1+cp,q)�−1

6π3

)
sin(2πz).

For rigid boundaries, it turns out easier to evaluate Û (2) numerically rather than analytically.
The result can be written as

Û (2)(�, z, cp,q) =

(
Û (2)

w,0(z, cp,q)
Û (2)

θ,0 (z, cp,q)

)
+

(
Û (2)

w,−1(z, cp,q)
Û (2)

θ,−1(z, cp,q)

)
�−1,

where the functions Û (2)
w,0, Û (2)

θ,0 , Û (2)
w,−1 and Û (2)

θ,−1 are plotted in Fig. 2.
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3.3.3 Third order

M

Γ φ + 2 M
Γ

U = L
U + 2 N

U
φ

.

Setting the kernel of the gathered third order terms to 0, we get

−LkU (3)
k = N (3)(p,q, r)δ(k − p − q − r) − Γ(3)

k (p,q, r)Mkφk.

Because k, p, q and r are all restricted to the critical circle, we have only three possibilities

(I)k = p, q = −r; (II)k = q, r = −p; (III)k = r, p = −q. (33)

Now we let p (resp. q and r) denote the wave vector(s) in the first (resp. second) order. If
we suitably permutate p, q and r, we can transform all three cases to the geometry of case
(II). Thus the contribution from case (III) is identical to case (II), but differs from case (I).
We find, with some algebra, that

N (3) = 2

⎛
⎜⎜⎝

Ûw

(
k2

c (2 + cq,r) φ′
w + cq,rφw

(3)
)

+ 1
2 ·

·
((

3k2
cφw + (−1 + 2cq,r) φ′′

w

) Ûw
(0,1,0) − 2φ′

wÛw
(0,2,0) − φwÛw

(0,3,0)
)

1
2

(
−2Ûθ (1 + cq,r) φ′

w − 2Ûwφ′
θ − φθÛw

(0,1,0) − 2φwÛθ
(0,1,0)

)
⎞
⎟⎟⎠+ N (3)

(I) ,

where subscript (I) denotes case (I). The following solvability condition must be satisfied

〈(φ†
k)T |N (3)(p,q, r)δ(k − p − q − r) − Γ(3)

k (p,q, r)Mkφk〉 = 0.

For either free or rigid boundaries, we have the general expression

Γ(3)
k (p,q, r) = Γ̂(3)(�, cq,r)δ(k − p − q − r). (34)

In the free case, we have the relatively simple expression

Γ̂(3)(�, cq,r) = 2Γ̂(3)
(II) + Γ̂(3)

(I) (35)

where

Γ̂(3)
(II) = − �

4(1 + �)
(1 − cq,r)2((5 + cq,r)2 + 9(1 + cq,r)�−1 + 3(1 + cq,r)(5 + cq,r)�−2)

(5 + cq,r)3 − 27
4 (1 + cq,r)

and
Γ̂(3)

(I) = − �

4(1 + �)
. (36)

The expression for Γ̂(3)
(II) agrees with [7] (which is based on the calculations done in [20])

up to a constant factor due to normalization convention, and the expression for Γ̂(3)
(I) agrees

with Γ̂(3)
(II) when cq,r = −1. In the rigid case, these expressions are again found to agree

with [7] up to normalization, though they are not explicitly shown here.

318



3.4 The Evolution Equation

The evolution equation truncated to leading order is therefore

∂tAk = (σ0 + σ2(k2 − k2
c )

2)Ak +
∫∫∫

(II)
Γ(3)

k (p,q, r)ApAqArdpdqdr,

where (13)-(14) have been used, the kernel is given in (34), and the integration is done in
case (II) of (33). If the deviation from the marginal Rayleigh number scales as σ0 ∼ ε2,
consistent scalings near marginality are ∂t ∼ ε2, k2 − k2

c ∼ ε, A ∼ ε. In the physical space,
with additional re-scaling of t and x, we finally have the nonlocal pattern equation

∂tu = ru − (Δ + k2
0)

2u +
∫∫∫

(II)
Γ̂(3)(�, cq,r)ei(p+q+r)·xupuqurdpdqdr, (37)

where all the coefficients are O(1).
For 2D convection, p, q and r are constrained to be collinear, so Γ̂(3) reduces to a

constant, and (37) reduces to the 1D Swift-Hohenberg equation [23]

∂tu = ru − (Δ + k2
0)

2u + f3u
3, (38)

where f3 is a constant depending on �. The usual Swift-Hohenberg model for the stan-
dard Rayleigh-Bénard convection problem has had a remarkable qualitative success in re-
producing the gamut of observed patterns in the Boussinesq context. However, to make
quantitative comparison between theory and experiment a nonlocal pattern equations such
as the one found here and in earlier discussions (e.g. [19]) may be called for. At any rate,
our analysis indicates that the constant part of the kernel Γ̂(3)

(I) does yield a local cubic term
in the evolution equation, but the nonconstant part leads to nonlocal interactions.

4 The Variational Structure and Its Applications

An evolution equation ∂tu = M [u] is called variational if it can be written

∂tu = −δF/δu,

where δF/δu is the functional (or Fréchet) derivative. It may then be shown that dF/dt ≤ 0.
If, in addition, F [u] is bounded from below, it is called a Lyapunov functional and functions
u that minimize it are stable. It is known that (38) has a Lyapunov functional (cf. §4.2.1)
and so does (37), under suitable restrictions, as we next see.

4.1 Variational Structure of the Nonlocal Pattern Equation

To find the Lyapunov functional for (37), we seek

G[u] =
∫∫∫∫

(II)
Λ(�, cq,r)δ(p + q + r + s)upuqurusdpdqdrds

such that
δG
δu

=
∫∫∫

(II)
Γ̂(3)(�, cq,r)ei(p+q+r)·xupuqurdpdqdr,
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where out of the three equivalent scenarios

(I) s = −p, q = −r; (II) s = −q, r = −p; (III) s = −r, p = −q,

we assume that the integration for G is done in case (II).
After some manipulations with functional derivatives and Fourier transforms, we get

δG
δu

=
∫∫∫

(II)

1
π2

Λ(�, cq,r)ei(p+q+r)·xupuqurdpdqdr,

in light of cq,r = cr,q = cp,s = cs,p. Therefore we should pick

Λ(�, cq,r) = π2Γ̂(3)(�, cq,r). (39)

The Lyapunov functional for (37) is

F [u] =
∫ (

−1
2
ru2 +

1
2
((∇2 + k2

0)u)2
)

dx − G[u]. (40)

To show that F [u] is bounded from below, note that u−k = u∗
k leads to

upuqurus = |up|2|uq|2 ≥ 0.

In addition, (35,36,39) imply that (note that Γ̂(3)
(II) is always non-positive)

−Λ(�, cq,r) ≥ π2 �

4(1 + �)
≡ π2M > 0.

Therefore, we can establish the estimate (now the integration is done over all three cases)

−G[u] ≥ π2M

3

∫∫∫∫
δ(p + q + r + s)upuqurusdpdqdrds =

M

12

∫
u4dx,

where the identity us = 1
(2π)2

∫
ue−is·xdx is used. It then follows from (40) that

F [u] ≥
∫ (

−1
2
ru2 +

1
2
((∇2 + k2

0)u)2 +
M

12
u4

)
dx ≡ F̃ [u],

where F̃ [u] is nothing but the Lyapunov functional for (38) with f3 = −M/3. It is known
(cf. [11] §7.3) that F̃ [u] is bounded from below for f3 < 0, so our claim is proved.

We expect the nonlocal pattern equation (37) to accurately capture the physics, but PDE
models like (38) enjoy much greater popularity because of their mathematical simplicity.
Hence in the following, we derive a few lesser known properties of steady states in dissipative
PDE with Lyapunov functionals, and provide a few examples. In terms of notation, repeated
Latin indices are summed over, but Greek indices are not.

In general, consider any system in d spatial dimensions with a Lyapunov functional

F [u] =
∫

L(u, ∂iu, Δu)dx ≡
∫

L(q,pi, r)dx, x ∈ R
d.

We will focus on u(x) that locally minimizes F [u], although the equalities that appear below
also apply to other stationary points of F [u] (i.e. saddles and maxima).
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4.2 Generalized Virial Theorem

We generalize upon [9] §4 to derive an analog of virial theorem. If we introduce a parameter
λ and define F(λ) ≡ F [u(x + λy(x))], then stationarity and minimality require

F ′(λ = 0) = 0, (41)

F ′′(λ = 0) ≥ 0. (42)

Consider a linear function y(x), for which the Jacobian matrix J (defined by Jij ≡ ∂yj/∂xi)
is a constant matrix independent of x. For any λ, we can transform the coordinate by
x + λy(x) → x to obtain the exact expression

F(λ) =
∫ L(u, ∂iu + λJij∂ju, Δu + λ(Jjk + Jkj)∂jku + λ2JijJik∂jku)

det(I + λJ)
dx, (43)

where I is the identity matrix. Here the integration domain is left unspecified, but certain
conditions near the boundary must be satisfied. As a simple example from calculus, for an
arbitrary function ϕ(x)∫ L

0
ϕ(λx)d(λx) =

∫ L/λ

0
ϕ(x)dx �=

∫ L

0
ϕ(x)dx

unless ϕ(x) → 0 at x → L. Therefore, we may either take a finite domain and require L = 0
near the boundary, or take the domain to be R

d and require L ∈ L1(Rd). In other words,
what follows should be applied to steady localized states with bounded total free energy.

We see that in (43), λ and J always appear as the combination λJ, so F (n)(λ = 0) must
be n-linear in J. For |λ| 
 1, the denominator can be expanded as

det(I + λJ) = exp(tr(log(I + λJ))) =
∞∑

k=0

1
k!

⎛
⎝−

∞∑
j=1

(−λ)j

j
tr(Jj)

⎞
⎠

k

,

from which follows the useful expression

1
det(I + λJ)

= 1 − λtrJ +
λ2

2
(tr2J + trJ2) + O(λ3).

Since F ′(λ = 0) is linear in J, we only need to impose (41) on the following two classes
of transformations. The first is the class of scaling transforms Jij = δiμδjμ, which leads to∫ (Lpμ∂μu + 2Lr∂μμu − L) dx = 0, (44)

Summation over μ yields the “global” virial theorem∫
(Lp · p + 2Lrr − dL) dx = 0,

or equivalently (in fact, more generally)
∑

i

(i − d)
∫

Lidx = 0, (45)

321



where Li is the term in L with i spatial derivatives in total. The second is the class of shear
transforms Jij = δiμδjν (μ �= ν), which leads to∫ (Lpμ∂νu + 2Lr∂μνu

)
dx = 0, (46)

We may summarize (44) and (46) as an orthogonality condition (μ and ν are arbitrary)

∫
(Lpμ + 2Lr∂μ)∂νudx = δμν

∫ Ldx. (47)

Since F ′′(λ = 0) is a quadratic form in the matrix elements Jij , (42) is equivalent to
the requirement that the d2 × d2 matrix

Hκλμν =
∫

(L (δκλδμν + δκνδλμ) + 2Lr(δκμ∂λνu − 2δκλ∂μνu) − 2Lpμδκλ∂νu

+4Lrr∂κλu∂μνu + 4Lrpμ∂νu∂κλu + Lpμpκ∂νu∂λu)dx,

defined such that F ′′(λ = 0) = JklHklmnJmn, is nonnegative definite. However, we cannot
see any immediate application of this result, except in the special case Jij = δij . Then

F ′′(λ = 0) =
∫ (

d(d + 1)L + 2(1 − 2d)Lrr − 2dLp · p + 4Lrrr
2 + 4Lrp · pr + Lpipjpipj

)
dx ≥ 0,

or equivalently (in fact, more generally)

F ′′(λ = 0) =
∑

i

(i − d)(i − d − 1)
∫

Lidx ≥ 0. (48)

4.2.1 Applications

Let us introduce the shorthand Ii ≡
∫ Lidx. Sometimes, (45) and (48) together with the

positivity (or negativity) of Ii can be restated as a linear programming problem. The
nonexistence of solutions for Ii then implies the nonexistence of stable localized states.

To take an example, the generalized Swift-Hohenberg equation

∂u

∂t
= ru − (∇2 + k2

0)
2u + f(u), (49)

where the nonlinear function f may be either quadratic-cubic or cubic-quintic in u, has a
Lyapunov functional with free energy density

LSH = −1
2
ru2 +

1
2
((∇2 + k2

0)u)2 − F (u), F ′ = f.

For another example, the steady state Proctor equation [18]

0 = μ2∇2u + ∇4u −∇ · (|∇u|2∇u) + βu, β > 0 (50)

has a Lyapunov functional with free energy density

LP =
1
4
|∇u|4 +

1
2
|∇2u|2 − μ2

2
|∇u|2 +

β

2
u2.
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Figure 3: The R0(horizontal)-R2(vertical) plane. (45)/(48) defines the solid line/shaded
region. Their intersection forms the segment of possible stable localized states. From left
to right, d varies from 1 to 5, whereas d ≥ 6 is qualitatively the same as d = 5.

The free energies for both (49) and (50) consist of I0, I2 and I4 > 0. Hence we may introduce
Ri = Ii/I4 (i = 0, 2), and rewrite (45) and (48) as

(4−d)+ (2−d)R2 +(−d)R0 = 0, (4−d)(3−d)+ (2−d)(1−d)R2 +(−d)(−1−d)R0 ≥ 0.

The segment that they define on the R0-R2 plane depends on d (Fig. 3). In addition

ISH
2 = k2

0

∫ (
u∇2u

)
dx = −k2

0

∫
|∇u|2dx < 0, IP

2 = −μ2

2

∫
|∇u|2dx < 0.

As for I0, we have

ISH
0 ≥ C

∫
u2dx, IP

0 =
β

2

∫
u2dx > 0,

where C > 0 for some choices of parameters. These inequalities imply that both (49) and
(50) can possibly have stable localized solutions for any d. One can make a better estimate
for R0 from the Cauchy-Schwarz inequality

|
∫ (

u∇2u
)
dx| ≤

(∫
u2dx

)1/2(∫
|∇2u|2dx

)1/2

.

This further shortens the segment on the R0-R2 plane, but does not change the conclusion.
It is necessary that the PDE takes the precise form ut = −δF/δu. As an example to

the contrary, the Cahn-Hilliard equation [3]

∂tu = Δ(u3 − u − γΔu), γ > 0 (51)

has a Lyapunov functional with free energy density

LCH =
1
4
(u2 − 1)2 +

γ

2
|∇u|2,

such that ut = Δ(δF/δu) where F =
∫ LCHdx. Stable localized solutions to (51) must

satisfy δF/δu = 0, but are not necessarily local minima of F [u]. For example, a spherical
bubble of u = −1 with any finite radius, embedded in a u = 1 background, is stable. We
could decrease F by shrinking the bubble radially, but this is forbidden since it violates

d

dt

∫
udx = 0,
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a conservation law that follows from (51) rewritten as

∂tu = ∇ · j with j = ∇(u3 − u − γΔu).

We refer the reader to [8] for such reasoning applied to nonlinear wave equations.

4.3 Least Action Principle

Consider a finite spatial domain D. The change in free energy under perturbation δu is

δF = F [u + δu] −F [u] =
∫

∂D
(Lr∇δu + δu(Lp −∇Lr)) · n̂dA −

∫
D

Hδudx, (52)

where H = −Lq + ∂iLpi −ΔLr, ∂D is the boundary of D, n̂ is the unit outward normal to
∂D and dA is the surface element on ∂D. If (52) is to vanish for arbitrary δu, H = 0 must
be satisfied on D, and in addition the following boundary conditions must be fulfilled

Lr = 0, (Lp −∇Lr) · n̂ = 0 on ∂D.

4.3.1 Applications

For the Swift-Hohenberg equation, the boundary conditions are (here Lr = (∇2 + k2
0)u)

Lr = 0, ∇Lr · n̂ = 0 on ∂D.

These conditions require that at the boundary, both u and ∇u · n̂ must have planform
wavelengths k0. However, if the convection rolls merge perpendicularly with the boundary,
then ∇u · n̂ = 0 and only the constraint on u remains. This is a plausible reason why such
behavior is most often observed in convection experiments near the onset of instability.

For a more quantitative approach to the roll merging problem, we refer the reader to [26].

4.4 A Conservation Law

According to [14], for any L not explicitly dependent on x, we have the conservation law

∂x1L −∇ · (ux1Lp + Lr∇ux1 − ux1∇Lr) = 0 for all x ∈ R
d, (53)

where ∂x1 can be replaced by any other directional derivative. To interpret (53) physically,
we make a perturbation δu proportional to ux1 . In view of (52), the second term of (53) is
the local contribution to the bilinear concomitant, or equivalently the free energy flux. On
the other hand, the perturbation essentially translates u in the −x1 direction, so the free
energy flux can also be expressed as the first term of (53). Thus, (53) is a consequence of
the special choice of perturbation by a translational mode.

4.4.1 Applications

For d = 2 in the Swift-Hohenberg equation, (53) is directly responsible for selecting the
wavelength of hexagonal pattern that connects through a front to the trivial state [14]. For
the PDE studied in [9], however, (53) simply reduces to the original PDE.
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5 Normal Forms of Pattern Equations

In bifurcation theory for ODE, (24) and (25) in §3.2 represent two steps of reduction [22]. In
the first step (center manifold reduction), the power series corresponding to (25) is uniquely
determined but in terms of the original center manifold coordinate (denoted by α). This
results in an evolution equation for α

dα

dt
= Mα + Γ(α), (54)

where Γ(α) is purely nonlinear in α. The matrix M depends only on the control parameters,
with its eigenvalues having real parts all equal to 0 at criticality. In the second step (normal
form theory), we choose a near-identity coordinate change corresponding to (24)

α = A + Ψ(A),

where A is the new center manifold coordinate, and Ψ(A) is purely nonlinear in A. The
purpose is to simplify the nonlinear term Γ(α) in (54) as much as possible. In the end we
obtain an evolution equation for A

dA
dt

= MA + g(A), (55)

where g(A) represents the simplified nonlinear terms. It can be shown that (55), the (not
necessarily unique) normal form, depends only on M (cf. [6]), and is therefore universal for
all bifurcations with the same linear part.

In §3.2, the PDE model actually undergoes a pitchfork bifurcation at finite wavenumber.
It is known that normal form theory cannot simplify the nonlinear terms for steady state
bifurcations, which is why we can identify the new center manifold coordinate F with
the original coordinate f . In this section, however, we derive the normal form of pattern
equation for Hopf bifurcation, the simplest situation where normal form theory is necessary.

5.1 Hopf Bifurcation

Consider a physical system with an active control parameter λ, like the Rayleigh-Bénard
convection, but whose critical modes are a pair of complex conjugate normal modes (φk, φ∗

k)
with growth rates (μk + iωk, μk − iωk), where k is the horizontal wave vector. This pair of
critical modes loses stability, that is, μk crosses through 0, at a critical wavenumber |k| = kc

as λ crosses through a critical value λc. We assume that all the other normal modes remain
linearly stable when λ is near λc.

We expect that the dynamics is captured by the amplitudes of the pair of critical modes
(φk, φ∗

k), which are denoted by (αk, α∗
k). Hence we may utilize the Bogoliubov method to

derive the following amplitude equation for λ near λc and |k| near kc

∂tαk = (μk + iωk)αk + Γk[αp, α∗
q], (56)

where Γk is a purely nonlinear functional power series of αp and α∗
q, which possibly contains

nonlocal interactions. The amplitude α∗
k satisfies the complex conjugate of (56). In normal

form theory, we try to simplify (56) by the near-identity coordinate change

αk = Ak + Ψk[Ap, A∗
q],
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so that Ak satisfies
∂tAk = (μk + iωk)Ak + gk[Ap, A∗

q].

The equation for Ψk is found by substitution into (56) to be

LkΨk = Tk − gk (57)

where the linear operator is

LkΨk =
∫

δΨk

δAp
(μp + iωp)Apdp +

∫
δΨk

δA∗
q

(μq − iωq)A∗
qdq − (μk + iωk)Ψk

and the nonlinear term has been abbreviated by

Tk = Γk[Ap + Ψp, A∗
q + Ψ∗

q] −
∫

δΨk

δAp
gpdp −

∫
δΨk

δA∗
q

g∗qdq. (58)

The functional power series above are formed by monomials conveniently denoted as

|DK〉Q =

(
D−K∏
i=1

∫
dpi

)⎛⎝ K∏
j=1

∫
dqj

⎞
⎠QDK(p1, · · · ,pD−K ,q1, · · · ,qK)

× δ(
D−K∑
i=1

pi +
K∑

j=1

qj − k)
D−K∏
i=1

Api

K∏
j=1

A∗
qj

, (59)

where Q = Ψ, g or T . When the kernel QDK is constant (denoted by Q̄DK), the monomial
|DK〉Q reduces to the local expression Q̄DK(AD−K(A∗)K)k. It may seem that in (59) we
need to deal with two fields Ak and A∗

k, but the relation A∗
k = A−k suggests that A∗ can

be transformed to A by reversal of wave vector. Therefore, we may choose to represent
|DK〉Q by a diagram with D−K lines with right arrows and K lines with left arrows, both
connected to a vertex labelled Q. We can use these two notations interchangeably, e.g.

|31〉Γ ⇔ Γ .

Regardless of the kernel QDK , any monomial is an eigenvector of Lk

Lk|DK〉Q = ΛDK |DK〉Q
if we take Ak to have infinitesimal support around |k| = kc. The eigenvalue is

ΛDK = iωkc(D − 2K − 1) + μkc(D − 1). (60)

Then (57) becomes
ΛDK |DK〉Ψ = |DK〉T − |DK〉g (61)

for D ≥ 2. From (58) we know |2K〉T , so we can solve (61) when D = 2, once we choose
|2K〉g. Thereafter, at each new D, |DK〉T is known if we solve sequentially.

As long as ΛDK �= 0, we can always choose gDK = 0. However, (60) suggests that when
μkc = 0 (i.e. λ = λc), ΛDK vanishes when K = (D − 1)/2, or equivalently Λ2L+1,L = 0 for
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L = 1, 2, · · · . To avoid the small denominator Λ2L+1,L near λc, we require that g2L+1,L =
T2L+1,L. All the other gDK may be set equal to 0. Therefore the normal form is

∂tAk = (μk + iωk)Ak + |31〉T + |52〉T + · · · . (62)

The diagrammatic notation is not needed to get (62), but it can be useful for calculating
the normal form “coefficients” T31, T52, etc. As an example, to expand the convolution∫

(δΨk/δAp)gpdp in (58), we first cross out any of the D − K instances of A that occur in
|DK〉Ψ, which results in D − K diagrams with an empty slot each. Then we fill each slot
with the functional power series gp, and sum up these D − K diagrams in the end.

Overall, the above normal form theory for Hopf bifurcation in nonlocal pattern equation
parallels the ODE case (cf. [22] §4). We will not study the properties of (62), but mention
that when T31 is constant and kc = 0, (62) truncated to third order is the complex Ginzburg-
Landau equation (CGLE), whose solutions have been extensively documented [1]. The
CGLE, or more generally (62), is invariant under the phase-shift A → Aeiφ where φ is a
constant. Interestingly, in terms of diagrams, we may assign A (A∗) spin 1/2 (−1/2), and
state this invariance as the conservation of total spin among all diagrams.

6 Conclusion

In this report, we derived a nonlocal pattern equation for Rayleigh-Bénard convection with
fixed temperature boundaries, found a Lyapunov functional for this equation, and then
formulated a few properties of steady state solutions of variational PDE. The diagrammatic
technique proved instrumental in the derivation of convective pattern equations.

There exist unresolved issues and open questions. First, for Rayleigh-Bénard convection,
it remains to find a suitable way of removing the singularities that come from resonances
among fast and slow modes (cf. §3.2). Second, we need to interpret the generalized virial
theorem physically, and work out more applications. It is also interesting to study how
these properties of variational PDE generalize to nonlocal pattern equations. Finally, we
plan to extend [22] §5 on multiple instabilities to nonlocal pattern equation. However, for
higher codimension bifurcations, even if center manifold reduction works as before, it is not
clear how normal form theory can be formulated. In this case, the linear term does not
uniquely determine the nonlinear terms that cannot be discarded in the normal form.
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