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Abstract

We study a model of a viscous melted substance flowing in a cold
circular tube. As the fluid flows, it cools and solidifies at the tube radius,
and we investigate the question ‘how far can the fluid flow and remain
liquid?’ A theoretical solution is derived for the radius of the liquid tube
and the temperature profiles in the liquid and the solid. It is shown that
if the fluid is maintained at constant flux, the tube can be infinitely long,
but if it is maintained at constant pressure difference across the length of
the tube, then there is a maximum length which depends on the Peclet
number and a dimensionless temperature. The stability of the steady-
state profiles are investigated, and it is shown that the linear stability
of the tube radius can be determined from the functional relationship
between pressure and flux. Numerical simulations are performed to test
these predictions.

1 Introduction

Lava tubes are a common feature in basaltic lava flows. When a long, slow erup-
tion supplies a steady stream of low-viscosity lava, the flow tends to concentrate
in channels. If the channels roof over and become encased in solid material,
then the tube of fluid is thermally insulated and can transport hot lava a long
way with little loss of heat. An insulated tube such as this can also form in
pahoehoe (sheet) flows, without first flowing in a channel, when the sheet cools
and gradually restricts the fluid to narrow regions in the interior. These lava
tubes can feed flows that are far away from their source, making the extent of
a volcanic flow much greater than if the lava were to flow as a slab. [10]

It is common to find lava tubes with lengths of 10-30km, but some tubes
are much longer. The Mauna Loa flow tube, in Hawaii, is over 50km long, and
the Toomba and Undara flows in Queensland, Australia are 123km and 160km
long respectively. The longest known tube is over 200km long, on the volcanic
region of Alba Patera, Mars.

We would like to address the question: how long can a lava tube be? If the
geometry of the environment were not a factor, how far could a flow of liquid,
which is embedded in a solid of the same material, transport hot fluid before
cooling and solidification arrests the flow? Previous studies have looked at the
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temperature distribution within a tube of constant radius ([13], [4]), the velocity
profile of flow in a constant-width channel ([11]), the driving pressure required to
keep open a short, constant radius tube of pillow lava ([7]), the cooling processes
operating along the length of a tube ([6]), the effect of temperature-dependent
viscosity on flow localization ([16], [5], [17]), and the time-dependent melting or
solidification of flow through a two-dimensional slot with cooling at infinity ([2],
[3], [9]). We will expand on these studies by allowing the radius of the tube to
vary, and by providing the appropriate boundary conditions so that we can look
at the problem in steady-state. We will ignore the temperature dependence of
viscosity, so as to isolate the effect of melting and solidification processes at the
boundary of the tube, and their relationship to the heat advected through the
tube and conducted radially outward.

We will construct an idealized model of a tube, find a solution for the shape
of the tube and conditions for its existence, investigate the stability of the tube,
explain the results of our numerical simulations, and finally discuss extensions
of the model and ideas for further research.

2 The Model

2.1 Setup and equations

We will model a lava tube as a tube of a fixed length L with a perfectly circular
cross-section, whose radius a(x) may depend on the distance down the tube.
Liquid enters the tube at a uniform initial hot temperature Ti and it flows
through the tube with a velocity profile ~u, to be determined. We suppose that
the tube is embedded in a solid, made of the same material as the liquid, which
is a large cylinder of radius r0. The boundary of this cylinder is maintained
at a constant temperature T0, which is colder than the melting temperature.
The temperature varies continuously from T = T (0, x) > Tm at the center of
the tube, which is liquid, to T0 at the edge of the cylinder, which is solid. The
radius of the liquid tube is exactly the isotherm T = Tm. (See Figure 1).

Some justification needs to be made for our assumptions and choice of bound-
ary conditions. On the tube boundary, we have chosen to have a clear distinction
between solid material and liquid material, rather than to vary the viscosity and
so to have a transition region. While we acknowledge that the viscosity change
with temperature may be a factor, particularly in the formation of a tube or
channel, we assume that once the tube has been formed, the increase in vis-
cosity from its solid-like state to its liquid-like state is rapid enough that the
fluid can be modelled as a two-state material with a simple cutoff solidification
temperature. ([9]). The melting temperature is chosen to be the temperature
at which the amount of crystallization in the lava exceeds 55%. This is based on
observations that the lava behaves as a fluid until the amount of crystallization
exceeds a threshhold, at which point its crystalline network is strong enough
that it behaves as a brittle solid, and is not susceptible to erosion by the shear
forces in the flow. ([13])
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L = length of tube
r0 = radius of cylinder
Ts = melting temperature
Ti = temperature of fluid entering tube
T0 = temperature of outer boundary

∆P = pressure difference across tube
Q = flux through tube
µ = viscosity of fluid
κ = thermal diffusivity of material (assumed equal for solid and liquid)
ρ = density of liquid

cp = heat capacity of liquid
LH = latent heat of fusion

Table 1: Parameters used in the model

The boundary condition on the edge of the cylinder of constant temperature
was chosen for two reasons: (i) The difference between the eruption temperature
Ti and the melting temperature Tm is an order of magnitude smaller than the
difference between Tm and the ambient conditions, represented by T0. ([13]).
This implies that it is the processes within the tube, and not the environment,
which are limiting the cooling, so any heat lost to the walls of the cylinder can
be conducted away as fast as it is generated; and (ii) It corresponds to the exper-
iment set up by Jack Whitehead. It is not intended to reproduce the conditions
of a real tube, which lives in a much more inhomogeneous environment, and it
generates a singularity when combined with the constant temperature boundary
condition at the entrance, but it allows us to investigate the properties of such
an ideal tube before adding in the complications of a more detailed heat flux
function or a model of the source of lava.

We choose the lava tube to have a fixed length L, rather than to vary it
dynamically, because often the length of a lava tube is set by factors external to
the flow. For example, the slope of the terrain may increase abruptly, causing
the lava to pour out of the tube and begin a new sheet flow, or the tube may
reach the ocean and drain as a pillow lava flow.

We now introduce the equations of the model.
The variables in the system are:

~u(x, r) = velocity field in tube
T (x, r) = temperature profile in liquid
Te(x, r) = temperature profile in solid

a(x) = radius of tube

The parameters used in the model are shown in Table 1.
When solving for these variables, we are looking for steady-state, axisym-

metric solutions, so time derivatives and azimuthal derivatives will be ignored.
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Figure 1: Top: Cross-section of the lava tube through its center line. Bottom:
Cross section of the tube at constant x

We will also assume that changes in the radial direction are much greater than
changes in the axial direction, so x-derivatives are ignored when they are of
the same order as r-derivatives. In particular, we will ignore conduction in the
x-direction.

We solve the equations for each of the velocity, temperatures, and radius in
turn.

Velocity The viscosity of lava is high enough that we expect to be able to
neglect the nonlinear terms in the Navier-Stokes equations. We also expect
laminar flow because the Reynolds number of lava flowing in a tube is order
100, much less than the transition to turbulence in a circular pipe, which occurs
at Re = 2000 to 4000. ([13],[7]) Indeed, the velocity of lava in a channel has
been shown to conform very well to the parabolic profile predicted by assuming
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a laminar Newtonian fluid ([11]), and we expect the same to hold true for a
tube.

Thus, the along-tube component of velocity satisfies

Px = µ
1
r

∂

∂r
(r

∂u

∂r
) , u = 0 at r = ±a(x) (1)

Solving this gives

u =
−Px

4µ
(a2(x)− r2)

Integrating u from r = 0 to r = a(x) gives a relationship between the flux
and the pressure:

Px = − 8µQ

πa4(x)
(2)

We can use this to express u as

u =
2Q

πa2
(1− (r/a)2) (3)

The radial component of velocity can be solved for using the condition of
non-divergence:

v =
2Qa′r

πa3
(1− (r/a)2)

In non-dimensional form (see (9)), u is

u =
PeκL

a2
0a

2
(1− h2) (4)

External Temperature Field The temperature field in the solid, neglecting
x-derivatives, satisfies a diffusion equation:

κ
1
r

∂

∂r
(r

∂Te

∂r
) = 0 , Te|r=r0 = T0 , Te|r=a(x) = Ts (5)

This can be solved to give

Te =
T0 − Ts

ln r0
a(x)

ln
r

a(x)
+ Ts (6)

Or, in non-dimensional form (see (9)),

Te =
K

ln r0
a(x)

ln
r

a(x)
(7)

where K = T0−Ts

Ti−Ts
is a non-dimensional constant relating the amount of

cooling by the boundary condition to the amount of heating from the incoming
lava.
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Internal Temperature Field The internal temperature field is given by a
balance between advection and diffusion:

u
∂T

∂x
+ v

∂T

∂r
= κ

1
r

∂

∂r
(r

∂T

∂r
)

T |r=a(x) = Ts , T |x=0 = Ti ,
∂T

∂r
|r=0 = 0 (8)

Before solving for T (x, r), we first do a change of variables:

h =
r

a(x)

This will prove to be very convenient, as the streamlines of the flow are lines of
constant h, so we will end up with only one partial derivative in the advection
term. After the change of variables, and substituting u = 2Q

πa2 (1 − h2), the
equation becomes

2Q

κπa(x)2
(1− h2)

∂T

∂x
=

1
a(x)2

1
h

∂

∂h
(h

∂T

∂h
)

We will non-dimensionalize with the following:

x = Lx′

a(x) = a0a
′(x)

T − Ts

Ti − Ts
= T ′

Q = Pe
κLπ

2
q′ (9)

P = ∆PP ′

Here, a0 is a typical scale for a(x), usually chosen to be r0. The pressure
was non-dimensionalized with a typical pressure difference across the length
of the tube, and the flux was non-dimensionalized so that it has a nice form
when related to P - the scale is likely not representative. The non-dimensional
parameter Pe is a modified Peclet number, which we will simply call the Peclet
number, and is defined to be

Pe =
∆Pa4

0

4κµL2
(10)

After dropping the primes, we can write the equations in terms of either P
or q as

PeP∫ 1

0
1
a4

(1− h2)
∂T

∂x
=

1
h

∂

∂h
(h

∂T

∂h
) (11)

q(1− h2)
∂T

∂x
=

1
h

∂

∂h
(h

∂T

∂h
) (12)
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with boundary conditions

T |h=1 = 0 ,
∂T

∂h
|h=0 = 0 , T |x=0 = 1 .

The pressure difference across the tube, P , is related to the flux by

P =
q

Pe

∫ 1

0

1
a4

dx (13)

We can solve (11) or (12) by separation of variables. We show the solution
for (12) because it is simpler; to obtain the solution for (11) we simply substitute
PeP/

∫ 1

0
1
a4 for q.

The temperature field that solves the equation is

T (x, h) =
∑

n

Ane−λ2
nx/qφn(h) (14)

where λn, φn are the eigenvalues and eigenvectors of the problem and An

are constants that are determined from the initial temperature distribution. See
the Appendix for a discussion of the eigenfunctions.

Radius of Tube The rate of change of the radius of the tube is proportional
to the difference in heat flux at the boundary of the tube. This heat flux
should be the heat flux in the normal direction, but using our slowly-varying-
in-x assumption, we take it to be the flux in the radial direction only. The
time-dependent equation for the radius is a standard Stefan equation (see [15]):

LH

cp

da

dt
= κ

(
∂Te

∂r
|r=a(x) −

∂T

∂r
|r=a(x)

)
where LH is the latent heat of solidification, and cp is the heat capacity.
In steady-state, and with our change of variables and non-dimensionalization,

this becomes

∂T

∂h
|h=1 =

∂Te

∂h
|h=1 (15)

From (6) and (14), we can calculate

∂T

∂h
|h=1 =

∑
n

Gne−λ2
nx/q , Gn = Anφ′n(1)

∂Te

∂h
|h=1 =

K

ln r0/a(x)
=

−K

ln a(x)

Substituting into (15) and solving for a(x) gives
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a(x) = exp

(
−K

∂T
∂h |h=1

)

= exp
(

−K∑
Gne−λ2

nx/q

)
(16)

Before proceeding, we remark that our steady-state model, defined by (4),
(7), (11), and (15), depends on only two non-dimensional parameters:

Pe =
∆Pa4

0

4κµL2
, K =

T0 − Ts

Ti − Ts

The first, the Peclet number, gives the ratio of the horizontal advection of
temperature to the vertical conduction of heat. The greater the Peclet number,
the more heat is being advected through the tube, so we expect the tube to be
more open. The second, which we will call the temperature constant, gives the
ratio between the amount of cooling and the amount of heating. A greater |K|
means stronger cooling, so we expect the tube to be more closed.

2.2 Existence of a Solution

Notice from (16) that a(x) depends on q. If we set q, then we can solve explicitly
for a(x). However, if we choose to set P instead, then q = PeP/

∫
1
a4 , so we must

solve a transcendental equation for a. This may or may not have a solution.
We will show that if we choose to hold ∆P constant, so that P = 1, then the
existence of a solution depends on our choice of Peclet number.

Claim There exists a critical number depending on K, call it Pec(K), such
that

Pe > Pec(K) ⇒ There are 2 solutions for a(x)
Pe = Pec(K) ⇒ There is 1 solution for a(x)
Pe < Pec(K) ⇒ There are no solutions for a(x)

(17)

Proof Consider K to be fixed. We consider the solution (16) to (12), and use
this to plot P as a function of q. We define

f(q) ≡ q

∫ 1

0

1
a4(x, q)

dx

so that

P (q) =
1

Pe
f(q) (18)

We must find a q that solves (18) for p = 1.
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By calculating f ′(q), it is possible to show (see Appendix) that there is a
value of q, call it qc, such that f(q) has a minimum at qc, is monotone decreasing
for q < qc and monotone increasing for q > qc. (See Figure 2 for an example.)

This implies that (18) has two solutions whenever Pe > f(qc) and no solu-
tions if Pe < f(qc). Defining Pec(K) = f(qc) implies the result.

A plot of the critical Peclet number versus K is shown in figure 3. As
expected, when |K| increases the critical Peclet number does too, because there
is stronger cooling.

Figure 2: Top: Steady-state a(x) calculated for several different values of q.
Bottom: Pressure difference across the tube as a function of flux. The pressure
differences for the tubes shown on the left are plotted as starred points. The
pressure calculated from the Leveque approximation is shown with a dashed
line.
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Figure 3: Left: Critical Peclet number versus K. Right: Critical flux versus K.

2.3 Implication for length of a lava tube

From (17), we can calculate the maximum possible length of a lava tube. We
must have

Lmax <

√
∆Pa4

0

4κµPec(K)
(19)

We try to estimate this maximum length in two ways:

1. Assuming the flow is gravity-driven

2. Assuming the flow is pressurized at its source

Variable Range in Literature Value Used
κ 1e-7 - 1e-6 m2/s 1e-7m2/s
µ 30 - 200 Pa·s 100 Pa·s
ρ 1560-2600kg/m3 2600 kg/m3

a0 1-100m 10m
Ti 1150− 1180◦C
Ts 1077-1130◦C
T0 30-100◦C
K -10 to -40
Pec(k) 9.2e4 to 6.4e6

Table 2: Values of some parameters for basaltic lava, and the values used in our
calculations. K is calculated from the temperature data, and Pec is calculated
from K.
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Gravity-Driven flow If the flow is gravity-driven, then the pressure differ-
ence is given by the hydrostatic pressure difference calculated from the change
in height H:

∆P = ρgH

We use the parameters shown in Table 2, and take the radius of the tube
to be 10m. This may be slightly larger than tubes that are most commonly
observed, but many of the longest tubes also have very large radii, sometimes
exceeding 50m ([12]). For a flow that drops 1km, with an initial radius of 10m,
we find that for K = −10 to −40,

L ≈ 30− 250km

This is certainly in the range expected, although it varies a lot with a change
in the parameters. It is therefore likely that a flow is not entirely gravity-driven.

Pressure-Driven Flow There is much evidence that the flow along a lava
tube has a pressure-driven component, particularly in very long tubes over shal-
low slopes. Features along the tube such as tumuli, and dome-shaped fountain-
ing at tube breakout points, are commonly found along long tubes and indicate
that such tubes are probably fed by a source under high pressure. ([12]) The
source could become pressurized in many ways; for example, if there is a thick
layer of heavy, solid material floating on top of the lava source, or if the lava
originates from an elastic chamber.

It therefore makes sense to consider the pressure to be limited by a certain
value, which is the maximum value that the source can sustsain. We suppose
that our source is surrounded by solid basalt, and choose this value to be the
tensile failure strength of solid basalt:

∆Pcrit = 0.1− 2.5MPa

If ∆P > ∆Pcrit, we expect the magma at the source to break out of its solid
chamber and to develop a new system of tubes and flows.

Using ∆Pcrit as the value of ∆P in our calculation of Pe and using the given
range of K gives an upper bound on the length of a tube of initial radius 10m
as

Lmax ≤ 200− 900km

These values are slightly larger than the longest observed lava flow (of ∼200
km, on Mars), and an order of magnitude larger than a typical lava tube. How-
ever, real lava tubes have much more complicated cooling terms and geometry,
have time-dependent parameters, and are likely not operating at their maximal
capacity, so this shows that our theory is a candidate for a model of the pro-
cesses important in restricting the length of a tube. To properly evaluate the
accuracy of the length predictions, however, one would need to look at data and
values of the parameters for a particular tube.
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2.4 Shape of a(x)

It is interesting to examine a plot of P (q) and compare it to plots of a(x).
Figure 2 shows plots of a(x) for several values of q. When q is on the branch
where dP

dq > 0, the tube is quite large and has radius comparable to the radius
of the cylinder. As q → qc, the tube gets much smaller, and when q is on the
branch dP

dq < 0, the tube becomes tiny very quickly. In this regime, the pressure
difference required to maintain such a flux increases very rapidly with a small
decrease in flux.

This feature is analogous to that of a fluid whose viscosity changes with
temperature. The size of the tube determines its resistance to the flow, and can
be thought of as its ‘viscosity’. The smaller the tube, the higher its viscosity. In
a high flux regime, the tube’s size, or viscosity, changes little with flux, so the
pressure is determined mainly from the shear forces induced by the flux. As the
flux decreases, a point is reached where the ‘viscosity’ starts to increase rapidly,
dominating the contribution from the flux, so the pressure begins to rise.

Whitehead and Helfrich ([16]) found a curve similar to ours, relating the
flux through a fissure to the pressure drop across it, for a fluid whose viscosity
changes with temperature. Their curve had the same shape except for very
small fluxes, where the pressure reached a maximum and then came back down
to 0 at q = 0.

2.5 Leveque Approximation

When q is large, x/q is small, so we will need to sum up a large number of
eigenfunctions to get a good approximation of the temperature field and tube
radius. Leveque ([8]) found an approximate solution of (12) that is valid when
x/q is very small. He assumed that the change in temperature happened only
within a thin boundary layer of size δ(x/q) near the edge of the tube. He
neglected the curvature term, approximating the flow in this boundary layer as
planar, and used a linear approximation for the velocity field. After introducing
a similarity variable η = (1− h)/δ(x/q), he found a similarity solution F (η) =
T (x/q, h) for the temperature in the boundary layer:

T (x/q, h) = F (η) =
1

Γ(4/3)

∫ η

0

e−γ3
dγ , η =

1− h

δ(x/q)
(20)

δ(x/q) =
(

9
2
h

)1/3

(21)

We can combine this with (16) to obtain an approximation for a(x) near
x = 0. Since a(x) = r0 exp(−K/∂T

∂h |h=1), we find that

a(x) .= r0e
KΓ( 4

3 )( 9x
2q )1/3

, x/q � 1 . (22)

When q is large enough, this gives almost perfect agreement with the exact
solution. Even when q is not so large, the shape still agrees quite well. The
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pressure, however, is not so easily approximated with the Leveque solution.
When q is large, the pressure agrees very well (see Figure 2), but it starts to
diverge as q approaches the critical qc, and fails completely when q < qc as the
Leveque pressure is monotonically increasing.

3 Stability

Once we know the radius of the tube, we would like to know whether this shape
is stable. If we perturb it a little, will it return to steady-state or will it continue
to melt back the walls or to solidify until it plugs up?

To answer these questions we must reintroduce time into the equations. Let
us assume that the velocity field and external temperature adjust instantly to
the radius, and introduce time only into the equations for internal temperature
and radius. If we non-dimensionalize time with the diffusive timescale, so that

t =
a2
0

κ
t′

then the equations become

Tt + q(1− h2)
∂T

∂x
− aathTh =

1
h

∂

∂h
(h

∂T

∂h
) (23)

S
da

dt
=

1
a

(
∂Te

∂h
|h=1 −

∂T

∂h
|h=1

)
(24)

with the same boundary conditions as before.
The non-dimensional Stefan number is

S =
LH

cp(Ti − Ts)

Let us assume that S is large, so we can ignore at in (23), and also that q is
large enough that Tt becomes negligible. Then we only have one time-dependent
equation, (24).

Suppose we start with the radius a(x) that solves the steady problem, and
then we change it a little bit. Will it go back to the original radius? If we
maintain a constant flux q through the tube, then we see that the answer must
be yes. If we increase a(x), then we decrease ∂Te

∂h and we increase ∂T
∂h , (which are

both negative), so da
dt < 0 and a(x) relaxes to its original value. If we decrease

a(x), the signs of the fluxes are reversed and the walls melt back to their original
configuration. This argument is valid at each point x since the heat fluxes in
(24) are local, for constant flux.

However, if we keep the pressure difference across the tube constant, then
a heuristic argument shows that there is a potential for instabilities. Suppose
we increase the radius of the tube a little bit. The conductive heat flux acts
to resolidify it. However, since the pressure difference is fixed, the flux through
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the tube also increases, by (2). Thus, more heat is being advected through the
tube, and this might cause enough melting to offset the conduction terms.

We now investigate the linear stability quantitatively. Let ã(x) = a(x) +
εa1(x), where a(x) is the steady profile for a given q and ε is small. We expand
all relevant terms and variables up to O(ε). Thus

∂Te

∂h
=

K

ln r0/a
+ ε

(
Ka1

a ln2 r0/a

)
q̃ = q + εq

4
∫

a1
a5∫
1
a4

∂T

∂h
|h=1 =

∑
Gne−

λ2
n
q x

(
1 + ελ2

n

x

q

4
∫

a1
a5∫
1
a4

)
Keeping terms of O(ε) in (24) (and ignoring S, or re-defining time by it)

gives

a
da1

dt
=

Ka1

a ln2 r0/a
− x

q

∫
4a1
a5∫
1
a4

∑
λ2

nGne−
λ2

n
q x (25)

Using ∑
λ2

nGne−
λ2

n
q x = −q

∂

∂x

(
∂T

∂h
|h=1

)
= −q

Ka′

a ln2 1/a

we can write this as

da1

dt
=

K

a2 ln2 1/a

(
a1 + xa′(x)

∫
4a1
a5∫
1
a4

)
(26)

This has the form

da1

dt
= c(x)a1 + k(x)

∫ 1

0

j(y)a1(y)dy (27)

where c(x) = K
a2 ln2 a

< 0, k(x) = xa′(x)c(x) > 0, j(x) = 4/a5(x) > 0.

The RHS can be turned into a self-adjoint operator by a simple change of
variables. Let

v(x) =

√
j(x)
k(x)

a1(x)

Then the equation becomes

dv

dt
= Lv ≡ c(x)v + h(x)

∫ 1

0

h(y)v(y)dy (28)

where h(x) =
√

k(x)j(x).

We note the following:
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• Range(c(x)) = (−∞, cm], where cm = sup(c(x)) < 0. This is because
a2 ln2 a = 0 at a = 0, 1 so it has a maximum on a ∈ (0, 1], and K < 0.

• 0 < h(x) ≤ hm. This still needs to be proved - we must show that
limx→0 h(x) < ∞. Numerical solutions indicate that it should be true.

Thus, although L is an unbounded operator on L2(R), the Fredholm com-
ponent h(x)

∫
h(y)v is bounded. We could truncate c(x) at some finite value

to obtain a bounded operator, and then we could apply the spectral theorem
to represent the solution in spectral space. We won’t need the boundedness of
L to calculate its spectrum, however, so we leave it in its unbounded form for
now.

We make the following claims about the spectrum of L.

Claim

• The point spectrum of L consists of one eigenvalue λ0, with corresponding
eigenfunction h(x)

λ0−c(x) . λ0 is the solution to
∫ h2(y)

λ−c(y) = 1, and λ0 > cm.

• The continuous spectrum is equal to Range(c(x)).

• There are no other points in the spectrum.

Proof To see that h(x)
λ0−c(x) is an eigenfunction, simply calculate: Lv = c(x)h(x)

λ0−c(x)+

h(x)
∫ h2(y)

λ0−c(y) = λ0h(x)
λ0−c(x) .

To see that there is only one such λ0 > cm solving f(λ) =
∫ h2(y)

λ−c(y) = 1, note

that limλ→cm f(λ) = ∞, limλ→∞ = 0, and f ′(λ) = −
∫ h2(y)

(λ−c(y))2 < 0.
To show that λ = c(x0) is in the continuous spectrum, we show that λ− L

cannot have a bounded inverse. We do this by providing a sequence {vn} ∈ L2

such that ‖vn‖ = 1 and ‖(λ−L)vn‖ → 0. Letting vn = bn1(x0−δn,x0+δn), where
2δnbn = 1, δn → 0, and using the continuity of c(x) does the job.

To show that this is the entire spectrum, we show that if λ /∈ {c(x)} ∪ {λ0},
then λ− L has a bounded inverse.

Let

Tv ≡
v +

∫ h(y)v
λ−c(y)/

(
1−

∫ h2(y)
λ−c(y)

)
λ− c(x)

Then (λ− L)T = T (λ− L) = I, and

‖Tv‖ ≤ 2‖v‖
(λ− cm)2

1 +
h2

m/(λ− cm)2

1−
∫ h2(y)

λ−c(y)


Thus, appealing to the spectral theorem for unbounded operators, we can

express the solution to (28) as
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v(x, t) = A0e
λ0t h(x)

λ0 − c(x)
+
∫

λ∈Range(c(x))

Aλeλtφ(λ, x)dλ (29)

where φ(λ, x) are the distributions corresponding to the continuous spec-
trum.

Since the continuous spectrum is always negative, the stability of the problem
is determined entirely by the sign of the largest eigenvalue, λ0. It is possible to
show that

Claim

dP

dq
> 0 ⇒ λ0 < 0 (stable)

dP

dq
< 0 ⇒ λ0 > 0 (unstable)

Proof See Section 8.3 in the Appendix for a proof given general heat flux and
pressure relationships.

It is helpful to change back to our original variables to see the structure of
the discrete eigenfunction. In the original variables, it becomes

xa′(x)
c(x)

λ0 − c(x)

Since xax + qaq = 0, it is also proportional to

aq
c(x)

λ0 − c(x)
=

aq

λ0
c(x) − 1

Thus, if λ0/c(x) ≈ const, which can happen if λ0 � cm, for example, (since
c(x) changes slowly over most of its range), then the most slowly-decaying per-
turbation is almost in the direction of the nearest steady profile.

4 Numerical Simulations

Numerical simulations were performed to test the stability predictions. The
pressure difference was kept constant, and the tube radius was stepped forward
in time using (24). Time derivatives were calculated using forward Euler, the
trapezoidal rule was used for integration, and 1000 eigenfunctions were used to
calculate the heat flux and steady profiles. 40 points were used to represent the
tube in the horizontal. The simulations were stopped if the tube ‘plugged up’ -
defined to be when a(x) = 0 for some x.

The numerical simulations confirm the theoretical predictions. If we start
with a profile that is linearly stable and perturb it a little, it returns to its
original state. We can even perturb it a lot, provided the perturbation is not
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too negative, and it will return to the steady state. If the perturbation is too
much in the direction towards 0, however, then the tube plugs up - this seems
to happen when

∫
1
a4 for the perturbed profile is too large. It is hypothesized,

though not shown, that if the initial flux q0, calculated from q0 = P/
∫

1
a4
0
, where

a0 is the initial profile, is smaller than the flux qunstable corresponding to the
unstable profile for a given P , then the tube will plug up.

If we start with a profile that is predicted to be linearly unstable and perturb
it a little, it moves away from the unstable state. Which way it moves depends
on how we perturb it. If the perturbation is mostly positive, in the direction of
the stable profile corresponding to the same value of P , then it opens up, and
moves to the stable profile. If the perturbation is mostly negative, away from
the stable profile, then the tube plugs up.

As the tube moves from one profile to another, its shape is always close to
that of a steady profile. Any localized disturbances to the profile are rapidly
ironed out. This is consistent with the linear theory, which predicts large neg-
ative eigenvalues in the continuous spectrum, which appears to be associated
with highly localized eigenfunctions.

5 Extensions of the model

5.1 Chamber Dynamics

We can introduce more dynamics into the problem by allowing the pressure to
change. One simple modification is to assume the pressure is given by the height
of lava in a lake, which is fed by a fixed flux q0, or that the lava fills an elastic
chamber whose pressure depends on how much lava is inside. In both cases, we
can write the equation for the change in pressure as

γ
dP

dt
= q0 − q(t) (30)

where γ is a non-dimensional constant related to the characteristics of the
magma chamber, such as the area of the lake or the elasticity of the chamber.
The ratio S/γ tells us the rate of change of pressure compared to the rate of
change of the radius.

Numerical simulations show that if the lake is fed with a flux q0 that is in
the stable regime, q0 > qc, then the tube converges to a tube with a radius
a(x, q0), as long as it starts off with a great enough radius. If the lake is fed
with a flux that is too small, q0 < qc, then every tube plugs up no matter
how great its initial radius. Although the system showed growing or decaying
oscillations for certain choices of γ/S, no limit cycles were observed, as was the
case in the simulations performed by Whitehead and Helfrich ([16]). This is
probably because, unlike their pressure-flux relationship, which had an extra
stable regime near q = 0, our pressure-flux relationship lacks a second stable
branch that can help to sustain oscillations.
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We also tried setting q = 0 to see how fast a lake can be drained by a lava
tube. It was never possible to drain the lake; the tube plugged up rapidly as
soon as the pressure dropped below the critical value.

5.2 Branching Tubes

Whitehead and Helfrich ([16]) performed an experiment in which they let hot
paraffin flow radially outward from a source. After a certain time, the paraffin
was cool and viscous enough to be considered a solid, except in a few locations
where it flowed rapidly in channels. Initially there were several channels, but
as time progressed they all closed up except for one, which continued to flow
indefinitely.

Wylie et al ([17]) performed a similar experiment, in which they showed that
flow of liquid wax tends to concentrate in a single, narrow finger, with the rest
of the flow almost stagnant.

In real lava flows, networks of tubes are occasionally observed instead of
a single tube. We are interested in the processes that allow or inhibit several
tubes to exist simultaneously. Under which combinations of parameters is it
more favourable to feed a flow with several tubes, rather than a single big one?
Is there an optimal density of tubes that we should expect? Answers to these
questions would help us not only to understand the size and emplacement of
lava tubes, but also the location and spacings of volcanoes themselves, as these
are formed when a localized tube of lava flows up a fissure in a dike.

We have constructed a simple model in an attempt to answer these questions.
Since this work is in its beginning phases, we outline the ideas only briefly so
that they can be pursued later in more depth.

We suppose we have a series of n identical tubes, all parallel to the x-
direction, which are located at points {yi} along the y-axis. We can non-
dimensionalize y so that the points lie between 0 and 1. The tubes are fed by
flow through a pipe which lies along the y-axis. There is a uniform flux per unit
length q0 into the pipe. The pressure difference across each tube is given by the
pressure Pi at its corresponding point on the pipe. The flux through each tube
qi is determined by the pressure through some relationship, Pi = fi(qi), such as
(13). This in turn determines the flow through the pipe, which determines the
pressure in the pipe.

We need a relationship between the pressure in the pipe and the flux through
the pipe. Let us assume the flow in the pipe is Poiseuille flow. We then have

Py = −γq(y)

where γ is a non-dimensional parameter related to the size of the pipe com-
pared to the sizes of the tubes.

We can calculate that the flux in the pipe is given by

q(y) = q0y −
∑

qi1y>yi
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(assuming that r0 is small enough that we can neglect the modification to q
near the entrance of a pipe).

Thus

P (y) = P0 − γ

(
q0

y2

2
+
∑

qi(y − yi)1y>yi

)
where P0 is the pressure at 0. Let Pf be the pressure at y = 1. Our full set

of variables to solve for are

P0 , {Pi}i=1..n , Pf , {qi}i=1..n

The equations we have to solve for them are

{Pi = P0 − γ

(
q0

y2
i

2
+
∑

qk(yi − yk)1yi>yk

)
}

Pf = P0 −
q0

2
+
∑

qk(yi − yk)

{Pi = fi(qi)}

We can add one more equation, so we add conservation of mass:∑
qi = q0

These equations were modelled on Matlab, and a solution can be found given
the locations of the tubes {yi}.

We next want to add time into the system. One way to do this is to let
the relationship Pi = fi(qi) depend on time, so that fi = fi(qi, t). In our
simulations, we included time in the pressure-flux relationship by simulating
the dynamics of each individual tube, and calculating the pressure as Pi =
qi

∫
1/a4

i (x, qi, t)dx. Our procedure was to solve the system given initial tube
profiles, use the calculated values of pressure to step the tube radii forward in
time, and repeat using the new radii.

Figure (4) shows some of our results for γ = 1. We started with 50 identical
tubes at locations chosen randomly from a uniform distribution in (0, 1), and
provided a flux per unit length that was enough to sustain 6 tubes in a stable
configuration. Most of the tubes plugged up, and we ended up with 5, or
occasionally 4, tubes in a steady flow. The model showed strong localization:
almost all of the time the 5 tubes were sequential points, and only in a very
small number of runs did they split into 2 groups.

5.3 2D Planar Flow

There are several situations in which we may be interested in a type of lava
transport which could be modelled as a 2-dimensional ‘tube’. One is when lava
flows down a slope as a sheet, and is homogeneous in the cross-sheet direction.
Another is when a volcano erupts and send lava up a long, narrow fissure. The
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shape and thermal properties of the 2-dimensional system should be susceptible
to an analysis similar to the 3-D case. We looked at the equations for the
2D system in the hopes that they would have similar results to the 3-D. We
were surprised to find that they were actually harder to analyze than the 3-D
equations, but preliminary calculations suggest that they may share the same
qualitative characteristics.

The 2-D equations use the same non-dimensionalization, except for a slight
change. The Peclet number is modified to be

Pe =
2∆Pa4

0

3κµL2

The external temperature equation solves ∂2Te

∂h2 = 0, Te|h=r0/a = K, Te|h=1 =
0, and has solution and consequent flux

Te =
Ka(x)(h− 1)

r0 − a(x)
,

∂Te

∂h
=

Ka(x)
r0 − a(x)

The internal temperature equation and the relationship between P and q
are

a(x)q(1− h2)Tx =
∂2T

∂h2

q =
PeP∫

1
a3 dx

The internal temperature is thus

T (x, h) =
∑

n

An exp
(
−λ2

n

q

∫ x 1
a(s)

ds

)
φn(h) (31)

where λn, φn are the eigenvalues and eigenvectors of the problem, solving

φ′′ − λ2(1− h2)φ = 0 , φ(1) = 0 , φ′(0) = 0

and An are determined from the temperature distribution at x = 0. These
eigenfunctions are discussed in Shah and London ([14]).

Unfortunately, a(x) appears in the solution for T . This means that even if
we are given the flux, we may not be able to solve for a(x). We find that

Ka(x)
r0 − a(x)

=
∑

n

Gn exp
(
−λ2

n

q

∫ x 1
a(s)

ds

)
,

Gn = Anφ′n(1)

⇒ a(x) =
r0

∑
AnRn exp

(
−λ2

n

q

∫ x 1
a(s)ds

)
Kr0 +

∑
AnRn exp

(
−λ2

n

q

∫ x 1
a(s)ds

) (32)
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This is a transcendental equation that defines a(x). It may or may not have
a solution, and the solution may or may not be unique. A simple argument
shows that it probably does not have a solution in all of parameter space.

Suppose the initial temperature distribution is such that it is made up of
only one eigenfunction. (This would also be the case if we start the experiment
far down the tube, where the other eigenfunctions have decayed exponentially.)

We must solve

G1 exp
(
−λ2

1

∫ x

0

1
qa(s)

ds

)
=

Ka(x)
r0 − a(x)

(33)

for a(x). Taking the derivative of both sides and substituting for the expo-
nential gives

da

dx
− λ2

1

qr0
a = −λ2

1

q

Solving and using initial condition a(0) = G1
K+G1

r̄, obtained by setting x = 0
in (33), gives

a(x) = r0

(
1− K

K + G1
e

λ2
1

q x

)
In order for this to be greater than 0, we need

G1

K
> e

λ2
1

qr0

.
Thus, if q is too small or |K| is too large, we expect there to be no solution.

6 Conclusions

We have created a simplified model of the heat transport in a lava tube, and
used this to investigate the existence, shape, and maximal possible length of a
lava tube. This model predicts a functional relationship between the pressure
difference across the length of the tube, and the flux of fluid through the tube
in steady-state, such that for large values of the flux, dP

dq is positive, for small
values it is negative, and P has a minimum at q = qc, which depends on a
non-dimensional temperature constant. This curve tells us whether or not, for
a given non-dimensional Peclet number, a steady-state lava tube can exist. It
further tells us when such a solution is stable to small linear perturbations:
when q > qc the tube is stable and when q < qc the tube is unstable. These
linear stability predictions were confirmed with numerical simulations. Unstable
tube shapes either went to the stable state corresponding to the same pressure
difference, or plugged up and ceased to exist. The maximal length of a lava
tube was estimated for typical values of the parameters, and was found to be
approximately 30-900km, depending on the assumptions.
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8 Appendix

8.1 Eigenvalues of the temperature problem

The eigenfuctions are solutions of

φ′′ +
1
h

φ′ + λ2(1− h2)φ = 0 , φ(1) = 0 , φ′(0) = 0 .

They are given by

φn = e−λ2
nh2/2M(

1
2
− λn

4
, 1, λnh2)

where M(a, b, z) is the confluent hypergeometric function:

M(a, b, z) = 1 +
a

b
z +

(a)2
(b)2

z2

2!
+ . . . +

(a)n

(b)n

zn

n!
+ . . .

(a)n = a(a + 1)(a + 2) . . . (a + n− 1) , (a)0 = 1

and λn are solutions of the transcendental equation

M(
1
2
− λ

4
, 1, λ) = 0 .

It can be shown that

M(a, b, z) =
Γ(b)
Γ(a)

ezza−b
(
1 + O(|z|−1)

)
so

φn(h) =
eλn/2

λnΓ( 1
2 −

λn

4 )
e−

λn
2 (h−1)2

h(1+ λn
2 )

(
1 + O(

1
λnh2

)
)

The eigenfunctions are orthogonal with respect to weighting function h(1−
h2).

See Chapter 13 of Abramowitz and Stegun for more information about the
confluent hypergeometric function. [1]

Shah and London ([14]) show that the eigenvalues and initial conditions Gn

can be approximated as
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λn = λ + S1λ
−4/3 + S2λ

−8/3 + S3λ
−10/3 + S4λ

−11/3 + O(λ−14/3)

Gn =
C

λ
1/3
n

(
1 + B1λ

−4/3 + B2λ
−6/3 + B3λ

−7/3 + B4λ
−10/3 + B5λ

−11/3 + O(λ−4)
)

where
λ = 4n + 8/3

S1 = 0.159152288
S2 = 0.011486354
S3 = −0.224731440
S4 = −0.033772601
C = 1.012787288

B1 = 0.144335160
B2 = 0.115555556
B3 = −0.21220305
B4 = −0.187130142
B5 = 0.0918850832

They also list more accurate values of these numbers for the first few eigen-
values.

8.2 Calculation of f ′(q)

We have that

f(q) = q

∫ 1

0

1
a4(x, q)

Thus

f ′(q) =
∫ 1

0

1
a4

[
1− 4q

∂(ln a)
∂q

]
=

∫ 1/q

0

1
a4

[
1− 4K

∑
Gnλ2

nse−λ2
ns

(
∑

Gne−λ2
ns)2

]
ds

after change of variables s = x/q. Now the only dependence of f ′(q) on q is
in the limit of the integral.

Let

g(s) ≡ K
∑

Gnλ2
nse−λ2

ns

(
∑

Gne−λ2
ns)2

Then

g′(s) =
(
∑

Gneλ2
ns)(

∑
−KGnλ2

n(1− λ2
n)se−λ2

ns) + 2K(
∑

Gnλ2
ne−λ2

ns)(
∑

Gnλ2
nse−λ2

ns)
(
∑

Gne−λ2
ns)3

Using K, Gn < 0 we find that g(0) = 0, g′(s) > 0 (s > 0), g(s) → ∞ as
s → ∞. Thus, we are integrating a quantity which is positive for small s and
negative, going to −∞, for large s, and changes sign only once, so ∃ qc s.t.
f ′(q) < 0 for q < qc, f ′(q) > 0 for q > qc.
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8.3 Derivation of the linear stability equation - general
case

We derive the linear stability problem for a general external heat flux, internal
heat flux, and pressure relationship. We show that if these functions have a
particular form, then the tube radius is linearly stable whenever dP

dq > 0 and
linearly unstable whenever dP

dq < 0.
Let us have the following functions:

a(x, q) : R×R → R = tube radius
P (q, a) : R× C(R) → R = Pressure

E(a) : R → R = External heat flux
I(x, q) : R×R → R = Internal heat flux

We make the following assumptions:

• δP
δa is a linear, positive definite operator from C(R) → R.

• E′a < 0

• ∂a
∂q > 0.

We also suppose that any arbitrary profile evolves in time according to

da

dt
= E(a)− I(x, q) ,

dP

dt
= 0 .

Suppose we start with a steady profile a, with corresponding flux q, and
perturb it by εa1. Let the flux change by an amount εq1. We derive the O(ε)
equation for the evolution of a1. We have that

dP

dt
= 0 ⇒ ∂

∂ε
|ε=0P (q0 + εq1, a + εa1) = 0

⇒ q1
∂P

∂q
+

δP

δa
[a1] = 0

⇒ q1 =
− δP

δa [a1]
∂P
∂q

Thus, a1 evolves according to

da1

dt
=

∂

∂ε
|ε=0 (E(a + εa1)− I(x, q + εq1))

= a1
∂E

∂a
− q1

∂I

∂q

= a1
∂E

∂a
+

δP
δa [a1]

∂P
∂q

∂I

∂q
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Since a satisfies E(a) = I(x, q), we can take the q-derivative of this to get
dE
da

∂a
∂q = ∂I

∂q . We also know that ∂P
∂q = dP

dq −
δP
δa [∂a

∂q ]. Substituting these into the
last equation gives

da1

dt
=

dE

da

(
a1 +

∂a
∂q

δP
δa [a1]

dP
dq −

δP
δa [∂a

∂q ]

)
(34)

Set the RHS equal to λa1 and solve for a1 to get

a1 =
dE
da

δP
δa [a1]∂a

∂q

(dP
dq −

δP
δa [∂a

∂q ])(λ− dE
da )

Let δP
δa [a1] = D. Take δP

δa of the above equation to get

δP

δa

[
−dE

da
∂a
∂q

(dp
dq −

δP
δa [∂a

∂q ])(λ− ∂E
∂a )

]
= 1 (35)

If dP
dq = 0 and λ = 0, then LHS = 1. If dP

dq ↑ or λ ↑, then LHS ↓, and if dP
dq ↓

or λ ↓, then LHS ↑. Therefore

dP

dq
> 0 ⇒ λ < 0 (stable)

dP

dq
< 0 ⇒ λ > 0 (unstable)
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Figure 4: Simulations of systems of tubes. Left: Plot showing initial location of
tubes (top row) and tubes that remained open after a long time (bottom row).
Right: Flux through each tube as a function of time.
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