
Lecture i: Overview

1 Diffusion by discontinous movements

In 1827 Robert Brown, observed that suspended pollen grains are in an uninterrupted and irregular
"swarming" motion. Brown was a botanist and at first he believed that only organic materials
exhibited this agitation. But very soon he extended his observations to particles of inorganic material,
such as a ground-up fragment of the Sphin. Through the nineteenth century there was a intermittent
discussion concerning the cause of this Brownian motion, and in 1877 DelsailX suggested that the
impact of molecules on a macroscopic particle produces observable displacements. In 1905, after
nearly a century of debate, Einstein definitively explained this phenomenon (6,7).

1.1 Einstein's derivation of the diffusion equation

Our interest here is in Einstein's derivation of the dision equation, which is very different from that
of Fourier. We consider one-dimensional Brownian motion by projecting the location of the particle
onto a straight line which we call the x-axs.

Einstein's assumptions are the following: (i) the particles move independently of one another;
(ii) we observe particle positions at time intervals 7 which are much greater than the time intervals
between molecular collsions. As a result, the motion in one interval is independent of what happened
in the previous interval.

In the interval 7 each paricle has a random displacement ß along the x-axs. The probability
density function (PDF) of ß is ø(ß). This means that if we observe N ).). 1 paricles for a time 7 then
the number of particles which are displaced through a distance which lies between ß and ß + dß is

dN = N ø(ß) dß. (1)

The PDF ø(ß) does not change from interval to interval, and ø is symmetric and normalised:

ø(ß) = ø( -ß) ,
i!(ß) dß = 1.

(2)

The symmetry of ø implies that the displacements are unbiased. The average of any function of ß,
j(ß), is

J == i!(ß)ø(ß) dß. (3)

In particular, ß2 is the mean square displacement in a single step.
If the concentration of paricles at time t is denoted by c(x, t), then the evolution of c is determined

from the master equation:

c(x, t + 7) = i~(x - ß, t)ø(ß) dß. (4)
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A random walk with 200 steps

Figure 1: Simulated Brownian motion using MATLABj the routine rand is used to generate a sequence of
200 random displacements.

The integral over ~ is a sum over the prior locations at time t of the particles that are at x at time
t + T. Thus, the number of particles in the interval (x - ~, x - ~ + d~) is c(x - ~, t)d~ and Ø(~)

is the fraction of these particles which jump from x - ~ onto x.
If the concentration e(x, t) changes on a length scale which "is much greater than the root mean

square displacement, then we can approximate the integral equation (4) by the diffsion equation.
This assumption that e is slowly varying means that it it is sensible to use a Taylor series expansion

c(x, t) + tet (x, t) ~ L!(~) (C(X, t) - ~e:z (x, t) + ~2 e:z:z (x, t) J d~. (5)

Next, using (2), we reduce (5) to

Ct(x, t) ~ De:z:z(x, t),

~2D=-
- 27'

(6)
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This is the diffsion equation, and D is the diffsivity.
The greatness of Einstein's contribution to this subject is not the derivation above but rather his

formula for the diffsivity of a macroscopic particle

D- RT
- 67rNava'

(7)

where R is the gas constant, T the absolute temperature, Na the Avogadro number, v the coeffcient
of viscosity mid a the radius of the paricle. Coincidentally, (7) was also discovered in 1905 by Willam
Sutherland in Australia. This relation enabled Perrin to determine Avogadro's number by observing
Brownian displacements (7).

The diffusion equation is an approximation of the more exact master equation. As we try to design
parameterizations of nonlocal mixing processes, in which scale separation assumptions are shaky, we
should pay more attention to this history and consider the possibilty of using integral equations such
as (4). Notice also that if the Taylor expansion in (5) is continued to higher order then one wil usually
(i.e. for most kernels cp) obtain a hyperdiffusive term such as Cxxxx'

1.2 The method of moments

As a check on the derivation of (6), we take a different approach using the method of moments. A
moment of the concentration is an integral of the form

i:nc(X, t) dx. (8)

The zeroth moment, n = 0 in (8), is the total number of particles:

N = i~(X, t) dx. (9)

The first and second moments can be interpreted as the center of mass and moment of inertia of the
concentration profile.

We expect that N is constant, and it is educational to verify this conservation law for both the
master equation and the diffusion equation by "takg the zeroth moment". Integrating (4) from
x = -00 to x = +00, and changing the order of the integrals on the right-hand side gives

N(t + r) = i: dti cp(ti) i: dx c(x - D., t). (10)

Changing variables to Xl = X - ti in the inner integral, and using (2), gives the particle conservation
law N(t+r) = N(t). The diffsive analog of particle conservation is easily obtained by integrating the
diffusion equation (6) from x = -00 to x = +00. Provided that Dcx vanishes at x = :100 (physically,
there is no flux of particles from infinity), one immediately finds that Nt = O.

Extending the procedure above to higher moments, we can make a comparison between the exact
results for Jxncdx and the diffusive approximation of these same integrals. To take the first moment
of the diffusion equation, multiply (6) by x and integrate from x = -00 to x = +00. Once again, we
use integration by parts and assume that terms such as xCx and c vanish as x -+ :100. Thus we find
that the center of mass is stationary

~
'"OF
¡:~
""

J\

d 100

-d xc(x, t) dx = O.t -00
(11)

The same result can be obtained by taking the first moment of the master equation. The center of
mass is stationary because in (2) we assume that the PDF of displacements is symmetric.
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Continuing, we come to the second moment. For the difsion equation we obtain

d 100 100
dt _oox2cdx = 2D _~dx = 2DN,

where, as before, the terms which fall outside the integration by parts are zero because of the rapid .
decay of c as x -- ::oo. The student should show that from the master equation

(12)

. i:2c(x, t + T) dx - i:2C(x, t) dx = i:fl2cp(fl) dfl.
(13)

Recallng the definition of the diffsivity in (6), we see that in the limit T ~ 0 the difference equation
in (13) can be approximated by the differential equation in (12).

The law in (12), that the mean square displacement of a cloud of particles grows linearly with time,
is often taken to be the defining characteristic of diffusion. As we wil see later, there are dispersive
processes which have other power-laws, such as Jx2cdx oc t1j2. These processes are referred to as
"anomalous diffsion" .

2 Diffusion by continuous movements

2.1 Lagrangian time series

In 1922 Taylor (11) analyzed the diffsing power of a velocity field. The basic concept here is that of
a Lagrangian time series, such as the x-velocity of a tagged fluid particle, u(t), as a function of time.
This data is Lagrangian (Le., following a "float"), not Eulerian (Le, obtained from a "current meter"
fixed in space). The velocity time series might look like figure 2. Clearly there is some reguarity:
evenly spaced maxma and minima are obvious, and we might guess that there is a wave which is
producing oscilatory displacements. At the same time, the velocity is not completely predictable,
and there is no obvious law by which we can anticipate all details of the future using observations of
the past.

The simplest assumption we can make to analyze the process in figure 2 is that the velocity is
statistically stationary. This means that average properties of the velocity, such as the mean square
velocity, are not changing with time. In operational terms, the assumption of stationarity means
that if we take nonoverlapping and well-separated subsamples of the time series in figue 2 then the

statistical properties of the subsamples are identical.
If the time series is long enough we can chop it into N chunk, each of length T. We define an

ensemble average by considering each of the N chunks as a single realization of a random process.
This procedure introduces the additional assumptions that there is a decorrelation time T -(-( T, and
that time averages are equivalent to ensemble averages. Thinking of dispersion, Taylor imagined that
each chunk was an independent particle, labeled n = i, 2, ...,N, executing continuous movements.
"Continuous" in this context means that the velocity of particle n, un(t), is a relatively smooth
function of time, at least in comparison with the jittery motion in figue i.

We denote the position of particle n by xn(t), so that if all the particles begin at x = 0 then

dXn ( )
il = Un t ,

== xn(t) = !u~n(n dt'. (14)

We use angular brackets 0 to denote the ensemble average. As an example of this notation, the
average velocity of the N particles is

1 N
(u) == N L un(t).

n=l
(15)
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A time series of Lagrangian velocity
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Figure 2: A time series with a spectral peak.

Because of the stationarity assumption, (u) is independent of time, and we can refer all displacements
relative to the position of the center of mass by writing Xl = X - (u)t and u~ = Un - (u). To save
decorating all our subsequent x's and u's with primes we now assume that (u) = O.

2.2 Taylor's formula

The simplest measure of dispersion about the center of mass is the mean square displacement, (x2).
We can calculate the rate of change of this quantity by first noting that:

dx2n - 2
il - xnun'

and (14) ~ d:t~ = 21~n(t)un(n dtl.
(16)

We now ensemble average (16). Because of stationarity, (u(t)u(t)) dep"ends only on the time difference
t - e. Thus, we introduce the correlation function

C(t - n == (u(t)u(tl)), (17)

and, after a change of variables, write the ensemble average of (16) as

d(x2) = 2 r~(tl) de .
dt 10 (18)

Equation (18) is Taylor's formula, which relates the variance in paricle displacement (x2) to an
integral of the Lagrangian velocity autocorrelation function C(t).

In the simplest situations the correlation function C(t) decreases rapidly to zero as t ~ 00 so

that the integral in (18) converges. In this case, the dispersion of the ensemble at large times is
characterized by a diffusivity (x2) "" 2Dt, where the diffsivity D is related to the correlation function
by:

D = l°OC(t) dt. (19)

In statistical physics, (19) is known as the Green-Kubo formula.
Taylor did not claim that turbulent dispersion was governed by the diffsion equation, (6). We

wil return to this point later. For the moment notice that (6) is an approximation valid only for

suffcently long times that the integral in (18) has converged to the constant D. This restriction is
related to Einstein's assumption that particle positions are observed at time intervals T which are
much greater than the decorrelation time.
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3 Diffusion and anomalous diffusion

In the previous sections we emphasized that the difsion equation (6) is only valid on times long
compared to the decorrelation time T, and only if the concentration c(x, t) varies on length scales
greater than the width of the density Ø(ß). These assumptions of scale separation in both time and
space are often not satisfied in real flows. Thus, dispersion experiments over the last ten years have
revealed behaviours which are much richer than those suggested by the arguments of Einstein and
Taylor. Experiment~ often show that the growth of variance is described by a power law

(x2) ex t€.. (20)

In some cases ç = 1 (diffsion), but sometimes ç -l 1, in which case the process is referred to as
anomalous diffusion.

3.1 Rayleigh-Bénard convection

As an example of hydrodynamic diffusion (ç = 1) and transient sub difsion (ç = 2/3) we mention the

experiments of Solomon and Gollub (9,8) on the dispersion of passive scalar (either methylene blue or
uranine dye, or small latex spheres) along a chain of Rayleigh-Bénard convection cells (see figure 3).
We refer to the passive scalar generically as "tracer".

Following the experimental procedure in figure 3, suppose that all of the tracer is initially released
in a single celL. The main question is: how many cells, N(t), have been invaded by tracer at time
t? If this dispersive process is described by diffsion then we expect that N(t) ex t1/2. With certain
interesting restrictions, this t1/2-law is the experimental result.

The Rayleigh-Bénard flow can be approximately described using a two-dimensional and incom-
pressible velocity field, (u, v), obtained from the streamfunction

il = k-1 A sin (k (x + B sinwt)) W(z), (u, v) = (-ily, ilx) . (21)

The parameter A controls the amplitude of the flow, k = 21f/). is the wavenumber, and W(z) is a
function which satisfies the no-slip boundary conditions at z = 0 and z = H. The term B sin wt is a
simple model of the lateral oscilation of the roll pattern which results from an instabilty which occurs
when the convection is driven suffciently strongly. Because the flow in (21) is simple, highly structured
and deterministic, this is not an example of turbulent dispersion. Nonetheless, the experimental results

can be summarized using the notion of an effective diffusivity.
The Péclet number is

A
p == kI¡,' (22)

where K, is the molecular diffusivity of the tracer, is a nondimensional parameter which measures the
importance of molecular diffsivity to advection. The Péclet number can be considered as the ratio
of the time it takes a molecule to orbit around a convection cell to the diffsion time across a celL. In
the experiments described here, P is large and molecules make many circuits around a convection cell
before Brownian motion jostles them through a distance as large as k-1.

There are two cases which must be carefully distinguished:

Steady TOlls The rolls are steady if either w = 0 or B = 0 in (21). In either case, tracer can pass
from one roll to a neighbour only via molecular diffsion. But, because molecules are advected
through a distance k-1, the dye is transported along the array of cells with an effective diffusivity
Deff ex V AK,/k // K,. Because Deff -7 0 if K, -70, the transport is limited by molecular diffsion.

Unsteady rolls If B and ware both nonzero then advection (rather than molecular diffsion) can
take particles through the time-averaged position of the cell boundaries. In this case, there is
the possibilty of transport unlimited by weak molecular difsion.
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Figure 3: Transport of uranine dye along an array of convection cells with kB = 0.12; time (from the top):
1, 2, 4 and 10 periods of oscillation. (Figure courtesy of Tom Solomon (10).)

In the unsteady case, Solomon and Gollub show that trajectories of particles computed with the
model streamfunction (21) are similar to the patterns observed experimentally. In both the numerics
and the experiments, provided that wB =1 0, the transport of particles along the array of cells (in the
x-direction) is due to chaotic advection in the neighbourhood of the roll boundaries. This process is
strikingly shown in figure 3.

A rough summary of the results is that in both the steady and the unsteady cases the dye spreads
via a one-dimensional diffusive process, ç = 1 in (20), with a local effective diffusivity Deff. The
number of invaded cells is N(t) oc ýDefft. In the unsteady case Deff is independent of the molecular
diffusivity K" while in the steady case Deff oc... The effective diffusivity in the unsteady case is
enhanced by 1 to 3 orders of magnitude over the effective diffusivity of the steady case (which in turn
is much greater than the molecular diffsivity, K,).

The summary in the previous paragraph omits many interesting details. One of the more important
caveats is that the effective diffsivity in the steady case only describes the dispersion process at very
long times:

N(t) oc tl/2 when
i

t?? k2 K, . (23)

The time i / k2 K, is an estimate of the time taken for molecular diffsion to transport tracer through
a distance of order k-l, from the edge of a cell to the centerl. In this long time limit, the evolution

1 We assume that the aspect ratio of the cells is of order unity, kH = 0(1).
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of the tracer is slower than the intracellular diffsion time 1/ k2 '" and consequently the concentration
is uniform within each roll. The concentration changes rapidly at difsive boundary layers (with
thickness proportional to ",1/2) which are located at the roll boundaries. The intercellular flux across
these boundary layers is responsible for the spread of the tracer from one roll to the next.

The scenario described above does not have time to become established until t :::: 1/ k2 "'. When
t ~ 1/k2", there is stil a significant dispersion of tracer through many cells which is described by the
anomalous difsion law

1
N(t) ex t1/3 when t -(-( k2", .

The anomalous process above relies on molecular diffsion passing tracer quickly across the cell bound-
aries before there has been time to reach the center of newly invaded cells (3,4, 13j. Thus there is a
transient regime of sub dision which preceeds the final asymptotic diffsive law in (23).

(24)

3.2 Anomalous diffusion in two-dimensional turbulence
Cardoso et al. (2j conducted an experimental study of dispersion in a quasi-two-dimensional turbulent
flow. The experimental apparatus is a shallow pan of fluid, 30cm by 30cm, and 3mm deep. The
pan is filled with salty water and flow is driven electromagnetically (E x B forcing). The forcing is
arranged so that the basic flow is a square lattice of 30 x 30 counter-rotating vortices. This flow is
alost two-dimensional because of the large disparity between the horizontal dimensions (30 cm) and

the vertical dimension (3 mm).
Although the forcing produces a regular array of vortices, this simple pattern is unstable and a

two-dimensional turbulent flow emerges. Visualization of the turbulence, using tracer particles, shows
that in the statistically equilibrated state theIe is a population of vortices whose size is two or three
times the injection scale of the forcing. Each vortex emerges, moves, merges with other vortices, and
eventualy disappears.

Cardoso et al. (2j injected dye into this vortex mess and observed the two-dimensional dispersion
of the dye in the horizontal plane. To measure the growth of the dye blob, they defied

Rm == f V x2 + y2C(X, y, t) dx dy / !c(x, y, t) dxdy , (25)

and

Rg == ! (x2 + y2) c(x, y, t) dx dy / !c(x, y, t) dxdy. (26)

The experimental scaling law is

(Rg,Rm) '" to.32::0.04. (27)

The exponent 0.32 l 1/2 indicates anomalous diffsion - specifically subdiffsion, because the dis-
persion is slower than dision.

By examining typical particle trajectories, such as the one in figure 4, Cardoso et al.explained the
sub diffsive growth in terms of an interrpted random walk. Consider a random waler who pauses
between steps. The length of the pause, T, is a random variable; in the experiment of Cardoso et
al.the pause is a trapping event in which a molecule is sequestered in the core of a stationary vortex.
If the average duration of a pause is well defined then one can simply use Einstein's formula (6)
with T replaced by the average time between steps. However, if the pausing times are very broadly
distributed then the average duration of a pause may be inte and consequently the dispersion is
sub diffsive. We explore this in more details in the next section.
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Figure 4: The trajectory of a single paricle shows a sequence of long flghts interrupted by trapping events
in which the particle circles around a vortex. The vortex trapping events are indicated by the arrows. (From.
Cardoso et al. (2))

3.3 Radom walk with pauses
Consider a random walk in which the walker pauses for a random time T between steps. The various
T'S have a probability density fuction W(7) (the waiting time PDF). This PDF is normalised,

l°OW(T) d7 = i,
(28)

and the average waiting time spent between steps is

T = l°07W(7) d7. (29)

Motivated by the experiments of Cardoso et aL., we entertain the notion that T is infinite because the
integral in (29) diverges. For example, suppose that for large T, W(7) '" 7-¡i. Then T = 00 if J. ~ 2.

However, if we only observe a finite number of steps, then we do not sample the entire density
W (7). Specifically, suppose that afer N steps, we have experienced pauses of duration T1, 72, . .. , 7N.
We want to estimate the likely value of 7max(N) == max-(T1, 72,... , 7N). The quantity 7max(N) is
useful because we can argue that the structure of W(7) for 7 )- Tmax(N) cannot be signficant for the
displacement after N steps.
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To determine 7max(N), we turn to probabilty theory. Consider a random vaiable 0 uniformly

distributed in the interval (0,1). That is, the PDF of 0 is P(O) = 1 if 0 .( 0 .( 1 and P(O) = 0
otherwise. Suppose we take N samples, 01,'" ,ON and defie Omin(N) == min.¡ßi,'" ,ON1. In this

simple case it is plausible that Omin '" N-l as N -t 00.

Now the trick is to use 0 to represent 7: we write 0 = 7P, and adjust p so that the power-law tail
of W(7) '" 7-¡. corresponds to the simple structure of P(O) = 1. In fact,

P(O) = W(7) I ~; I ' ~ 1 '" 7l-¡.-P , (30)

or p = 1 - f.. Because the minium value of 0 maps to the maxmum value of 7, it follows that

7max(N) '" N1/(¡.-l) . (31)

Now we return to (29) to estimate the effective average pause time afer N pauses:

LTmax
Teff = 0 7W(7) d7 '" 7;';';: . (32)

It is also plausible that the total time t spent on this random walk is given by

t '" NTeff . (33)

Combining (31), (32) and (33) yields the followig scaling relationships:

N '" t¡.-l , Teff '" t2-¡. , 7max '" t. (34)

The final relation is worthy of comment: it implies a form of self-sinlarity of the random walk.
To conclude, the total displacement of our random wal is proportional to VN. But, with the

random pauses, the scalig agaist time has been altered to

RMS displacement ex .. '" t(¡.-l)/2 . (35)

This theory can be used to interpret the experiment of Cardoso et al.: because the RMS displacement
grows as tl/3 it follows that f. ~ 5/3. Cardoso et al.successfuy tested this prediction by measuring
the PDF of trapping times inside vortices.

4 Stirring and mixing

4.1 Coffee and creai

Appealing to the everyday experience of mixg cream into coffee, Eckat (5) argued that the homog-
enization of two fluids occurs in three stages. The distinction between the stages is the value of the
concentration gradient averaged over the domai.

Initial: there are distinct interfaces separating globules of cream and coffee. Within each globule, the

concentration of cream is nearly constant and the concentration gradient is close to zero. There
is a very large concentration gradient between regions of coffee and cream. But the interfaces
between coffee and cream are small in number and not of great area, so the average gradient in
the coffee mug is smalL.

Stirrng: the cream is mechanically swirled and folded, and molecular difsion is unimportant.

During this second stage the concentration gradients increase.
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t=1

t=8

t=2

t=16
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t=32

Figure 5: Solution of Ct + (1 - r2)ce = (8 x 10-4)V2C. The initial condition is c(x, y, 0) = x.

Mixing: the gradients suddenly disappear and the fluid becomes homogeneous; molecular difsion
is responsible for the sudden miing.

In a chemical reaction, molecules of different species must come into contact for the reaction to occur.
Thus, when the species are initially separated, the reaction wil not begi until the fial mixng stage

is reached. In this sense there is an important distinction between coarse-graied homogeiuzation,
occuring solely as a result of stirring, and mixng at the molecular scale.

To ilustrate these concepts figure 5 shows a solution of the advection diffsion equation

Ct + (1 - r2)c/I = IiV2c, c(r,B,O) = rsinB (36)

where II = 8 x 10-4. A particle at a distance r from the origin completes a rotation in a time
27f 1(1 - r2). Thus particles at smaller values of r wil overtake paricles at larger values of r and so

the concentration is twisted into spirals by differential advection (stirring).
The increase in gradient during the stirring phase is evident in the figue. But at approximately

t = 16, miing starts to dominate, and diffsion rapidly reduces the average gradient. From the

initial condition, an estimate of the time it would take unassisted difsion to homogenize the fluid is
TD '" II II = 1250. It is only through the initial process of stirring that the concentration gradient is
amplified or, alternatively, that the spirals are stretched out so that small difsion homogenizes the
tracer at t = 32 -(-( TD.
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Figure 6: The straining flow described by the streamfunction 'i = -axy. The figue shows how a circular
patch of tracer is stretched out along the x-ax by the hyperbolic strain. If K, = 0 the major axs of the ellpse
grows as exp( at) and the minor axs reduces as exp( -at) so that the area remains constant.

4.2 A straining flow
A simple example of a two-dimensional flow which amplifies concentration gradients is the hyperbolic
strain shown in figure 6. The streamfunction is 'i = -axy and so the advection dision equation is

Ct + axc:¡ - ayCy = KV2C. (37)

Notice the dimensions here: a-I has dimensions "time" and K has dimensions (length) 
2 /(time). From

these two quantities we can build a combination with the dimensions of (length):

t=~. (38)

The length t wil appear prominently in the sequel.
We begin our discussion of hyperbolic strain by obtaining a solution in which c is independent of

both x and t. In this special case the solution of (37) is

cy = Aexp (- ::2 J, c(x, :100, t) = :1v'At. (39)

The concentration profile is the error function shown in figure 7. The solution shows the steady state
balance between advection and diffsion: with .JAt = 1, the concentration c changes smoothly

between c = + 1 as y ~ +00 to c = - 1 as y ~ -00. The transition occurs in a front of width t.
We can give an intuitive discussion of how the steady state profile in figure 7 is established as

the solution of an initial value problem. Suppose we had started with the initial condition such as
c(x, y, 0) = sgn(y) in which the transition between c = -1 and c = +1 occurs in a distance much less
than t. Then the discontinuity in c initially diffses freely, growing like VK. Once the width of the
front becomes comparable to t, that is when

Vi '" t, ~ t -1'" a , (40)
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Figure 7: The time independent error fuction solution to equation (37).

the spread is arrested and the steady state in figure 7 is established.
On the other hand, we can also consider an initial condition in which the transition between c = 1

and c = - i occurs on a scale Lo ?? t. il this case the front is initially compressed by the hyperbolic
strain so that the width is reduced exponentially, L = Lo exp( -o:t). Because Lo ~ t the diffsion is

unimportant until the exponential reduction in scale reaches t. That is,

Loe-Clt '" t , ~ t", 0:-1 In(Lo/t). (41)

These considerations ilustrate the fundamental importance of t as the scale on which advection and
diffusion come into balance.

4.3 Lagrangian coordinates: a simple example

The hyperbolic strain also provides a painless ilustration of some mathematical techniques which can
be used in more complicated problems. We begin by considering the solution of (37) with K, = O.
With no diffsion c is tied to fluid paricles. The position of a fluid paricle is related to its initial
position (a, b), by solving the differential equations

(x,y) = o:(x,-y), ~ (x,y) = (eClta,e-Cltb). (42)

The solution of (37) can now be obtained by arguing that the particle which is at the point (x, y) at time
t began at (a, b) = (exp( -o:t)x, exp(o:t)y) at t = O. Because the a particle carries the concentration it
follows that the solution of (37) as an initial value problem is

c(x, y, t) = Co ¡exp(-o:t)x, exp(o:t)yJ , (43)

where Co (x, y) is the initial condition. The philosophy of this method is that we care where fluid
particles come from, but not where they are going to.

The solution above seems to rely crucially on the restriction that K, = O. But now look what
happens if we use the Lagrangian coordiates (a, b) in (42) as new independent variables in (37). As
an accounting device, it is comforting to define 7 = t and consider that aT as the time derivative with
(a, b) fixed. Thus the transformation rules are

(a a) - (aa aa) a (ab .ab) a _ (-ClTa ClTa)x, y - ax' ay a + ax' ay b - e a, e b. (44)

and

a7 aa âb
Ôt = at aT + at aa + ât ab = aT - o:aaa + o:bab. (45)

The punchline is that

Ôt + o:xax - o:yay = aT , (46)
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which shows that the change to a Lagrangian description makes the convective derivative trivial.
Substituting the transformations above into (37) gives:

Co = /'e-2atcaa + /'e2atcbb. (47)

Naturally, if /' = 0, we recover our earlier solution in (43). But even if /' i= 0 it is often easier to solve
(47) than the Eulerian form in (37). For example, Fourier transforming (47), with (aa,ab) -7 i(p,q),
gives a simple ordinary differential equation in time.

It is instructive to use the method above to solve (37) with the initial condition

c(x,y,O) = 8(x)8(y). (48)

Physically, this is a spot of dye released in a straining flow. When at -(-( 1 the spot spreads diffsively,
with a diameter which grows as... However when at '" 1 the diameter of the spot becomes

comparable to f. == .. /'/ a, and then the spot stops expanding agaist the compressive direction of the
strain. However the spot continues to stretch along the extensive direction. Thus, when at :; 1, the
spot becomes a filament with an equilbrium width of order f. and an exponentially growing length.
These intuitive arguments are supported by the exact solution:

1 (x2 y2 Jc(x, y, t) = 41ljg exp - 4j2 - 4g2 ' (49)

where j(t) and g(t) are

j2 == 2: (e2at - 1) ,
l == 2: (1 - e-2at) . (50)

Notice that the peak concentration ultimately decreases like e-2at.

4.4 An example of sudden mixing
As a final look at the hyperbolic straining flow, we note that a solution of (37) is

c(x, y, t) = A(t) cos(ke-atx) cos(keaty), (51)

where

A(t) =exp (-f.2k2sinh2at) . (52)

One route to this exact solution is to look for separable solutions of (47), and then transform back to
the Eulerian coordinates (e.g., Young, Rhnes & Garrett,1982).

The mean value of the square of the concentration gradient varies with time as:

k2
fVc.Vc) = 2 cosh(2at) exp (_2f.2k2 sinh(2at)) , (53)

where n denotes an average over a large area. fVc. Vc) is plotted in figure 8 for various values of
kf.. Recallng Eckart's description of stirring as increasing the concentration gradient, and mixng as
decreasing the concentration gradient, we can see the transition between the two phases occurs at the
peaks of the various curves. If kf. -(-( 1, then the time it takes to reach this peak is given by t*, where

at* '" -In(kf.). (54)

Once again, this is the time taken for the exponential factor e-at to reduce initial length of the tracer
field, k-1, down to the length f. on which strain and diffsion balance.
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Figure 8: The mean square of the concentration gradient. If kt 0(0( 1 then the concentration gradient grows
until t = t. in (54) and then decreases precipitiously. If kt ~ 1/2 then diion always overpowers strain and
the mean square gradient decreases monotonically to zero.

4.5 A Welander scrapbook

Stirring was beautifully ilustrated in a 1955 paper of Welander's (12). This paper is notable also
because of its discussion of the importance of coarse-grained averages. Figues 9, 10 and 11 reproduced
from Welander (1955) show that simple velocity fields produce spectacular distortion of passive scalars.

In figures 9,10 and 11, some dimensions of the scalar blob are stretched out wlule other dimensions
are contracted. Batchelor (1952) (1) argued that in turbulent flows random stretching results in an
exponential growth of the separation between two initially adjacent fluid elements. That is, if we
consider two material elements separated by a distance So which is much less than the scale of the
velocity field, then Batchelor argues that the separation grows as

s '" soe'Yt (55)

The time-scale 1-1 is analogous to a-I in (37), though in figures 10 and 11 the exponential straining

is driven by a random and unsteady velocity, rather than the simple hyperbolic field in figure 6. Note
particularly that the exponential law in (55) is valid until the separation s(t) becomes comparable to
the length scale over which the velocity varies.
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Figure 9: Welander's numerical solution ilustrating dierential advection by a simple velocity field. A
checkerboard pattern is deformed by a quasigeostrophic barotropic solution which models atmospheric flow
at the 500mb leveL. The initial streamline pattern is shown at the top and the subsequent figues are at 6
hours, 12 hours, 24 hours and 36 hOllS, respectively. Notice that each square of the checkerboard maitains
constant ¡iea as it deforms.
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Lecture 2: Diffsion

i Introd uction

Perhaps you have heard that turbulence is the most diffcult problem in fluid mechanics and, according
to some, the greatest unsolved problem in physics. One indication of the diffculty is that it is
impossible to give a satisfactory defiition of a "turbulent flow". But everyone agrees that one property
of turbulence is greatly enhanced transport of passive contaminants. For example, relying only on
molecular agitation, a dissolved sugar molecule takes years to diffse across a coffee cup, and on that
time-scale the coffee wil surely evaporate. With a spoon the coffee drinker can create eddies that
transport dissolved sugar throughout the cup in less than one second. Tms is an example of eddy
diffusivity.

Fluid mechanics textbooks often often justif eddy diffsivity by appealing to an analogy between

turbulent eddies and molecular diffsion - perhaps this notion origiates with G.!. Taylor's 1905 paper

entitled "Eddy motion in the atmosphere" (4). In any event, the molecular analogy, supplemented

with some hand-waving, leads to the notion of an eddy difsivity and for many scientists this is the
end of the turbulence problem. .

Our goal in this lecture is to explain very explicitly the assumptions behid Taylor's "proof by
analogy" and to illustrate the interesting points at which the analogy fais. We wil pursue this
program by working with some very simple model flows for which analytic results, such as expressions
for the eddy difsivity, are available. As you wil soon see, these model flows do not greatly resemble

turbulence, but then neither does molecular motion! Our excuse is that soluble examples are always

diverting and educational.

2 The renovating wave model

2.1 A recipe for constructing soluble models
The main problem in analyzing transport is solving the differential equations which describe the
motion of particles in even very simple flows. However there is a class of flows for which this task is
trivial. These are steady and unidirectional flows, such as u = siny. A particle which starts at (a, b) at
t = 0 finds itself at (a + 7 sin b, b) at t = 7. This is dul, but it becomes more interesting if at intervals
of 7 we "renovate" the flow by randomly pickng a new direction along wmch the velocity acts. In
this way we can construct a sequence of iterated random maps and calculate diffsivities, and other
statistical properties, by averaging the exact solution. I learned of this trick from the literature on
dynamo theory. The book Stretch, Twist, Fold: the Fast Dynamo is highly recommended for students
interested in all aspects of stirring and mig (1).

2.2 The renovating wave (RW) model

As a particular example we now formulate the renovating wave (RW) modeL. We divide the time axs
into intervals

In == t t : (n - 1)7 .. t .. n7 ì , (1)
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and in each interval we apply a velocity, u = (-'ly, 'l:rJ, derived from the streamfunction

'ln(x,y, t) = k-1U cos(kcosOnx + ksinOn Y + CPn), (2)

where On and CPn are independent random variables uniformly distributed in the interval (-71,71). Thus
in each In there is a steady, unidirectional velocity with sinusoidal profile (a single wave). There is
sudden and complete loss of all information about the past velocity at t = nT because at these instants
we "renovate" the velocity by picking new random angles 0 and cpo (This means that the velocity
correlation function, C(t), is zero if t ;: T.)

The renovating wave model can be nondimensionalied by using k-1 as a unit of length and and
1/(Uk) as a unit of time. With this choice, the model contains a single dimensionless parameter,

T* == TkU, which is a measure of the persistence of the motion. Much of the literature on random
advection-diffusion uses model velocity fields which are 8-correlated in time. We can recover this limit
as a special case by takng T* ~ O.

Using dimensionless variables, a particle which is at Xn = (xn, Yn) at tn = nT* moves to Xn+l at
t = (n + 1)T*, where

(XnH, YnH) = (xn, Yn) + T* sin (cnx + SnY + CPn) (sn, -Cn) . (3)

with Sn == sinOn and en == cosOn. Thus motion in the renovating wave problem is equivalent to an
iterated sequence of random maps.

2.3 The single-particle diffusivity
It is very easy to calculate the diffivity in the RW model (and much more diffcult to interpret the
answer). The average of a function of the two random angles 0 and cP (suppress the subscript n) is
defined by

(I) = f dcp f dO 1(0, cp).271 271
(4)

Therefore, using (3),

2

((Xn+l - xn)2) = T~ . (5)

The computation is trivial if the integral over cP is evauated first.
In (5), following our previous discussion based on Einstein's derivation of the difsion equation,

we are computing the statistics of dispersion along the x-axs. Because the renovating wave model is
isotropic, dispersion in the y-direction is identical to that in the x-direction.

Because all of the waves are independent and identically distributed it follows that afer n reno-
vation cycles

2

((Xn - XO)2) = n T~ .

But t = nT*, and ((xn - XO)2) = 2Dt, so that using diensionless vaiables the disivity is

D = T*. (7)
8

Sometimes D is referred to as the single-paricle diffusivity. "Single-particle" emphasizes that D
strictly applies only to the RMS displacement of a paricle from its initial position; D contains no
information concerning the deformation of a patch of tracer, nor of any other quantity involving
correlated motion. Thus, using dimensional vaiables, the difsivity in (7) is D = U2T 18, which is

independent of k. Because D is independent of the scale of the wave, even a spatialy uniorm, but
random-in-time velocity (the case k = 0), has a single-particle diffsivity.

(6)
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Figure 1: Stretchng of a small spot, ro(o( 1 where r is the initial radius of the spot, by a succession of random
sinusoidal flows. The dotted circle is the intial spot.

t= 1 't t=2't t=3't

Figure 2: Stretching of a blob with r = 1, where r is the initial radius. The dotted circle is the initial patch.
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Figure 3: Stretching of a big blob r :;:; 1, where r is the initial radius of the blob. The dotted circle representing
the initial patch may not be visible beneath the wiggly boundary of the blob.

2.4 Deformation of vaiously sized blobs
To emphasize the importance of understanding more than single-particle difsivities we take a digres-
sion and ilustrate how the deformation of an initialy circular blob of fluid depends on the blob radius
r. (Recall that we have used k-1 as unit of length; in terms of dimensional vaiables the relevant

nondimensional parameter is kr.)
If the initial blob is much smaler than the wavelength of the velocity then on the scale of the

blob the velocity profile is a linear function of the coordinates. Because of this simplicity, the first
few iterations deform the circular blob into an ellpse which must have the same area as the initial
circle. We wil see in the next lecture that the major axs of the ellpse grows exponentially while the
minor axs shrinks so that the area is fied. Once the dimensions of the ellpse are comparable to the

wavenumber of the flow, more complicated deformations occur. Ultimately the blob will be stretched
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into a folded filament as in figure 1.
The blob has the same scale as the velocity field if r '" 1. Because there is no scale separation

there is no easy description of the action of the flow on the blob, see figue 2.
If r ?? 1 then we are in the "eddy diffsivity" liit in which the scale of the velocity field is much

smaller than the scale of the tracer. This case is shown in figure 3. The action of the waves perturbs
the edge of the blob, makig it look "fuzzy". In fact, the area is preserved, but the circumference
of the blob grows exponentially. We wil be discussing this type of problem for the remainder of the
lecture.

2.5 The Lagrangian correlation function
In (7) we gave the diffsivity of particles moving in an ensemble of renovating waves. How do we.
obtain the Lagrangian velocity autocorrelation function and verify Taylor's formula that

D = icoC(t)dt? (8)

Considering this question, we encounter an annoying technical diffculty: our derivation of (8) assumes
that the velocity statistics are stationary. But the renovating wave ensemble, as we defied it back
in (1) and (2), is not a stationary stochastic process. This is because with our original defition all
members of the ensemble renovate at the same instants t = 7, t = 27 etcetera. In order to obtain

a stationary process we should initiate diferent realizations at uniformly distributed points during
the renovation cycle. Thus, for realization number j, we pick a random time 7ei which is uniormly
distributed in the interval ¡0,7) and renovate first at t = 7ei and then subsequently at t = 7(j + 7,
t = 7(j) + 27 etcetera. With this new and improved formulation of the RW model the Lagrangian
correlation function of u(t) is a "trianguar" function:

u2 ( t)
C(t) = 4 1 -:; H(7 - t), (9)

where H is the step function and U is the velocity in (2). The area under this correlation function is
D = U27/8.

3 The eddy diffusion equation
3.1 The ensemble averaged Green's function

Now that we have obtained the RW disivity in (7) we turn to the derivation of the eddy difusion
equation. For each realization we introduce the Green's function which is

Gt+u.VG=O, with G(x,XQ,O)=ó(x-xo). (10)

The solution of the problem above is

G(x,xo, t) = ó(Xt - xo), (11)

where Xt is the position at time t (in a particular realization of u) of the particle which started at xo.
The ensemble averaged Green's function is

g(r, t) = (G(x, xo, t)) , r == Ix - XQ I , (12)

where we have assumed that the random velocity is isotropic, homogeneous and stationary so that 9
can depend only on the distance r and the elapsed time t.
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Possessing g(r, t), we can then represent the ensemble-averaged solution of the initial value problem

Ct+u.Vc=O, c(x,O) = eo (x) , (13)

as the convolution

(c) (x, t) = f eo(x - x/)g(lx/l, t) dxl . (14)

(We are assuming that the initial condition eo is the same for al realizations.)
At this point, the analogy between (14) and the master equation of lecture 1 is obvious. With

the master equation in mind, we can anticipate that a variant of Einstein's derivation of the diffsion
equation can be applied to (14). Rather than develop a general derivation we prefer to use the
renovating wave model as a concrete ilustration of how one can obtain g, and then pass from the
integral equation in (14) to an approximate diffsion equation.

3.2 The averaged Green's function of the RW model

There are at least two ways of obtaining g(r) in (12) for the RW model: the hard, straightforward
way (see the appendix) and the easy, devious way. Let us be devious.

We begin by calculating the probabilty density function (PDF) of displacements in a single pulse
of the RW modeL. Because the ensemble of velocities is isotropic and homogeneous there is no harm in
supposing that the paricle is at the origin and the x-axs is aligned with the direction of the velocity.
That is, put (Xn,Yn) = (0,0) and On = -rj2 in (3). Thus, the displacement r produced by a single

pulse is

Xn+l - Xn = 7"* sincpn, and r = IXn+l - xnl. (15)

The PDF of the random variable r can be obtained from the PDF of cP, that is P(cp) = Ij2-r, using
the rule for transforming probabilties:

P(r) = LP(cp)I~~I, == P(r) = 2 H(7"* - r) .
-r V 7": - r2 (16)

In (16) H(7"* - r) is a Heaviside step function which ensures that there are no displacements greater
than 7"*. (The sum in (16) is because there are four values of cp corresponding to a single value of r.)

The averaged Green's function is now given by

( ) _ P(r)gr --,
2-rr

== g(r) = 1 H(7"* - r) .-r2 rV7": - r2 (17)

The geometric factor 2-rr is included because g(r) is a concentration. That is, P(r)dr the expected

number of particles which fall into the dierential annulus between r and r + dr and g(r) is the

expected number of particles per area in this same annulus; see figure 4.
Now that we have the averaged Green's function of a single pulse we can obtain the evolution the

ensemble averaged concentration, (c), over many pulses. Because each pulse is independent of the
preceeding pulses we have

(c) (x, (n + 1) 7"*) = f(c) (x - x', n7"*)g(lxll) dxl . (18)

The master equation above, with g(r) in (17), is an exact description of the evolution of (c) under
advection by the RW modeL.
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Figure 4: Displacements of 40, 000 particles in independent realizations of the the RW modeL. The left panel
shows the fial position of particles which all start at the center of the the circle afer one pulse of the wave.
The density of points corresponds to g(r) in (17). The histogram on the right shows the number of particles
at a distance r from the center; this is the fuction P(r) in (16).

3.3 The diffusion equation
With the master equation (18) in hand, we can use Einstein's approxiations to obtain the diffsion

equation. Using the dimensionless varables of the renovating wave model, we have

(c)t ~ ~ \72 (c) . (19)

We leave this as a homework exercise and instead we take a different route to (19).
Because the Fourier transform of a convolution is the product of the Fourier transforms, we can

simplify (18) by transforming. The Fourier transform of j(x) is defined herel as

f(k) = le-ik'X j(x) dx, j(x) = 2~ leik'X J(k) dk . (20)

Applying the transform to (18) we obtain

(c)(k, nr*) = g(k)nëo(k) , k= Ikl. (21)

With a good table of integrals one can discover that the Fourier transform of the averaged Green's
function, g(r) in (17), is

g(k) = J~(kr*/2) , (22)

where Jo is the Bessel function.
The diffsion equation describes the evolution of large spatial scales, which is the same as small

wavenumbers. This means that we simplify (21) by takng kr*/2 ~ 1 and using the approxiation

Jo(kr*/2) ~ 1 - (k2r; 116) to write

(c)(k, nr*) ~ exp f n In (1 - (k2r; 18)) J ëo(k) . (23)

1 By denoting the wavenumber with k we are recycing notation used in (2)..
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But now, since n = t/7* and In(l - (k27; /8)) ~ -k27; /8, we have- 2
(c)(k, t) = e-Dk tCo(k) (24)

where, as in (19), D = 7*/8. Equation (24) is the equivaent to the decay of Fourier components given
by (19).

This derivation based on Fourier analysis explicitly recognizes that the diffsion approximation is

valid only for wavenumbers which satisfy kT* /2 -(-( 1. This is a precise statement of the scale separation
assumption which underlies Einstein's approach.

4 Ensemble averages and single realizations
In hydrodynamic dispersion, particles which begin at neighbouring points have similar histories in
any single realization. Marbled endpapers in old books were produced by floating coloured inks on
water, stirring the surface, and then capturing the swils by carefuly lowering a sheet of paper onto
the inky film (3). This technique, probably originating in Persia in the 1400s, presses hydrodynamc
correlations into the service of art. Fortunately for printers, and distressingly for statisticians, a single
realization does not resemble the blurry diffsion equation.

4.1 Eddy diffusion of a front
Figure 5 shows a single realization of the evolution of a "front" under the RW advection process. The
front is the sharp border which separates white from dark; initially this line coincides with the y-axs.
We suppose that the concentration is c = -1 for x -( 0 and c = +1 for x:; O. Successive pulses of the
renovating wave produce an increasingly folded front and the c = - 1 fluid invades the region x :; 0
in long thin tendrils. The central question is:

How well is the process in figure 5 described by the diffusion equation?

We know that given many realizations of this process, the long-time ensemble average of these
realizations wil follow the diffusion equation (c)t = D(c)xx' with the initial conditions c(x,O) = :f:.

The solution of this problem is

(c) = erf 17 , where
x

17 = 2.JI5t (25)

Figure 6 shows this smooth erf solution which, of course, looks nothing like figure 5. If the dark fluid
in figure 5 contained radioactive contamnant, and we wanted to estimate the maximum exposure of
at some value of x :; 0, then the erf solution in (25) is not usefu.

On the other hand, diffsivities are usefu if we want to know how many particles are at such-and-
such a distance from their initial location. Thus, figure 7 shows a histogram of the positions of 10,000
particles which all start on the line x = 0 (the initial front). The Gaussian curve in figure 7 is the
corresponding prediction for the PDF of positions which is obtained by solving (19) with the initial
condition (c) = ó(x):

1 (x2 Jc(x, t) = .J exp - 4Dt ' D = 7*
8 .

(26)

The histograms converge slowly to this Gaussian prediction. This asymptotic success shows that the
diffsion equations correctly predicts the dispersion of particles when t ).). 7*.

An amusing aspect of the simple problem in figure 5 is that we can easily calculate the RMS
fluctuations of c around the ensemble average concentration in (25). Because c= :11 we have (c2) = 1.
Therefore, defining the fluctuation as

c' = c - (c) , (27)
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Figure 5: Evolution of a front under the advection by the RW modeL. The front initially coincides with the
y-axis.
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Figure 6: Evolution of the ensenble-averaged concentration c and its vaiance during the evolution of the

front underthe RRW modeL. Note how most of the variance is localised around x = O.
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Figure 7: At t = 0 the front in figure 5 is tagged by placing 10000 particles along the y-axis. The historgram

above shows the subsequent x-locations of these marker particles as the front is distorted by the RW model
with T. = 1. The Gaussian curve is given by (26).

we have

(C/2) = (c2) _ (C)2 = i - erf2(ry). (28)

The variance (C/2) is also indicated in figure 6.

4.2 Coarse grained averages and spatial filters
The process in figure 5 is translationally invarant in the y-direction and so using only a single real-
ization we can calculate a spatially averaged concentration

i 1L
ë(x, t) == Hm 2£ c(x, y, t)dy .

L--oo -L (29)

The evolution of ë wil be asymptotically described by the diffsion equation.
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In a general case, in which there is no statistical symmetry along a paricular direction, one can
take a single realization and define a coarse-grained or low-pass filtered concentration by:

ê(x, t) == ! K(x - x')e(x', t) d2x' ; . K(lxl)is a filter. (30)

The hope is that scale separation between the width of the erf and the swirls wil ensure that ê ~ (c). .
Thus the kernel of the filter, K in (30), might be a Gaussian with a width which is at once much
smaller than the thickness of the erf transition zone and much greater than an individual swirl in
figure 5.

Scale separation is essential here because the filtering operation defied by the convolution in (30)
is not strictly an "average". Some of the properties we take for granted when we use averages are

(e') = 0, ((e)) = (e), ((a) (b)) = (a) (b) . (31)

For the ensemble average, as indicated in (31), everything works.
For a filter, such as ~ in (30), we can defie the fluctuation concentration e" in analogy with (27):

c"=:e-ê. (32)

But then 2' l 0 and none of the other desiderata in (31) follow. In other words, spatial filtering
instead of the ensemble averagig introduces a host of extra assumptions which should be carefully
assessed (but almost never are).

4.3 A digression: Brownian bugs

I have hinted darkly at problems associated with spatial fiters. These issues are largely ignored by
optimistic scientists. The hope is that scale separation justifies the application of disive closures to
the coarse-grained version of a single realization. Perhaps a justifcation of this optimistic approach
is that the alternative seems so repellent. Nonetheless, it is important to realize that interpreting

coarse-grained distributions as ensemble averages involves a nontrivial assumption. The best way of
exposing this assumption is to exhbit a problem in which spatial fiters and ensemble averages are

very different. Accordingly, as a model of biological processes, we consider random walkers which
both die and reproduce. We refer to these biological walers as Brownian bugs.

The model is formulated by first placing N ).). 1 Brownian bugs randomly in the unit square;
the boundary conditions are periodic in both directions. Each cycle of the simulation begins with a
random walk step in which bug k, located at Xk = (Xk, Yk), is displaced to a new position

(X~, yD = mod ((Xk, Yk) + (8Xk, 8Yk); 1) . (33)

In (33), 8Xk and 8Yk are Gaussian random variables and the "mod" is to enforce the periodic boundary
conditions and keep each bug in the unit square. After this random walk step, the second part of the
cycle is a "coin toss" which results in either death (heads) or division (tails). When a lucky bug divides,
the offspring is placed at the same position as the parent. This cycle of random displacement and
random birth/death is repeated many times in order to simulate many generations of reproduction,
death and dispersion.

The simulation shown in figure 8 was implemented in MATLAB using these rules. The strikig

result is that the density of bugs spontaneously develops large-scale clumps and voids. Figue 8 seems
to show an inverse cascade of patch sizes: patches emerge on small scales in panel (b) and then,
after more cycles, panels (c) and (d) show that the patches have expanded in scale. To quantify this
impression, we have computed one-dimensional concentration spectra which show that an increasingly
red spectrum develops.

A seemingly innocuous ingredient of the brownian-bug model is that deaths can occur anywhere,
but births are always adjacent to a living bug. This asymmetry between birth and death is crucial for
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(a) Initial condition, N=20,000 (b) 10 cycles, N=19,692
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Figure 8: (a) The initial condition is N = 20,000 randomly located bugs in the unit square. Panels (b), (c)
and (d) then show the development of patches afer 10, 100 and 1000 cycles of random diplacement followed
by random birth/death. As the panel titles indicate, there are random fluctuations in the total size, N, of the
population. The RMS step length of the underlying random walk is (ÓX%)1/2 = (óy¡)1/2 = 0.005.

the spontaneous development of the voids and patches evident in figure 8: if one simulates birth by
randomly placing the new bugs in the unit square then no patches form. This subtle point shows that
making the births coincide with living bugs - surely a realstic feature of the model - introduces
pair correlations. From another perspective, one can view the voids in figure 8 as the result of random
extinctions which create voids. The step length of the random walk in figue 8 is such that diffsion

is not strong enough to fill in the voids created by extinction.
The ensemble average of the Brownian bug process is described by

(C)t = D"V2(c) + (À - ¡.)(c). (34)

where À is the birthrate and ¡. the deathrate. However if the coin-toss is fair then births and deaths
are equiprobable and consequently À = ¡.. In this case the solution of (34) which satisfies the initial
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condition is

À = tL, == (e) = l/N. (35)

The uniform density above is the correct answer for the ensemble average concentration: the location
of the voids and patches in figure 8 are accidently determined by the MATLAB random number generator.
If we ensemble average many such patterns then the patches and voids must disappear because the
process is spatially homogeneous. .

On the other hand, the spatial average of a single realization, such as that in figue 8, will stil
show concentration patches2. Thus, in this Brownian bug example, ê l "(e). Indeed, the patches
are surely an important feature of the "real" answer. The correct but useless result in (35) exposes
a failure of ensemble averaging. What do we make of this example? Are biological problems, with
reproduction and death, so fundamentally different from the advection-diffsion of chemical tracers?
I am not prepared to answer that question in these lectures and I leave futher development of this
example to the students.

5 Variance budgets

In this section we return to basics and present an alternative view of eddy-diffusivity. The following
arguements emphasize the importance of the concentration variance equation.

5.1 The Reynolds' decomposition

Our point of deparure is the advection-diffs~on equation

Ct +u.Ve= K;V'2e+s, (36)

where K; is the molecular diffsivity of e and u is an incompressible (V.u = 0) velocity field. In (36)
we have included a source term, sex, t), which forces the system.

The velocity u in (36) is a single realization selected from an ensemble of velocity fields. Then we
can introduce the "Reynolds' decomposition":

e = (e) + e' , (37)

where () is the ensemble average and e' is the fluctuation from (e) which arises in a single realization.
Takng the ensemble average of (36) gives

(e)t + (u).V(e) + V.(u'e') = K;V'2(e) + s. (38)

(The source s is taken to be deterministic, (s) = s.)
Subtracting the ensemble average in (38) from (36) gives the fluctuation equation

c; + (u). Ve' + V.(u'e' - (u'e')) - K;V'2e' = -u'. V(e). (39)

Equation (39) has been organized by takng the source term to the right hand side. Thus we see that
advective distortion of the mean gradient, V (e), generates the fluctuation e'.

2If the width of the kernel, K in (30), is larger than the dimension of the patches then filtering will remove the

patches. However, since the patches expand in scale, eventually they will become so large that they survve the blurring

power of the filter.
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5.2 Consequences of linearity
If c' = 0 at t = 0 then, because (39) is linear, e' and V (e) wil be linearly related. It follows that the
eddy flux (u'e') wil also be linearly related to the mean gradient V(e). These simple observations,
in alliance with the scale separation assumption, can be used to extract a surprising amount of
information (2).

Because of the scale separation, it is plausible that this linear relation between eddy flux and mean
gradient can be developed in a series of the form

(u'.e') = -Ð(~) * (e) . - Ð~~k) * (e) 'k +...i i3 ,J i3 ,3 (40)

The comma subscripts denote parial derivatives, a,j == aal aXj. We are also using the Einstein sum
convention, where repeated indices are summed. The * in (40) indicates that the product also involves
convolutions in time, such as

Ð~~)*(e) . = ltÐ~~)(t')(e) .(t-t')dt'.i3 ,3 i3 ,3
o

(41)

If the mean field is varying slowly over an eddy decorrelation time then the convolution above ap-
proximates to

(u~e') ~ -Ð\~)*(e) . ~ -l°oÐ~~)(t')dt' (e) .(t).i i3 ,3 0 i3 ,3 (42)

In the simplest cases3

l°oÐ~J)(t')dt' = De8ij,

where De is the eddy diffsivity. Using (43) the flux gradient relation is

(43)

(u'e') - liV(e) = -DV(e), D == De + ii, (44)

and the evolution of the average concentration is determned by

(C)t ~ D\!2(e) + s. (45)

This is a general version of the specifc diffsion equation derived in Section 3.3 for the renovating

wave modeL.

5.3 The G . x-trick
The tensors Ð(n) (t) are determined by the linear operator on the left-hand side of (39). Thus, these
tensors depend on (i) the statistical properties of u'; (ii) the mean advection (u); (iii) the molecular
diffusion Ii. The essential point is that these tensors do not depend on (e). At least for the fist term
in the series, Ð~P, we can exemplify this by noting that there is a special solution of (36) in which
(u) = s = 0 and concentration has the form

c=G.x+e'. (46)

3 "Simple" means that the velocity ensemble is isotropic, homogeneous and reflexionally invariant. The last re-

quirement means that the mirror image of a paricular realization of u' is just as probable as u'. If the ensemble is
reflexiona1ly invaiant then vg) is a symmetric tensor. This subtle point wil be ilustrated later in this lecture series.
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In (46) the mean concentration is simply (e) = G . x and the fluctuation e' is determed from a
reduced version of (39):

e~ + u' . Ve' - K, \72 e' = - G . u' . (47)

As emphasized above, the advection of the mean gradient appears as a source term for e' on the right
hand side of (47). Because (47) is linear, and G is constant, the solution e' wil be proportional to
the large-scale gradient G and otherwise independent of G.

This G . x-trick enforces the platonic ideal of scale separation between the eddies and the mean
field. If the concept of an eddy diffsivity is to have any valdity, then it must work in the simplified
context of (47). In fact, the G . x-trick is used in doubly-periodic turbulence simulation to calculate
eddy diffusivities. In that context, u' = (u, v) and e' are effcjently represented by Fourier series. Then
( 4 7) is solved using a spectral code and the eddy flux is estimated by computing the integral

(u'e') = A-l j jU'e' dxdy,

over the computational domain. (In (48) A is the total area of the domain so (1) = 1). Notice that in
(48) the ensemble average is identified with an integral over the domain. Later in these lectures we
wil use this same procedure to analytically calculate the eddy diffsivities of some spatialy periodic
velocity fields.

(48)

5.4 The concentration variance equation
An equation for the concentration variance,

Z = !(e,2)- 2 ' (49)

is obtained by multiplying (39) bye' and ensemble averaging. The result is

Zt + (u).VZ + V. (~u'e'2) - K,\72Z = -K,(Ve'.Ve') - (u'e').V(e). (50)

The terms on the left-hand side of (50) can be interpreted as fluxes of Z. The two terms on the right
hand side of (50) are respectively dissipation of vaiance by molecular difsion, K" and a source of
variance due to advective distortion of the mean gradient.

5.5 Heuristic closure arguments

In (50) there are three terms which we would like to relate to the mean quantities (e) and Z. First,
there is -(u'e'). V(e) = De V(e).V(e). The remaining two terms are (u'e,2/2) and K,(Ve'. Ve').

The correlation (u' e,2 /2) in (50) is an eddy-flux of e,2, just as (ue') is an eddy flux of e'. Thus,
by analogy with (44), we can argue that

1 ( , ,2)

'2 ue = -DeVZ. (51)

This heuristic argument is discussed furher in appendix B.
The final term in (50) is the dissipation of variance by molecular difsivity, K,(Ve'. Ve'). The

simplest closure assumption we can make about this term is that

K,(Ve'.Ve'):: ßZ, (52)
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where ß has the dimensions of time. The closure above relies on dimensional analysis and the linearity
of (36). However, in anticipation of a later discussion of the Batchelor spectrum, we now make some
heuristic arguments in support of (52) which suggest that ß is independent of the molecular difsivity.

Suppose that the mean field (e) has a length scale L and that the velocity field ul has a length
scale Lu (in the RW example Lu = k-1). The scale separation assumption is that

L:;:;Lu' (53)

The inequality in (53) is exemplifed in idealized case of (46) in which L is infnite. If follows that
advective distortion of V (e) generates el first on the scale Lu. Then, following our arguments in lecture
i, the scale of d wil be exponentially reduced, like exp( -,t), where, is roughly proportional to the

RMS strain of u'. This exponential contraction continues until the cascade is halted by molecular
diffsion at the scale

t==fr. (54)

U sing arguments from lecture i, we can estimate that the time taken for this arrest at t is

tt ~ ,-1 In (Lu/t) . (55)

Then the smallest length scale in the c'-field is t and, plausibly, the gradient is Ve' ,. eRMs/t where
cRM s == .J. We now have a simple estimate K,(Ve' . Vel) ,. ,Z. This rough argument leads to the
closure in (52), with ß ex " and the caveat that t ;: tt.

We can summarize the arguents above by rewriting the variance equation (50) as

.Zt + (u).VZ - D\12Z = DeV(e).V(e) - ßZ, (if t ~ tt) . (56)

The most dubious approximation is probably (52). To conclude this discussion we wil interpret the
variance equation in two specific examples.

5.6 Example 1: the dispersing front
First consider the dispersing front in figure 5. In this example s = K, = (u) = 0 and we have already
know from (28) that

i
Z = "2 (i - erf2 (17)) ,

x
17 = 2.II5t (57)

On the other hand, since K, = 0, it follows that D = De and ß = O. With these simplifications the
variance equation (50) reduces to

Zt - DZxx = DV(e)'V(c), (58)

where (c) is the erf-solution in (25). As a consistency check, one can show that (57) is the solution of
the variance equation in (58).

This example shows that the destruction of variance by molecular diffsivity is not required in
order to prevent an accumulation of variance: the source on the right-hand side of (58) is balanced
by eddy diffsion.

5.7 Example 2: a large-scale source
In this second example the tracer is injected by a source s = cosqx in (36). We also take (u) = 0 so
that the mean concentration field is obtaied by solving

(c)t - D\12 (e) = cos qx , =? (e) = D~2 (i - e-Dq2t) cos qx . (59)
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Figure 9: A simulation of the source problem, with s = cos(xj6), using the RW model to generate u in (36).
There is no molecular diusivity (l£ = 0). The left-hand panel shows the whole domain (the length of the side
is 127r) while the right hand panel shows a smaller sub domain (the length of the side is 27r). The concentration
fields were generated by 10 pulses of the renovating wave using 7. = 3 (that is, t = 30).

(To apply the diffsion equation the scale of the source, q-l, must be much larger than the scale of
the velocity field.) A steady mean concentration pattern is established when Dq2t ?? i.

The concentration variance is determined by solving the variance equation (56)

2 1 De ( -D 2t) 2 ( ) ( I ') ( )Zt - D\l Z = '2 D2q2 1 - e q 1 - cos 2qx - K, V c . V c . 60

In (60), the solution in (59) has been used to evaluate the source term on the right hand side and we
have left the diffusive sink in its exact form.

It is clear from (60) that the molecular diffsion, K" plays an important role. If K, = 0 then the
long time solution of (60) has a component which eventually grows linearly with time:

K, = 0, ~ Z ex t/2Dq2. (61)
Thus, without molecular diffusion, there is "runaway variance". Ultimately, in a single realization,
the mean field in (59) wil be buried under enormous fluctuations.

To give an intuitive derivation of (61) we argue that with K, = 0 the concentration on each fluid
element is determined by solving the Lagrangian equation

Dc
Dt = cos qx(t) , (62)

where x(t) is t,he randomly changing x-position of the particle. Thus, the concentration on each
particle is undergoing a random walk along the c-axis, which is induced by the random motion of the
particle through the cos qx source function. The de correlation time of this walk is the time it takes a

particle to diffse through a distance of order q-l, which is II Dq2. Thus, in a time t, there are roughly

N(t) ~ Dq2t independent steps along the c-axs. But because the source acts coherently for a time
II Dq2 with a strength of order unity, the step length of this random walk is roughly Llc ,. II Dq2.
Thus, the mean square displacement of cis:

(CI2) ~ (Llc)2 N(t) ,. D:2 ' (63)
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Figure 10: This figue compares analytic results with a numerical solution of (62), taking q = 1/10, and
using the RW model to generate u. The persistence parameter is T. = 2 and the results are at t = 400 (that
is, 200 renovation cycles). The concentration c(x,400) is calculated on a 400 x 400 grid using the method in
appendix B. In the top panel there are three curves: the concentration as a function of 0 -( x -( 207r along the
line y = 0 (the jagged dotted curve); the y-averaged concentration defied in (64); the analytic result in (59)
(the smooth sinusoid). The bottom panel compares the CRMS = -I obtained by solvig (60) analytically
with CRMS estimated using (64).

which is the final result in (61).
It is interesting to compare the analytic results in (59) and (60) with a numerical solution of (62).

Thus we must compute the spatial averages

1 rL
ë(x, t) == L 10 c(x, y, t) dy, 2 _ 1 rL _ 2

CRMS(X, t) = L 10 (c(x,y, t) - c) dy, (64)

using the numerical solution, and compare these with the analytic results for (c) and Z = 4MS/2.
The best way to make this comparison is to obtain c(x, y, t) on a regular grid in the (x, y)-plane. As
a bonus, one can then also use contouring routines to make pretty pictures of the concentration field
(see figure 9).

The concentration field is calculated on a regular grid using the procedure described in Appendix C
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(essentialy the method of characteristics). Figure 10 shows good agreement between this simulation
and analytic results. Notice that in figure 10 the vaiance Z peaks where V(c) is greatest. This
ilustrates that concentration fluctuations are produced by advective distortion of the mean gradient:

where the mean gradient is large there is lots of variance. But.z =l 0 even where V (c) = 0 (for
example, at x = 0 and x = 1071 in figure 10). Thus, where the source term on the right hand side of
(60) vanishes, the diffsive term D"V2 Z supplies varance.

5.8 Cautionary remarks

In the both examples above there is no molecular diffsion (~ = 0) and consequently there is no

destruction of variance by the term ~(Vc'. Vc') in (50). As a project for a student, include molecular
diffusion in the RW model (perhaps by pulsing difsion in alternation with advection) and assess the
effcacy of this process. In particular, can the closure in (52) be justified?
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A Calculation of the RW Green's function
In this appendix we present an alternative calculation of the RW ensemble averaged Green's function,
g(r), in (17). The unaveraged Green's fuction, G(x, xo, t), is the solution of (10). Because the process
is spatially homogeneous it is harmless to take Xo = 0 so that .

G(x,O,r*) = 8 (x - r*ssinc,) 8 (y + r*csinc,) , (65)

wJ;ere (s, c) == (sin e, cos e). The ensemble average of (65) is computed by integration over c, and e,
as in (4). It is very pleasant that there are two integrals and two 8-functions. Thus, we first do the
c,-integral by noting that 8 (x - r*s sin c,) is nonzero at the two values of c, where sin c, = x /r*s, and
at those positions:

d~ (x - r*ssinc,) = r.Vr;S2 - x2. (66)
Using the standard rule for changing variables in a 8-function, we fid that the average of (65) over

c, alone is

(G)cp = ~ 8(y + cot 

ex) 
.

71 vr; sin2 e - x2
(67)

The second integral over e is performed by noting that 8 (y + cot ex) is nonzero at the two values of e
where cote = -y/x, and at those positions

. 2 x2sine= 2 2'X +y
d x2 + y2
de (y + x cot e) = - x (68)

After changing variables in the 8-function we recover g(r) in (17).
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B Eddy diffusion of variance
Ignoring small molecular diffsion (I\ = 0), if c satisfies the advection equation then any fuction of c
satisfies the same equation. That is to say

Dc =0
Dt ' == Dj =0Dt ' (69) .

where j(c) = c2, or exp(c), etcetera. Taking an ensemble average, and makng the same arguments
for j(c) as for c, we have that

(f)t = D\l2(f). (70)

In the particular case j = ¿i /2, (f) = (C)2/2 + Z and (70) reduces to

Zt = D\l2 Z + DV(c).V(c). (71)

Matching the terms in (71) with those in (50) we conclude that (U'C,2/2) = -DVZ.

C Numerical simulation of the RW process
Drawing figures 9 and 10 requires that we obtain the solution of (62) on a regular grid in the (x, y)-
plane. This is an opportunity to use the method of characteristics and learn some MATLAB programming
techniques.

Equation (3) shows how the movement of a paricle in the RW velocity field is equivaent to a
random map which determines the position at (n + 1)7"* in terms of the previous position at n7"*. If
this particle carries a concentration, c(x, t), which changes because of the cos qx source in (62), then
the concentration changes can also be calculated and expressed as a map in discrete time.

Thus, suppose that the concentration on a paricle at time t = n7"* is Cn' Then the change in

concentration during n7"* .. t .. (n + 1)7"* is obtained by integrating

Dc
Dt = cos (qxn + qun(t - n7"*)) , (72)

where the constant x-velocity of the particle is Un = Sn sin(cnxn + SnYn + tPn), with (Sn, cn) =

(sinen,cosen). The integral of (72) can be written as

sin(qxn+i) - sin(qxn)Cn+l = Cn + .
qUn

(73)

With equations (73) and (3) we can advance forward in time and so determine the concentration on
a particle at t = n7"*.

However we need to determine the concentration at t = n7"* at a specified grid point x. The trick
is ilustrated in the Matlab program below.

%% Solution of

%%

%% Dc/Dt=cos (qx) ;
%%

%% cos (q x) is a large-scale source and u is the RW velocity.

%% The RW streamfunction is psi=cos(cos(theta) x+ sin(theta)y + phiJ

clc
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N=400;
q=1/6 ;
LL=2*pi/q;
npulse=10
tau=3 ;

%% Use an N*N grid in the plotting window

%% The wavenumber of the cos q x source

%% LL is the domain size

%% The number of renovation cycles

%% The pulse duration of the wave

%% Lwin is the side of the square plotting window.

%% Set Lwin=LL to see the big picture. To see small scale details,

%% try Lwin = 2*pi. We draw two subplots with different Lwin' s

nloop=O;
for Lwin= (LL 2*piJ

nloop=nloop+ 1

x=linspace(O,Lwin,N) ;
h=x (2) ;

%%. x is the coordinate in the plotting window.

%% The grid spacing in the plotting window

for j=l:N

jj=(((j-1)*N+1): (j*N)J;

pos (j j , l)=zeros (N, 1)+(j-1)*h;
pos(jj ,2)=x';

end

conc=zeros (N*N, 1) ;

%% The position of the N-2 particles are stored in pos with

%% N-2 rows and 2 colums. Each vertical segment of

%% length N in pos contains particles with the same initial x-position.

%% the colum vector cone contains the concentration on the

%% N*N particles in pos. Initially, conc=O at the N*N

%% grid points. Then we integrate
%% backwards in time to find the concentration change.

for k=l:l:npulse

theta=rand*2*pi;
wavevec=(cos(theta) , sin (theta) J ';

phase=rand*2*pi;
vel=sin (pos*wavevec+phase) * (wavevec (2) , -wavevec (1) J ;
conc=conc-sin(q*pos(: ,1)) ./(q*vel(: ,1));
pos=pos+tau*vel;
conc=conc +sin(q*pos(:, 1)) . / (q*vel(: ,1)) ;

end

%% Emerging from this loop, we have the the new positions

%% and the new concentration

conc=reshape (cone, N , N); %% cone is reshaped into an N*N matrix

hh=subplot (1,2, nloop)
colormap ( , gray' )
imagesc (x, x, cone)
axis equal

xlabel ( , x ' )
ylabel( 'y' )
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axis ((0 Lwin 0 Lwin))
set(hh, 'ydir', 'norm')

end
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Lecture 3: Stretching

1 Line stretching

In the previous lecture we emphasized that the destruction of tracer variance by molecular disivity

relies on the increase of Ve by stirring. Thus the term K(Ve'. Ve') in the variance budget eventually
becomes important, even though the molecular diffsivity K is very smal. One goal of this lecture is to
understand in more detail how tracer gradients in a moving fluid are amplified by simple velocity fields.
We wil assume that K = 0 so that there is stirring without mixng. This is a good approximation
provided that the smallest scale in the tracer field is much greater than the length t = Ý K / 01 that we

identified in lecture i.
Gradient amplification is closely related to the stretching of material lines, a subject that was

opened by Batchelor in 1952. A material line is a curve that consists always of the same fluid
particles. Batchelor's main conclusion is that there is a timescale governing the ultimate growth of an
infinitesimal line element, but no length scale other than that of the element itself. These dimensional
considerations force the conclusion that the element grows exponentially,

t = toe'Yt , (1)

where'l is a constant with dimensions of inverse time, related to the timescale that Batchelor had in
mind.

Just as some close particle pairs separate exponentially, other pais starting at distant points are

brought close together. This might seem paradoxical until one recals the folded tracer patterns evident
in Welander's 1955 experiments (see the fial figures in lecture 1). If two closely approachig paricles
are carrying different values of e then the gradient Ve wil be amplied. Thus, as a corollary of (1)
we expect that ¡Vel'" IVeo\ expht). It is through this exponential amplification of the concentration
gradients that the small molecular difsivity K is able eventually to destroy tracer vaiance.

1.1 Material line elements and tracer gradients
Using a geometric arguent (see figure 1) we can give a proof-by-intimidation that a material line
element, ~(x, t), attached to a fluid element evolves according to

D~
Dt =(~.V)u. (2)

Here the "convective derivative" is D / Dt = â / ât + u . \7. The field of line elements can be visualized
a collection of tiny straight arrows attached to each moving paricle of fluid. Then (2) describes the
evolution of this collection of arrows. Notice that (2) refers to an infinitesimal line element ~. If the
length of a material line is comparable to the scale of u there is no longer a simple relation between
the stretching of the material line and local properties of u, such as Vu.

Taking the gradient of the tracer equation

Dc =0Dt ' (3)
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x + ç + u (x + ç, t) Òt

ç
ç + òç

x x + u (x, t) Òt

Figure 1: The line element e is short enough to remain straight and to experience a strain that is uniform
over its length during the time ót. Proof by intimidation of (2) : óe = (u(x + e, t) - u(x, t))ót, and take
(ót, e, óe) -+ O.

gives

DVc
- = -(Vc.V)u.Dt ( 4)

Despite the difference in the sign of the right hand sides of (2) and (4) there is a close connection

between the solutions of the two equations.
To emphasize the connection between V c and ~, we mention the conservation law

D
-(Vc'~) = O.Dt (5)

(Meteorologists and oceanographers might recognze (5) as a relative of potential vorticity conserva-
tion.) Later in this lecture (5) is used to deduce Vc from~.

The easy way to prove (5) is to consider a pai of particles separated by a small displacement ~.
If the concentration carried by the first particle is Ci, and that of the second particle is C2 = Ci + dc,
then dc = ~. V c. Thus (5) is equivalent to the "obvious" fact that dc is conserved as the two paricles
move.

The diffcult way to prove (5) is to take the dot product of V c with (2) and add this to the dot
product of ~ with (4). Performing some nonobvious algebra, perhaps with Mathematica or Maple,
one can eventually simplif the mess to (5). Suffering through this tedious exercise will convince the
student that the earlier, easy proof is worthy of serious attention.

1.2 Eulerian versus Lagrangian: the golden rule

Particle trajectories, x = x(xo, t), are determined by solving the differential equations

Dx
Dt = u(x,t), x(O) = Xo . (6)

The solution of the differential equation above defines the particle position, x, as a function of the

two independent variables, Xo and t. Using this time-dependent mapping between x and xo, we can
take a problem posed in terms of x and t (the Eulerian formulation) and change variables to obtain

an equivalent formulation in terms of Xo and t (the Lagrangian formulation).

43



In the Eulerian view, the independent variables are x = (x, y, z) and t. The convective derivative,

D a a a a
Dt = at + u ax + v ay + W az ' (7)

is a diferential operator involving al of the independent variables.

In the Lagrangian view, the independent variables are Xo and t' and x(xo, t') is a dependent
variable. As an accounting device, the time variable is decorated with a prime to emphasize that
a t-derivative means that the independent variables are xo. To move between the Eulerian and
Lagrangian representations notice thatat a

at,=I, and at'(x,y,z) 

= (u,v,w). (8)
The second equation above is the definition of velocity, u = (u, v, w).

Using (8), the rule for converting partial derivatives is

a a ax a ay a az a D
at' = at + at' ax + at' ay + at' az = Dt'

Equation (9) is the golden rule that enables us to interpret expressions such as

D
Dt (unkown) = RHS

(9)

(10)

in either Eulerian or Lagrangian terms. Using the golden rule we can dispense with the prime that
decorates the Lagrangian time variable.

In the Eulerian interpretation we must express the RHS in (10) as a function of x, y, z and t
and use the Eulerian definition of the convective derivative in (7). Then (10) is a partial differential
equation for the unkown.

In the Lagrangian interpretation D / Dt is the same as a simple time derivative and we must express
the RHS of (10) as a function of xo, Yo, Zo and t. Then (10) is a ordinary differential equation for the
unknown.

As an ilustration of the transformation between Eulerian and Lagrangian variables, consider the
steady, unidirectional velocity field u = (u(y),OJ. The solution of (6) is

x = Xo + u(y)t, Y = Yo. (11)
In this example it is a simple matter to express (x, y) in terms of (xo, Yo) and vice versa.

The line-stretching equation, (2), has the same form as (10). For the same unidirectional velocity
field, using components, ~ = (~, TJ), we have in Lagrangian variables

D~, DTJ
Dt = TJU (Yo) , Dt = O. (12)

(We have used the golden rule (9) above.) Equation (12) is an ordinary differential equation and the
solution is

~ = ~o(xo, Yo) + tTJo(xQ, yo)ul (Yo) , TJ = TJ(xo, Yo) . (13)

Using (11), we can write (13) in terms of Eulerian variables as

~ = ~o(x - u(y)t, yJ + tTJo(x - u(y)t, yJu'(y), TJ = TJo(x - u(y)t, yJ. (14)

We can alternatively view (12) in terms of Eulerian variables and in this case we are confronted with
the partial differential equations

a~ a~, aTJ aTJ
at + u(y) ax = TJU (y) , at + u(y) ax = 0 .

It is easy to check by substitution that (14) is the solution of (15).

(15)

44



1.3 Motion is equivalent to mapping
We obtained (2) using the geometric argument in figure 1. Now we admire some different scenery by
takng an algebraic path to (2). Our itinerary emphasizes that the solutions of (6) define a mapping

of the space Xo of initial coordinates onto the space x, and hence the title of this section.
Using indicial notation (summation implied over repeated indices), it follows from the chain rule

that
8XidXi = -8 dXOj. (16)
XOj

Taking the time derivative of (16), and keeping in mind that XOj is independent of t, gives

D 8Ui 8Ui 8xOj 8Ui
-D (dxi) = -8 dXOj = -8 -8. dXk = -8 dXj. (17)t XOj XOj Xk Xj

(We have used the golden rule.) Makng the identification dx -+ e we obtain (2).
The motion of a fluid defines a family of mappings from the space of initial coordinates, Xo, onto

the space of coordinates x. At t = 0 this is just the identity map but as t increases the map from Xo
to x can become very complicated. Equation (16) defines the Jacobian matrix,

_ 8Xi:rij = -8 ' (18)
XOj

of the map.
With these algebraic formalities we have given an alternative derivation of (2) and, as a bonus, we

have also found a representation of the solution:

e = :reo. (19)

The solution above is known as Cauchy's solution.
In (19) there is no assumption that the flow is incompressible. IT the flow is incompressible (i.e.,

if V.u = 0) then mapping from Xo to x conserves volume. In this case, det:r = 1.

2 Two-dimensional incompressible flow
In the case of a two-dimensional incompressible flow there is a streamfunction 'i = 'i(x, t) such that
U = (u, v)=( -'iy, 'ix)' In terms of 'i, (2) can be written as:

De = we, where W == (-'ixy -'iyy). (20)Dt 'ixx 'ixy
The trace of W is zero and the determinant is det(W) = 'ixx'iyy - 'i~y' The solution of (20) can be
written as

;

~,~
~

e = exp (ltW(tl) dtl) eo.

Thus, using (19), we obtain a fundamental connection between :r(t) and Wet):

:r(t) = exp (ltW(tl) dt') .

Because tr W = 0 it follows! that det:r = 1. This is, of course, just another way of saying that if the
flow is incompressible then the map from Xo to x is area preserving.

(21) P,

(22)

i For a square matrix M
deteM = érM.
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det W~O det W-:O det W=O

~
Figure 2: The sign of det(W) = 'I,,'lyy - 'I;y determines the streamine pattern.

2.1 The steady case

Because (20) is linear the solution is straightforward if the velocity field in the Lagrangian frame is
steady. Thus

where

e(t) = e'Ytê, ì = ::v' - det W , (23)=?

det W = 'lxx'lyy - 'l;y. (24)

There are three cases, which correspond to the three panels in figue 2:

Elliptic: If det W ~ 0, then ì is imaginary and the local streamfunction has ellptic streamlnes; e

changes periodically in time and there is no exponential stretching.

Hyperbolic: If det W .: 0 then ì is real and the streamfunction is locally hyperbolic. Then, as in
lecture 1, material line elements wil be stretched exponentially in one direction and compressed
in the other.

Transitional: If det W = 0 then iei grows liearly with time.

Following Okubo (1970) and Weiss (1991), the sign of det W has been used to diagnose two-
dimensional turbulence simulations (e.g., McWiliams 1984). Assuming that det W is changing slowly
in the Lagrangian frame, one argues that the result in (23) applies "quasistatically". For instance,
using simulations of two-dimensional turbulence, McWiliams shows that in the core of a strong vortex
'lxx'lyy - 'l;y ~ O. The interpretation is that there is no exponential stretching of line elements in

vortex cores, which indicates that these regions are isolated patches of laminar flow. This so-called
Okubo-Weiss criterion is only a rough guide to the stretching properties of complicated flows; for a
critique and more refied results see Hua and Klein (1999).

One pleasant aspect of the steady two-dimensional case is that it is possible to explicitly calculate
the matrix exponential .:(t) = exp(tW). (This is not the case in three dimensions.) Begin by noting

that

W2 + (det W)I = 0, (25)

where I is the 2 x 2 identity matrix. The result above is easily checked by direct evaluation, but (25)
is also a consequence of tr W = 0 and the Cayley-Hamilton theorem. When (25) is substituted into
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the definition of the matrix exponential:

t2 t3
3 = exp (tW) = I + tW + - w2 + - w3 + . ..2 6 (26)

the sum collapses to

sin (Vdet Wt)
3 = cos (Vdet Wt) I + v' W.detW (27)

We now use the result above to formulate a renovation modeL.

2.2 The a-( model

We construct the "a-(" model using the matrix equation in (20). The idea is to define an ensemble of
stretching flows in which the 2 x 2 matrix W is piecewise constant in the intervals In = f t : (n - 1) r -:
t -: nrl; r is the "decorrelation time". We use the following representation of W in the interval In:

W = (n (0 -1) + an (-cos2en Sin2en)n 2 1 0 2 sin2en cos2en . (28)

(n is the vorticity and an the strai. Isotropy is ensured by pickig the random angle 0 -: On -: 27l

from a uniform density. (We use 20n because the principal strai axes are.at angle On to the coordinate
axes, and tbey specify a orientation but not an direction. That is, the strain axes are like vectors
without an arrow.)

Because W n is constant in In the calculation of stretching rates can be reduced to a product
of random matrices. The terms in the product are exp(rW n) and, using (27), one can obtai this

matrix exponential analytically. There is an extensive and diffcult literature devoted to calculating
the statistical properties of products of random matrices (e.g., Crisanti, Paladin & Vulpiani, 1993).
It is fortunate that we can avoid these complications by using the isotropy of the a-( model to reduce
averages of matrix products to averages of scalar products.

Two important properties of W n are easily related to the vorticity and the strain:

1 (2 2)
det W n ="4 (n - an' tr (W;Wn) = ~ ((~ +a~) . (29)

In the examples that follow we wil use a-( ensembles which model spatially homogeneous flows, for

which (a2) = ((2) (by the way: this is not obvious). In this case (detW n) = 0 and "on average" the
Okubo-Weiss criterion is zero.

We employ (27) to obtain an explicit expression for the matrix 3 n = exp(rW n)' It turns out
that we do not need the full details: all that is required is

~tr (3;3 n) = 1 + 3(an,rn,r), (30)

where

3( a, (, r) == (2 ~ a2 (1 - cos ( .¡ (2 - a2 r)) . (31)

The "trace formula" above should be known to experts on two-dimensional stretching problems, but
I have not found (30) in the literature.
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2.2.1 Stretching of squared length

Consider the first interval Ii, and suppose that at t = 0, ~ = to (cos X, sin X). At t = T we have

tî = ~J:ri T :ri~o' (32)

Now we use isotropy to average (32) over the random direction X of the element ~o' A trivial calculation
gives

((ti/tO)2)'X = ~tr (:riT:ri) . (33)

The RHS of (33) is given explicitly in (30). We must stil average over the random variables (7 and (
This gives

((ti/tO)2) = i + f fP((7,()3((7,(,T)d(7d(, (34)

where P((7, () is the joint PDF of (7 and ( 2.
We are now well on our way to computing the rate at which t2 grows with the number of renovation

cycles, n. The average stretching of t2 in each In is independent of the previous I's. Thus, to compute
the growth of t2 over n renovation cycles, we can simply raise the average t2-stretcmng factor in a
single I to the n'th power:

((tn/tO)2) = i i + f fp((7, ()'2((7, (, T) d(7d( J n (35)

The stretching rate ,2 is defied by

,2 == lim ~ln (((tn/to)2)i/2)t-+oo t (36)

The notation ,2 anticipates section 4 in wmch we wil define a stretching rate ,p which measures the
growth of ((tn/to)P).

Using n = tIT, we have from (35)

,2 = 2~ In i i + f fp((7, ()3((7, (, T) d(7d( J . (37)

To further simplify the integral above we must specify the probabilty density function P((7, () (ex-
amples follow).

2.2.2 Randomly oriented Couette flows

As a first example, suppose that in each In the random variables (n and (7n are independently and
identically distributed, each equal to x.ß with equal probability. In this case

i
P((7, () = ¡l8((7 + ß) + 8((7 - ß)) l8(( + ß) + 8(( - ß)) . (38)

This ensemble is a set of randomly oriented Couette flow, such as the tmrd case in figure 2. According
to the Okubo-Weiss criterion there should be no stretcmng because det W is identically zero. However,
this is wrong.

21f a and ( are independent and identically distributed random vaaibles then 1'(17, () = P(a)P(().
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Figure 3: A comparison of the exponent 'Y2 in (40) with a simulation (the dotted curves) of the random
Couette flow. The simulation is conducted by creating random matrices according to the recipe in (28) and
(38), and then computing the matrix product. The iteration number is the number of matrices in the product.
To get reasonable agreement between the simulation and the analytic result in (40) one must ensemble average
over a large number of realizations (4000 in the figue above). The discrepancies evident at large iteration
number can be reduced by using more realizations. The figue also shows a comparison of the exponent 'Yo in
(73) with simulation.

The recipe in (38) leads to trivial calculations because (; = 0';' and := = ß272/2. Thus, even
without averaging over 0' and (,

l(T) 122
2tr :J n:J n = 1 + 2ß 7 '. (39)

and it follows that

1 ( ß272)
12 = 27 In 1 + ~ . (40)

(See Figure 3.) The nonzero exponential stretching, which occurs even though det W = 0, is due to
the realignment of a material element with respect to the direction of extension of the velocity field
which occurs at t = n7. In the limit of a very slowly changing velocity field, 7 -+ 00, the stretching
rate vanishes because there are fewer realignment events. This is the revenge of the Okubo- Weiss

criterion.
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Figure 4: The nondimensional stretchig exponents "(21ß in (41) as a function of ßr for vaious values of q. If
q = 1/2, then det W is zero identically and "( -+ 0 as r -+ 00. When slightly less than 1/2, and r is suffciently
large, the occasional hyperbolic points can make a large contribution to the stretching exponent "(2.

2.2.3 An example with det W =l 0

A more interesting stretching ensemble is defined by takg an and (n to be identical and independently
distributed random variables equal to ß with probability q, -ß with probabilty q, or zero with

probabilty 1 - 2q. With this prescription there is a hyperbolic point in In, as in the middle panel of
figure 2, with probabilty 2q(1 - 2q).

One can calculate "(2 in (37) by enumeration and averaging over the nine possible pairs (an, (n).
Calculation gives

1
"(2 = 2r In t1 + 2q2ß2r2 + 2q(1 - 2q) (coshßr - 1) r . (41)

Figure 4 shows the nondiensional "(2/ ß as a function of ßr for various values of q. From figure 4 we
conclude that while instantaneous hyperbolic points are not essential for exponential stretching, they
do help, especially if the correlation time r is long.
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2.2.4 The Batchelor and Kraichnan limits

The calculation of stretching exponents in this section does not follow the historical path. The
pioneering papers by Batchelor (1959) and Kraichnan (1974) considered limiting cases - slowly

decorrelating in the case of Batchelor and rapidly decorrelating in the case of Kraichnan - in which
stretching rates can be calculated approximately. A major advantage of these approximations is that.
they work equally well in two and three dimensional space. On the other hand, by considering exactly
soluble two-dimensional models we can extract the Batchelor and Kraichnan limits as special cases.

Batchelor (1959) considered stretching by slowly decorrelating velocity fields. This is the limit
in which (7 and U7 are large. Batchelor's main conclusion is that in this quasisteady limit the net
stretching is dominated by hyperbolic straining events. Indeed, this conclusion is ilustrated by the

exact result for ')2 which is plotted in figure 4.
Kraichnan (1974) considered the opposite limit in which (7 and U7 are small. In this rapidly

decorrelating limit we can simplify the exact expression in (37) by noting that :: ~ (U7)2/2 .:.: i.
Thus, simplifying (37), we find that the stretching rate is

1 2
')2 ~ 4(U )7, (42)

independent of the vorticity.

2.3 The renovating wave model

In this section we calculate the average growth of t2 using the renovating wave (RW) modeL. It is
interesting to see how this .calculation can be done without using matrix identities such as (27).

Begi by recalling the definition of the RW modeL. TheRW streamction is

In = (n - 1)7* .: t .: n7* : 'Øn == cos ¡cos en x + sin en Y + ¡PnJ. (43)

In (43), en and ¡Pn are random phases. and 7* is the decorrelation time. The random phases are
reinitialized at t = n7* so there is the complete and sudden loss of memory at these instants. (In this
section we use the dimensionless version of the RW model; the parameter 7* == 7kU is the ratio of the
correlation time 7 to the maximum shear of the sinusoidal wave kU.)

The renovating wave model is equivalent to the random map

(Xn+1, Yn+1) = (xn, Yn) + (Sn, -cn) sin¡cnxn + SnYn + ¡PnJ7* , (44)

where (cn, Sn) _ (cos en, sin en). The Jacobian matri can easily be obtained by differentiation of
(44):

:T(n) - (W(n)) - ( 1 + CnSn7*'Øn S;7*'Øn J- exp 7* - _2 .
-Cf 7* 'Øn 1 - CnSn7*'Øn

(45)

Notice that det :T(n) = 1: the map is area preserving.
Using :T(n) we can track the stretching of an infiitesimal material element as

~n+1 = :T(n)~n' ~ t~+1 = ~~+l~n+1 = ~~K(n)~n' (46)

where K(n) = :T(n)T :T(n). Explicitly:

ic(n) _ ( (1 + CnSn'Øn7*)2 + C~'Ø;7;
- (s; - c;)'Øn7* + CnSn'Ø;7;

((Sl; - C;)~~7*)~ CnS~~~7~ J .
- CnSn'ln7* + Sn'ln7*

(47)
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To compute the stretching rate we consider an element which has length to at t = O. Because the
problem is isotropic, it is harmless to choose the coordinate system so that this element lies along the
x-axs: ~o = to(l, 0). After the first iteration of the map:

02 _ 1((1) 02 _ ((1 ./.)2 4./.2 2) 02(.1- 11(.0- +CiSl'f17* +C1'f17* (.0' (48)

Averaging (48) over the phases ()1 and ¡Pi gives

((t¡ftO)2) = (1 + 71) (49)

If you are suspicious of the argument above, then you might prefer to align the initial material
element at an arbitrary angle, say ~o = to(COSX,sinX). Repeating the calculation, we now find that

ti = (1(W cos2 X + icW sin2 X) t~, (50)

Averaging (50) over (J¡ and ¡PI, we recover (49).
Because each .:(n) is independent of the earlier .:'s the average growth of t2 is

((tn/tO)2) = (1 + 71) n (51)

Using t = n7*, (51) can be written as

((tn/tO?)1/2 = e'Y2t,
1 ( 72)

"12 == - In 1 + -. .27* 4 (52)

Aside from notational differences, the expression above for "12 is identical to (40).

3 Amplification of concentration gradients

In this section we discuss the amplification of V C which occurs when a passive scalar is advected by
a random flow in two dimensions.

Back in (4) we noted that the quantity ~. V c satisfies the conservation equation

D
Dt(~'Vc) = O. (53)

Equation (53) enables us to use our earlier results concerning the stretching of material elements to
analyze gradient amplifcation. In fact, using (53), we can obtain Vc from~. The first step is to
construct a basis by considering the following initial value problem:

D~k
Dt = (~k'V)U,

with initial conditions ~1 (x, 0) = X, ~2(x, 0) = y, (54)

where the unit vectors of the coordinate system are X, '0, z. As the fluid moves, the parallelogram
spanned by ~1 and ~2 will deform. But because U is incompressible, the area of the parallelogram is
constant and so

~1 X ~2 = z, (for all t). (55)

If we can solve (54) for ~ l' then we can use (53) and (55) to calculate ~ 2 and V c.
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Figure 5: Numerical solution of the renovating wave model with 7 = 2. The initial condition is c(x, y, 0) = y,
Already, at t = 67, IVel is greatly amplified in some regions.
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Figure 6: A numerical solution of the renovating wave model with r = 1. The intial condition is c(x, y, 0) =
y. The plots show the values of c and iV cl along the slice x = O. After 20 iterations, IV cl has developed
strong spatial intermittency_
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As an example of this procedure, suppose that the initial condition is e(æ, 0) = y. Then it follows
from (53) that:

~i.Ve=O

Using (55) and (56) we see that

and ~2.Ve=1 (for all t). (56)

Ve=zx~i' (57)

Thus, in this example, once we calculate ~l we obtai Ve as a bonus.
Figure 5 displays the numerical solution for e and IVel afer 6 iterations of the renovating wave

modeL. The initial condition is c(æ,O) = y, so that Ve(æ,O) = y; the decorrelation time is T = 2.
The field in figure 5 is obtained using a 256 x 256 grid. To find e at the grd point æ at time t = nT,
one iterates the renovating wave model backwards in time til the initial location (a, b) is determined,
and then e(æ, t) = b. In parallel with this backwards iteration, ~(æ, nT) is computed by matrix

multiplication of the .:(n) defined in (45), and then Ve is given by (57).
An important feature of stirring is the development of intermittency in the concentration gradient,

¡Vel. In figure 6 the development of intermittency is ilustrated, again using the renovating wave

modeL. After 20 iterations there are "hotspots" in which large values of IVel are concentrated.
Without diffsion, the gradient of e condenses onto a fractal set as the number of iterations increases
(Városi, Antonsen & Ott 1991).

4 Multiplicative random variables

In our solution of the a-( model in section 2 we used isotropy to reduce a product of random matrices
to a product of random scalars e.g., see equations (33), (34) and the following discussion. The mai
point of this section is that the statistical properties of isotropic line-element stretching are bedeviled
by the large fluctuations which are characteristic of products of random varables. Indeed, figure 6
shows that there are large fluctuations in t2 = 1~12 = IVeI2. If one is attempting to measure the
variance dissipation, K.(Ve. V c), then the intermittent structure of V c in figue 5 might pose a
sampling problem. Imagine steering a ship through the field in figure 5 and making occasional point
measurements of V c. If the density of measurements is too low then one might easily miss the gradient
hot-spots and so grossly underestimate K.(V c. V c).

4.1 Most probable values versus mean values
We begin by stepping back from the stirring problem, and making some general remarks about mul-
tiplicative random processes. Suppose that a random quantity, X, is formed by takig the product of
N independent and identically distributed random variables

X = Xi X2 . . . X N. (58)

What can we say about the statistical properties of X?
The most nonintuitive aspect of X in (58) is the crucial distinction which must be made between

the mean value of X and the most probable value of X. As an ilustration, it is useful to consider an
extreme case in which each Xk in (58) is either Xk = 0 or Xk = 2 with equal probabilty. Then the
sample space consists of 2N sequences of zeros and two's. For all but one those sequences, X = 0; in

the remaining single case X = 2N. Thus, the most probable (that is, most frequently occuring) value
of X is

Xmp = O. (59)
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On the other hand, the mean of X is

(X) == sum all the X's from different realizations = 1number of realizations (60)

Notice that one can also calculate (X) by arguing that (Xk) = 1 and, since the Xk'S are independent,

(X) = (Xk)N = 1
The example above is representative of multiplicative processes in that extreme events, although

exponentially rare if N ?? 1, are exponentially diferent from typical or most probable events. Thus,
for the product of N random variables the ratio (X) 1 Xmp diverges exponentialy as N ~ 00. On the
other hand, for the sum of N random vaiables the most probable outcome is a good approximation
of the mean outcome. Perhaps this is why people have an intuitive appreciation of sums, but find
products confusing.

Now let us consider a more realistic example in which each Xk is either a or 1/a with probabilty

1/2. In this case the p'th moment of X is

1
(xD = - (aP+a-P),2

=?
( P + -P ) N

(XP) = a 2 a (61)

Before continuing, the student wil profit from showing that the most probable value of X is Xmp = 1
(for N even). For example, if a = 2 then (X) = (5/4)N, while Xmp = 1. Again, the most probable
value differs exponentially from the mean value as N ~ 00.

4.2 The log-normal distribution
Because Xmp is so different from the (X) the problem of determining (X) via Monte Carlo simulation
is diffcult: one may have to exhaust nearly all of the 2N cases in òrder to obtai a reliable estimate
of (X). This exhaustion is necessary for the first example, in which Xk = 0 or 2. In the example of
equation (61), provided that a ~ 1, we can get a pretty good estimate of (X) with less than exhaustive
enumeration of all sequences of the xn's.

Begin by noting that

lnX = lnXl + Inx2 +... + lnxN, (62)

and so if In Xk has finite variance then it follows from the Central Limit Theorem (CLT) that A == In X
becomes normally distributed as N ~ 00.

The pitfall is in concluding that all the important statistical properties of A, and therefore of
X = exp(A), can be calculated using the asymptotic log-normal distribution ,of X. This not the case
because the PDF of A, peA), is approxiated by a Gaussian only in a central scaling region in which
IAI -t cN1/2, where c is some constant which depends on the PDF of Xk. On the other hand, a reliable
calculation of (XP) = (exp(pA)) may require knowledge of the tail-structure of peA). _

To ilustrate these diffculties, we use the example in which In Xk = :: In a and (In2 Xk) = ln2 a.
Invoking the Central Limit Theorem, the asymptotic PDF of A is therefore

1PCLT(A) = exp (_A2 12Nln2 a) .
V27rNln2 a

In the central scaling region, peA) ~ PCLT(A).
To determine Xmp we can consider A = In X, which is an additive process for which the mean and

most probable coincide, so that

(63)

(InX) = lnXmp, =? X - e(lnX)mp - . (64)
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Figure 7: The function r(a,p) defied in (67). In order to accurately estimate (XP) using the CLT one must

have r ~ 1.

In our example with In Xk = :f In a, (In X) = 0 and therefore Xmp = 1. (This is one way of solving
the problem posed in the previous section; another is to obtain the exact peA) using the binomial
density. )

With hope in our hearts, we now attempt to recover the exact result in (61) by substituting (63)
into

(XP) == iiAp (A) dA. (65)

After the integration, one finds that

(XP)CLT = exp (Np21n2 aj2) . (66)

To assess the error we form the ratio of the exact result to the approximation:

(XP)j(XP)CLT = rN,
1

where r == "2 exp (_p2in2 aj2) (aP + a-P) . (67)
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When r(o:,p) is close to 1, the error is tolerable in the sense that In (XP)CLT is close to In (XP).
For example, with 0: = 2, the exact result is (X) = (5j4)N while (X)CLT = (1.27)N. However

the second moment p = 2, is seriously in error. As a general rule, (XP)CLT is a reliable estimate of
(XP) provided that p2(ln2 Xk) .: c, where c is the constant which determines the width of central
scaling region, IAI .: cN1/2, in which P(A) :: PCLT(A). We conclude that the complete analysis of a
random multiplicative quantity cannot be reduced to the Central Limit Theorem merely by taking a
logarithm.

4.3 Stretching exponents

Equation (64) is a very important result for multiplicative random variables: to obtain the most
probable value of X, one can exponentiate (In X). This explains why there is so much attention

paid to (In(£(t) j £0)) in the literature on random line element stretching: knowing the average of the
logarithm enables one to estimate the stretching of a typical line element. Of course, the typical line
element may not make a large contribution to the dissipation K,(V c' . V c'). Thus our earlier focus on
£2 was not wasted, but it was not complete either.

A good characterization of random stretching is provided by the complete set of stretching expo-
nents. Following Drummond & Münch, we define the stretching exponents, ìp, as

= lim ~ d(£P)ìp - Hoo p(£p) dt ' p). 0, (68)

and

ìo = lim TP = lim dd (In£).p-tO t-too t (69)

Knowing all these ì'S, the asymptotic growth of line elements is characterized by

(fi)1/P ,. £oe'Ypt . (70)

Back in section 2 we calculated only ì2 (e.g., see (33) and the subsequent discussion). To conclude
this section I wil discuss the calculation of the other stretching exponents, particularly ìo.

4.4 The stretching exponent 1'0 of the a-( model
As an example of the difference between ìo and ì2 we return to the a-( modeL. In section 2 we
obtained a general expression for ì2 in (37). Now consider the problem of determinig ìo. Takng the
log of (32), writing eo = to(COSX,sinX), and then integrating3 over X, we have afer some travai,

1 ( =)
(In(t1jto))x = 21n 1 + ~ ' (71)

where 3(a, (, r) is given in (31). Averaging over a and (, and using ìo = r-1 (In (£d£o) ), gives

ìo = 2~ f f P(a,()In (1 + ~3(a,(,r)J dad(. (72)

The expression above should be compared with that for ì2 in (37).
3The integral

17' In(a:lbcosx)dx = 7lln ((a+ va2 -b2) /2) ,
is usefuL.
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With the ensemble of random Couette flows in section 2.2.2 we can evaluate the integrals in (37)
and (72). Thus, we find that

1 ( ß272)
'Yo = 27 In 1 + 4 '

1 ( ß272 )
'Y2 = 27 In 1 + 2 . (73)

Notice that 'Y2 :; 'Yo. This is a ilustration of the general result that 'Yp is an increasing function of p

(Childress & Gilbert 1995). Figure 3 compares the expressions for 'Yo and 'Y2 in (73) with simulation.

4.5 Stretching in one-dimension

One-dimensional compressible velocity fields provide striking examples of the nontrivial dependence
of 'Yp on p. We conclude this lecture with a model of random one-dimensional stretching for which
the 'Yp's can be obtained analytically.

4.5.1 A sinusoidal velocity

With the one-dimensional velocity u = sinx, the equation governing line element stretching, (2), is

€t + sinx€", = €cosx, €(x,O) = 1. (74)

The initial condition above is that the line elements attached to diferent fluid particles all have the
same initial length. Because the fluid is compressible, the fluid density p(x, t) satisfies

Pt + (sin x p)", = 0 p(x,O) = 1. (75)

It is easy to show by substitution that the solutions of (74) and (75) are related p(x, t) = 1/€(x, t).
The physical interpretation of this result should be obvious...

To solve (74), we follow the route outlned in section 1.3 by determining the mapping from the
initial space, xo, to the space x(xo, t). This means we solve

Dx
Dt = sinx,

x(O, xo) = Xo . (76)

U sing separation of variables we find that

tan(x/2) = é tan(xo/2) , (77)

which enables us to determine x given xo, or vice versa. Figure 8 shows how the mapping from Xo to
x evolves as t increases.

In this one-dimensional example, the Jacobian of the mapping is simply

dx
dxo

= 1 .
h . h =cosht+cosxsmht.cos t - cosXo sm t

(78)

It is easy to check by substitution that € = dx/dxo is the solution of (74).

4.5.2 A one-dimensional renovating model

U sing the previous one-dimensional ilustration of the Cauchy solution, we can formulate a renovating
model that ilustrates some of the subtleties involved in random stretching problems. Consider an
ensemble of random renovating one-dimensional velocity fields in which

u = sin(x + Ctn) if (n - 1)7 0( t 0( n7. (79)
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Figure 8: The left panel shows the mapping from Xo to x at the indicated times. The interval 0 .( Xo .( 1r is
compressed into the neighbourhood of x = 71. The right panel shows J(xo, t) at the same times. Notice that
an element that stars at say, Xo = 1/2, is fist stretched (J ~ 1) but then ultimately compressed (J .( 1) as
the particle approaches x = 1r.

The random phase, 0 .( 'Pn .( 2n, is reset at t = nT. Notice that there is no preferred location on the
x-axs; that is, the statistical properties of the process are spatially homogeneous.

Now, suppose we follow the stretching of a line element attached to a particle that moves in a
particular realization of this velocity field. We denote location of this particle at t = nT by an, and
the length of the attached line element at this time by t-n. Then, using the solution from the previous
section, the stretclug of the line element is given by the random product

t-n = J(an-i)J(an-2) ... J(ao)to , (80)

where the Jacobian is

1
J(a) ==

cosh T - cos a sinh T
(81)

Because the phase is reset at t = nT, each J(an) in (80) is independent of the others. Moreover,

because of spatial homogeneity, each an is uniformly distributed with 0 .( an .( 2n.
Equation (80) expresses the length of a material line element at t = nT as a product of n random

numbers. Following our earlier discussion of multiplicative random variables, we first calculate 1'0 by
taking the logarithm of (80):

n-l
In(t-njt-o) = 2:)nJ(ak)'

k=O
(82)

Thus, the mean of In(t-njt-o) is

(In(t-njt-o)) = n(lnJ), (83)

where

f da(InJ) = In(J(a)J 2n = -In(cosh(Tj2)J . (84)

Because ((In J)2) is finite, the central limit theorem applies and we conclude that as n -t 00, In(t-njt-o)
is approximately normally distributed with the mean value n( In J).
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Figure 9: The stretching exponents ipeT), with p = 0, 1,... , 8 calculated using (89) .

Moreover, we can conclude from the central limit theorem that the most probable value of f.n/f.o is

(f.n/ f.O)mp ~ e( In(£n/£O)) = e'Yot , (85)

where, since n = tIT,

10 = -In(cosh(T/2)J/T -( O. (86)

The result in (85) is remarkable because it implies that most of the -line elements in this compressible
flow exponentially contract (rather than stretch) as t -+ oo!

Exponential contraction of most material lines is incomplete disagreement with the spirit of Batch-
elor's result in (1), where 1 :; O. The result above, that 10 -( 0, is a special consequence of the
compressible velocity field used in (79). (For a discussion of compressible velocities in a space of

arbitrary dimension, see Chertkov et al. (1998).) In any event, this example shows that one cannot
take exponential stretching for granted, no matter how intuitive it seems on the basis of experiments,
such as those of Welander (1955).

How is contraction in the length of most material elements compatible with conservation of the
total length of the x-axs? The answer is that even though most elements become exponentially

small as t -+ 00, a few elements become exponentially large. Thus most of the length accumulates in
exponentially rare, but exponentially long, line elements. This is an elementary example of an inverse
cascade i.e., the spontaneous appearence of large-scale structures (big line elements).

To demonstrate length conservation, we can compute the mean (as opposed the most probable)
length of an element. The mean length is

(f.n) = (Jtf.o , (87)

where J(a) is defined in (81) and

f da(J) = J(a)- = i.27l
(88)

Thus, the mean length of an element is constant, even though most elements exponentially contract.
As an exercise, I suggest showing that for integer values of p the stretching exponents of this

one-dimensional model are given by

iP = In (Pp-i (cosh T)J /¡r , (89)

where Pm is the m'th Legendre polynomial. Thus, in this particular example, there is a nice analytic
characterization of the rate at which different moments stretch (see figure 9).
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Lecture 4: Anomalous diffusion

In this lecture we discuss stochastic models of correlated random walks. By "corre-
lated" we mean that that if a particle is headed in one direction then there is nonzero
probability that it continues in that same direction for some time and this probability
fades to zero as the time interval increases. This is, of course, the situation envisaged
by Taylor (1921).

The distinction between normal and anomalous diffusion made in lecture 1 can
be understood by examining the rate at which velocity correlation decrease to zero.
Normal diffusion occurs if the velocity correlation decrease rapidly while anomalous
diffusion results from processes in which particles move coherently for long times with
infrequent changes of direction. Roughly speaking, this distinction is quantified by the
tail behaviour of the velocity autocorrelation function. For example, if the correlation
function decays exponentially then there is normal diffusion, whereas if the correlation
function decays algebraically then there is the possibilty of anomalous diffusion.

The definition of anomalous diffusion is based only on the behaviour of the second
moment, (x2). But we usually want to know more about the distribution of a tracer
than simply the second moment. In the case of normal diffusion, detailed information
concerning the tracer distribution is obtained by solving the diffusion equation

Ct = Dcxx . (1)

Can we obtain continuum models, analogous to (1), which provide the same detailed
information for anomalously diffusing tracer? The main goal of this lecture is to develop
partial differential equation models which can be used for this purpose.

i Superdiffusion and sub diffusion

1.1 Taylor's formula and long tails

Yet again we recall Taylor's formula which relates the growth of position variance to
an integral of the Lagrangian velocity autocorrelation function, corr(t),

d(x2) it- = 2 corr(t) dt .dt 0 (2)
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In order to obtain (x2) we must integrate (2). Standard manipulations turn the result-
ing double integral of corr(t) into a single integral

(x2) = 21t (t - t')corr(t') dt' . (3)

The result (3), which is not in. Taylor's original paper, wil prove to be very usefuL.

We usually have in mind situations in which corr(t) decreases to zero as t ~ 00 so
that the integrals in (2) and (3) converge to nonzero values. An example is the reno-
vating wave model, with its "triangular" correlation function, from lectu.re 2. Later in
this lecture I wil introduce the telegraph model which has an exponentially decaying
correlation function, corr(t) = U2 exp( -2at). These are both examples in which cor-
relations decrease very rapidly so that normal diffusion occurs. But now consider the
possibilty that corr(t) decreases so slowly that the integrals in (3) diverge.

Suppose, for instance, that as t ~ 00, corr(t) rv rr¡ with 0 -c 17 -c 1. Even though
the diffusivity no longer exists, it stil follows from (3) that

(x2) rv e-r¡ . (4)

In this case there is superdiffusion: the variance of the particle displacement grows
faster than linearly with time because 2 - 17 ~ 1.

Taylor's formula also contains the possibility of subdiffusion. This case is subtle
because, like the example of the sea-surface mentioned in lecture 1, it requires that the
integral defining D is zero. But suppose additionally that the remaining integral in (3)
diverges. This can happen if corr(t) rv ct-r¡ with 1 -c 17 -c 2. The condition that 1 -c 17
ensures that Iooo corr(t') dt' converges (to zero). The second inequality, 17 -c 2, ensures
that I; t'corr(t') dt' diverges. Using (3), we again find the scaling law in (4). However
this time, because 2 - 17 -c 1, there is subdiffusion.

At first glance two possibilities above appear as unlikely exceptions to the more nat-
ural cases in which both integrals in (3) converge. However there are examples in fluid
mechanics in which either sub diffsion or superdiffusion is observed experimentally or
computationally. Thus (4) cannot be dismissed as an unlikely pathology.

1.2 The Texas experiments

An experiment ilustrating anomalous diffusion has been conducted in Swinney's lab-
oratory at University of Texas; see Solomon, Weeks & Swinney (1994) and Weeks,
Urbach & Swinney (1996). These investigators study the dispersion of particles in an
almost two-dimensional flow in annular tank (see figure 1). The tank is rotating at

about 1 or 2 Hertz and the bottom is sloped to simulate the ß-effect. Because of the
rapid rotation the flow is quasi two-dimensionaL.

The flow is forced by pumping fluid through the tank. If the pumping rate is
suffciently large then this azimuthal flow is unstable to a vortex-forming instabilty.
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Figure i: A sketch of the rotating annulus; the rotation rate is about 1Hz. Flow is forced by

pumping water in through the ring of holes marked by I and withdrawing the same volume
through the other ring marked O. As a consequence of the strong Coriolis forced acting on
the radial flow between these concentric rings there is an azimuthal flow around the annulus.
The experiment is viewed from above using a video camera. Figure courtesy of Eric Weeks.

A typical flow pattern in the rotating frame is shown in figure 2. Evident also in this
figure is the azimuthal jet which runs all the way around the tank. The vortex pattern
can be perturbed experimentally by making the strength of the pumping depend on
azimuth. In this fashion, one can drive an unsteady flow and observe chaotic particle

trajectories.
Automated image processing te'chniques are used to follow nearly neutrally buoyant

tracer particles suspended in such flow. Typical particle trajectories are shown in figure
3. Particles within a vortex remain trapped for very long time (stick). Particles in
the azimuthal jet experience prolonged flights around the circumference of the tank.

Because the vortex pattern is not perfectly stationary particles alternate, apparently
randomly, between flying in jets and sticking in vortices.

One can change the pattern of jets and vortices by altering the diameters of the
circular barriers which confine the flow. Thus it is possible to create a flow with two
oppositely directed jets separated by a vortex chain. In this case the dispersion process

is more symmetric than in figure 4 because the flights go in both directions around the
tank.

During a flight the angular displacement is proportional to the time elapsed since
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Figure 2: Streaks formed by 100s trajectories of 12 particles reveal four vortices. Weeks et
aL. show that the motion of these coherent vortices is chaotic. That is, a velocity spectrum,
obtained by measuring velocity with a hot film probe, is broad band. Figure courtesy of Eric
Weeks.
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Figure 3: Trajectories of three tracer particles in the flow shown in figure 2. The beginning
of each trajectory is indicated by a triangle and the end by with a circle. In (b) the particle
spends most of its life trapped in a single vortex. However, this vortex wobbles erratically
because the flow is chaotic. In parts (a) and (c) the particles experience several episodes of

trapping within a vortex and flight around the tank in the jet. Figure courtesy of Eric Weeks.
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Figure 4: Angular displacement, e(t) for the trajectories in figure 3. There is an obvious
distinction between the flights and the sticking events. The small oscilations during the
sticking events correspond to particle motion within a vortex. Figure courtesy of Eric Weeks.
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the flight began:

!:O :: Ut. (5)

The displacement, !:O, is essentially zero during a sticking event (see figure 4).
The experiments show that the dispersion of an ensemble of particles is superdiffu-

sive. That is

((0 - (0))2) rv tY (6)

where 'l ? 1; typical values are 'Y :: 1.4 to 1.7 depending on the experimental configu-
ration. (It is also possible to observe normal diffusion, 'l = 1, by strongly forcing the
flow and breaking the azimuthal symmetry of the forcing.)

To characterize the motion Solomon et al. used sticking and flying PDFs:

PF(a)da = Probabilty that a flight has a duration E (a, a + da) . (7)

Later in this lecture we wil refer to a as the "lifetime" of a particle in the flying or
sticking state. We figuratively speak of a particle being born into the flying state and
moving coherently for a lifetime a so that the total angular displacement during the
flight is !:O = U a.

The PDF PF is normalized by It' PF(a)da = 1 and

TF = l°OaPF(a) da = average duration of a flight. (8)

The PDF of sticking times, Ps(a), and the average sticking time, TS, are defined
analogously.

Experiments show that as a -+ 00, PF and Ps have algebraically decaying tails:

PF(a) rv a-¡iF, Ps(a) rv a-¡i, (9)

with

2 -c (J-F, J-s) -c 3. (10)

Because of this slow algebraic decay the variance of the lifetimes, defined by

(a2)F,S = l°Oa2PF,s(a) da, (11)

diverges.
The divergence of (a2) F is significant because invoking Einstein's formula for the

diffusivity

D = ((!:O)2) ,
T (12)
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and using lj() = Ua, we conclude that D ex ((lj())2) = U2(a2)F = 00. The divergence
of D is symptomatic of superdiffusion.

Notice that the denominator 'T in (12) is related to the average flying and sticking
times, 'TF and 'Ts, which are both finite. Thus, in the Texas experiments, we can say
that anomalous diffusion occurs because the numerator of (12) is divergent. In other
cases it is the denominator which causes trouble.

The Texas experiments show that anomalous diffusion occurs in realistic and geo-
physically relevant systems. Several theoretical questions suggest themselves. How do
the algebraic tails of Ps and PF arise, and can we make a microscopic models which
exhibits this phenomenon? Can we relate the exponents 'l, ¡JF and ¡Js? (From section
4, the answer to the last question is 'l = 4 - ¡JF.)

2 The telegraph model

The key issue raised by anomalous diffusion is decay of velocity correlations. Thus
our goal is to formulate models for which we can explicitly calculate velocity statistics
and understand the decay of correlations. Our first attempt is not very ambitious: we
begin with the telegraph model, which is the simplest example of a continuous-time

correlated random walk.

2.1 The Lagrangian formulation of the telegraph model
In a telegraph process the velocity of particle n, denoted by un(t), can have only one of
two possible values, +U and -U. The velocity of each particle, un(t), flips randomly
back and forth between ~U with a transition probability a per time. This means that
in a time dt a fraction adt of the ensemble switches velocity. Because the transition

rate, a, is constant we can say that a particle has no "memory" of when it first arrived
in its present state. Thus this telegraph model is Markovian.

We refer to the prescription for constructing a telegraph process as model A. There
is a variant, model B, discussed below.

With the prescription above, the velocity of a particle is a discontinuous function
of time as shown in figure 5. The correlation function and the diffusivity are

100 U2D= corr(t)dt=-,o 2acorr(t) = U2e-2a\tl , (model A). (13)

Notice that the corrtt is infinite at t = 0; this is because the acceleration is infinite at
the discontinuities in figure 5.

To obtain (13), return to the definition of the correlation function

1 N
corr(t) = N L un(O)un(t),

n=l
(14)
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A random telegraph process C(t)=U2exp( -2 altl)
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Figure 5: An example of a telegraph time series, and the telegraph correlation function.

where N is the total number of particles in the ensemble. Suppose that at t the sum
on the right hand side has P(t) positive terms, all equal to U2, and N - P(t) negative
terms, all equal to -U2. Thus

u2
corr(t) = N (2P(t) - NJ . (15)

In a time dt, Padt of the positive terms become negative and (N - P)adt of the

negative terms become positive. Thus, at t + dt,

P(t + dt) = P(t)(1 - 2adt) + Nadt,

and the analog of (15) is:

U2
corr(t + dt) = N (2P(t)(1 - 2adt) + 2Nadt - NJ.

(16)

(17)

Taking the limit dt -- 0 in (17) gives corrt = -2acorrj the solution of this differential
equation is (13).

An alternative telegraph process (model B) is constructed by imagining that at
random instants each particle flips at coin. The flipping rate is a so that in a time dt,
there are N adt coin flips. After each flip, the velocity is +U if there is a head and -U
if a taiL. With this prescription, a particle wil change direction on average once out of
every two tosses. On the other tosses the particle continues in the same direction and
the result is as if nothing happened. Thus with model B we simply replace a by a/2
in our earlier calculations and consequently the correlation function and diffusivity are

-Gorr(t) = U2e-altl, 100 U2D = corr(t) dt = -,o a (model B). (18)
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The difference between model A and model B is triviaL. However the distinction be-
tween the two cases wil plague us later.

If we are searching for a model of anomalous diffusion then the telegraph model is
a disappointment: the exponentially decaying correlation function ensures that D is
finite and that the displacement variance ultimately grows diffusively. We continue our
investigation of the telegraph model in order to better understand "ultimately" and
because in section 4 the telegraph model is used as the foundation of more elaborate'
models which do show anomalous diffusion.

2.2 The Eulerian formulation of the telegraph model
N ow we ignore the Lagrangian information contained in the correlation function (14)
and instead we give an Eulerian formulation of the telegraph process. Let R(x, t)
denote the density (particles/length) of particles moving to the right with velocity +U
and L(x, t) denote the density of left-moving particles with velocity -U. The coupled
conservations laws are

Rt + URx = a(L - R), Lt-ULx=a(R-L). (19)

These equations should be self-evident...
We can put (19) into a revealing alternative form by defining the total concentration,

C(x, t), and the flux, F(x, t), as

C=R+L, F = U(R - L). (20)

In terms of these new variables the model is

Ct + Fx = 0 , Ft + 2aF = -U2Cx . (21)

The first equation is conservation of particles and the second equation is the flux-
gradient relation.

Notice that in (21) Fick's law does not apply - the flux F is not instantaneously

related to the gradient Cx. Equation (21b), which might be called Cattaneo's law

(see the 1989 review by Joseph and Preziosi), can be solved as a first-order differential
equation for F(x, t). Thus, the flux at x is expressed as weighted integral over the past

history of the gradient at x:

F(x, t) = -u21too e-2a(t-t')Cx(x, t') dt' . (22)

The flux has a "fading memory" of the gradient and the exponential in (22) is the
fading factor which strongly weights the most recent values of the gradient.

Next, if we eliminate F from (21), we obtain

Ctt + 2aCt - U2Cxx = 0 . (23)
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Figure 6: Solution of the telegraph equation. at is in the top corner of the paneL. At t = 0,
R = L = exp( -x2 /50). The solid curve is C = R + L, and Rand L are shown as dotted and
dashed curves.
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This is the telegraph equation; the diffusion equation is obtained only as an approx-
imation which applies to the low frequency and wavenumber components of C(x, t).
On these large and slowly evolving scales one can neglect the term Ctt in (23) and so

obtain the approximation

Ct ~ DCxx,
u2D--

- 2a'
(24)

The diffusivity D in (24) was anticipated in (13).
Figure 6 shows a numerical solution of (23) starting with an initial condition of

the form
2 2

R(x,O) = L(x, 0) = e-tL x . (25)

At small times the density C develops a double peaked structure as the left and right
going populations separate. This behaviour is transient, and at longer times the central
part of the concentration relaxes to the well-known Gaussian solution of the diffusion
equation.

According to (23) the disturbance travels at a finite speed: these are the "heat
waves" discussed by Joseph and Preziosi (1989), and also evident in figure 6. The

approximate diffusion equation (24) makes the unrealistic prediction that disturbances
are propagated at infinite speed. This unphysical consequence of the diffusion equation
motivated Cattaneo to propose (21b) as an alternative to Fick's law.

These considerations shows that one cannot blithely assert the validity of the diffu-
sion equation (24) as an exact description of dispersion. The diffusion equation applies
only as an approximatè description of low frequencies and long wavelengths.

2.3 Discretization of the telegraph model

This section is a digression. Read on if you want to learn how to solve the telegraph
equation using a simple numerical scheme. (This is how I drew figure 6.)

We reformulate the telegraph model in terms of discrete variables: divide the x-axis
is divided into segments of length 8x separated by "scattering sites" at Xn = n8x. Time
is also discretized in units of 8t so that t = T8t where T is an integer T = 0,1,2. . .
The walkers move along the x-axis with a velocity that is either +8xj8t or -8xj8t. In

terms of the continuous model in (19)

U= 8x
8t . (26)

When a walker reaches the scattering site at Xn = n8x he is "backwards scattered" or
reflected with probability b and "forward scattered" or transmitted with probability
1 - b. Because the probability of a change in direction, b, is the same for left as for
right moving walkers there is no mean velocity along the line.
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Figure 7: A steady state with constant flux, f = U(1 - b)(R - L), passing through site n.

Let Rn(T)8x be the number of right walkers in the segment n, n8x -c x -c (n+1)8x.
The number ofleft walkers, Ln(T)8x, is defined analogously. Rn and Ln are the discrete
analogs of the continuous densities used in (19).

With these rules and definitions, the discrete evolution equations for the ensemble
are

Rn(T) = (1 - b)Rn-i(T - 1) + bLn(T - 1) ,
Ln(T) = (1 - b)Ln+1(T - 1) + bRn(T - 1).

(27)

(28)

For instance, in the first equation above, the number of right movers in segment n is
equal to the number in segment n - 1 at the previous time that successfully passed
through scattering site n, plus the number of left movers previously in segment n that
were reflected at this same site. Figure 6 shows the result of iterating the discrete
system above.

One exact solution of the difference equations above is

Rn = Ln = Ln+1 = Rn+1 = . . . (29)

This solution is steady: Rn(T) = Rn(T - 1). In fact, (29) is the discrete analog of the
equilibrium solution of the diffusion equation. The distribution of walkers is spatially
uniform with equal numbers going left and right in each interval and there are no
concentration gradients. An individual walker is moving to and fro, but the ensemble
is in steady state.

Next, we consider the constant-flux solution. In figure 7, R right walkers impinge
on site n from the left and L left walkers impinge on n from the right. In steady state
it must be that on the left of n there are bR+ (1 - b)L left walkers moving away, while
to the right there are bL + (1 - b)R right walkers moving away. Thus the flux to the
right of the site is

8x
f = U ((1 - b) R+ bL) - UL = 8t (1 - b)(R - L), (30)
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where we have used U = ox/ot. Because there is a steady state, calculating the flux to
the left of the site gives exactly the same result and so there is a nondivergent flux of
walkers along the line.

Next, we can calculate the concentration difference across the site in figure 7. To
the right of the site the total density of walkers is

c+ = L + bL + (1 - b)R, (31)

while on the left the density is

c- = R+bR+ (1 - b)L. (32)

Combining (31) and (32) we have for the concentration jump across the site

Oc = c+ - c- = 2b(L - R) (33)

Thus, using (30), the flux-gradient relation in steady state is

f = - D ocox'
D = (1 - b) (ox?

2b Ot (34)

Does it seem obvious to you that the diffusivity should diverge as b -- O? If you think
of the diffusivity as the area under the correlation functions then this divergence should
be intuitive. It is an instructive exercise to obtain D in (34b) using Taylor's formula.
(Hint: consider N ~ 1 right walkers which initially set out together. At t = Tot, after
T encounters with scattering sites, how many of these walkers have changed direction
an even number of times, and how many odd?)

Comparing the equation above with our earlier expression for the diffusivity, D in
(13) and (24), we conclude that

b
o'Ot = -b .

1 -
(35)

Thus, with (26) and (35), we can express the parameters'ofthe discrete model, (ox, Ot, b),
in terms of the parameters characterizing the continuous model, U and 0'.

3 Age-stratified populations

The telegraph model from section 2 is Markovian. This means that each particle has a
constant probability per unit time, a, of switching direction. Thus, no matter how long
a particle has been moving to the right (say), its probability of switching direction in the
next dt is always adt. Consequently an exponentially decreasing number of particles

move coherently for long intervals and the telegraph model in (19) does not exhibit
anomalous diffusion.
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A satisfactory description of anomalous diffusion demands a non-Markovian model
in which particles have some memory of their past motion. To obtain superdiffusion it
is necessary that a right-moving particle is less and less likely to change direction as it
spends more and more time moving right1.

Such memory effects are implicit in the models discussed by Weeks et al (1996), and
in several of the articles in the conference proceedings edited by Schlesinger, Zaslavsky
& Frisch (1994). The stochastic models discussed in Schlesinger et aL. draw heavily
on statistical physics. In this lecture we are going to develop the theory from scratch
using a formalism which is accessible to people whose background is in fluid mechanics.
The climb begins with an excursion into the theory of age-stratified populations.

Consider a population of items with a finite lifetimes and a death rate which depends
on age, a. For example, light bulbs in a large building, or the population of the United
States. At time t the age structure of the population is characterized by a density

function for which f(a, t)da is the number of items whose age is between a and a+ da.
In terms of f, the total number of items in the population, N(t), and the average age,
ã(t), are given by

N(t) = l°Of(a, t) da, ã(t) = N-1 l':f(a, t) da. (36)

The density function evolves according to

ft + fa + af = 0, (37)

where a(a) is the death-rate. The term fa in (37) says that the population translates
along the age-axis at a rate one year every year. To completely specify the problem
we must supply an initial condition, and also a boundary condition at a = O. The
boundary condition at a = 0 has an obvious interpretation:

f(O, t) = the birth (or replacement) rate. (38)

In the case of a population of people, the boundary condition above is a flux of babies
into the system.

The Markovian limit is the special case in which a is independent of a. This model
of a is unrealistic for both light-bulbs and people, though it might apply to a population
of radioactive molecules. The Markovian case is very simple because one can integrate
(37) over a and obtain a closed equation for N(t):

Nt + aN = f(O, t) . (39)
Thus if a is constant and we need only the total number of functional items at t then
we do not need to solve partial differential equations and deal with the age structure
of the population.

1 A popular metaphor for the Markovian case is radioactive decay: a molecule has a constant
probabilty per unit time of decaying. As a metaphor for the non-Markovian case, imagine entering

an enormous maze and then trying to find your way back to the entrance. The longer one has
wandered, the less the chance of stumbling on the exit in the next dt.
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3.1 The steady-state solution
As a first ilustrative example, suppose that the replacement rate is adjusted so that
N is constant. (Janitors replace light bulbs as soon as they burn-out.) In this case the
equilbrium solution of (37) is

j(a) = NT-1w(a), (40)

where

w(a) = exp ( -l:(a') da') , T = l°Ow(a) da. (41)

The function W, and its integral T, wil occur frequently in the sequel. Notice that the
replacement rate is j (0) = N / T and this suggests that T should be the average lifetime
of an item. On the other hand, T wil not usually be equal to a in (36). I suggest
brooding on this "paradox" and, as an exercise, see if you can resolve this confusion to
your satisfaction by the end of this section.

In (41) we assume that the death rate a(a) is such that as a -+ 00, W(a) -+ 0 fast
enough to ensure that T is finite. For instance, if a is constant (this is the Markovian
case) then W(a) = exp(-aa) and T= a = 1/a.

If the death rate a decreases with age then the average liftetime T might not be

finite. For example, consider the specific model

v
a = e + a' =? w(a) = (e:a)V (42)

Provided that v :: 1 then the integral of W ( a) converges and T = e / (v - 1).

If v .. 1 then T = 00 and there is no steady solution. To understand this curious
result we must solve an initial value problem (see appendix A). Here we just remark
that if v .. 1 then the average lifetime of a bulb is infinite. Detailed solution of the

initial value problem in appendix A shows that in this case the replacement rate is
j(O, t) ex tv-I. That is, the total number of new bulbs which have been installed
at time t grows like tV ~ t. The hypothetical manufacturer of lightbulbs with v ..
1 is threatened with bankruptcy: sales decrease with time, even though every bulb
eventually fails.

3.2 A cohort of babies
Imagine a cohort of babies leaving the maternity ward together, or a box of new
lightbulbs shipped fresh from the factory. These items wil function for varying amounts
of time, and so we can speak of the PDF of lifetimes. We denote this PDF by P(a),
and our goal is to relate P(a) to the death rate a(a).
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Consider a group of N items which all start with a = 0 at t = O. What fraction of
this cohort survives at t ? O? The surviving fraction is also the fraction of lifetimes
longer than t and so

surviving fraction at t = w(t) = l°Op(a) da.

To calculate the surviving fraction, we solve (37) with the initial and boundary condi-
tions

(43)

f(a,O) = N8(a), f(O, t) = O. (44)

The solution of (37) and (44) is

f(a, t) = N\I(t)8(a - t) , (45)

where W is defined in (41). Thus w(t) is the fraction of the cohort which is stil alive
at time t; we refer to W as the survival function.

It now follows from (43) that the PDF oflifetimes of new items is

P(a) = -wa = aW. (46)

The average lifetime, 7, is given by the equivalent expressions:

7 = l:p(a) da = -l:Wa da = l°Ow(a) da. (47)

Thus, as was suggested in the discussion following (41), to keep a population in equi-
librium the replacement rate is equal to the size of the population, N, divided by the
average lifetime of new items, 7.

3.3 Extinction of a population

As a final example, suppose that at t = 0 we have the steady-state light bulb population
in (40). If the janitors then go on strike, so that bulbs burn out without replacement,
then how many bulbs are stil operating at t ? O? In this example we must solve (37)
with the initial and boundary conditions that

f(a,O) = N7-iw(a), f(O, t) = O. (48)

The solution is

f(a, t) = H(a - t)N7-iw(a) , (49)
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where H(a - t) is the step function. Thus the fraction of surviving bulbs at t is

8(t) = 7-1 l'OO'I(a) da = 7-1 l(a - t)P(a) da.

U sing the specific model of a in (42), the surviving fraction is

(50)

8(t) = (1 + ()-1t)1-V. (51)
8(t) is the most slowly decaying function we have seen so far: as t -+ 00, 8(t) ??

w (t) ~ P (t) . This model may be relevant to the very slow extinction of professors

once the supply of graduate students is cut-off.
Comparing the results in sections 3.1 and 3.2, we see that the steady state popu-

lation in section 3.1 contains more long-lived items than are in a cohort of new items
section 3.2. This means that the average lifetime of the light bulbs currently operating
in the Empire State building is longer than the average lifetime of bulbs shipped from
the factory. The reason is obvious: items with brief lifetimes fail quickly, and wil likely
be replaced with items whose lifetime. is closer to the mean. Thus, fragile individuals

'-are underrepresented in an operational population.

4 The generalized telegraph model
4.1 Formulation

Using the machinery from the previous section we now construct a generalization of the
telegraph model which exhibits anomalous diffusion. In this generalization particles
switch randomly between moving with u(t) = +U, u(t) = 0 and u(t) = -U. The

transition probabilities between these states are functions of the time since the last
transition. In other words, each particle carries an "age", a, which is the time elapsed
since the particle transitioned into its present state. We denote the density of right
moving particles at (x, t), with age a, by R(a, x, t). For left-moving particles the density
is L(a, t, x), and for the stationary particles the density is S(a, x, t). We refer to the
left and right-movers collectively as "flying particles" while the stationary particles are
"stickers" .

The flying particles satisfy the conservational laws

Rt + Ra + URx + aFR = 0, Lt + La - U Lx + aFL = 0, (52)

while the sticking particles have

St + Sa + asS = 0 . (53)

The death, .rates of flying and sticking particles, aF and as respectively, are functions
of age a; it is through this device that particles have a memory of their previous
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history. The price we pay for this nonMarkovian memory is that there are now three
independent variables, (a, t, x).

Stationary particles are born when left and right-moving particles die. And, con-
versely, when a stationary particle dies it is reborn as either a left moving particle or
a right moving particle with equal probability. Notice that in order for a right-moving
particle to become a left-moving particle it must pass through the intermediate state
with u = O. These karmic rules are enforced by boundary conditions at a = 0:

1100
£(0, t, x) = n(o, t, x) = 2 0 as(a)5(a, t, x) da, (54)

and

5(0, t, x) = l°Oap(a)¡£(a, t, x) + n(a, t, x)) da. (55)

Trajectories of particles moving with this generalized telegraph process are shown in
figure 8.

The model we have formulated here is a generalization of the telegraph model in two
ways. First, there are three states: left, right and stationary. This minor embellshment
is motivated by the Texas experiments in which trapping in a vortex corresponds to
the stationary particles. The nontrivial generalization is the introduction of the age

variable used to capture memory effects. As an exercise, the student can show that if
ap and as are independent of a then one can easily integrate over a and reduce (52)
through (55) to a three-state telegraph modeL. (This exercise shows how the boundary
condition at a = 0 works.) As a sequel to this exercise, discuss as -+ 00 and show that
in this limit one obtains effectively a two-state telegraph modeL. Are you surprised
that the diffusivity is given by (18)? That is, why do we recover model B, rather than
model A, when the sojourns in the intermediate state u = 0 are very brief?

In order to model slowly fading velocity correlations and anomalous diffusion we
use

lip
ap(a) = (j ,p+a

liS
as(a) = (j .s+a (56)

With the form above, the transition rates decrease as particles age. Numerical sim-
ulations of the three-state model using the transition rates in (56) show that many
particles move in the same direction for a long time (see figure 9).

The main point of (56) is that if a ?? 1 then the transition rates ap and as
are proportional to a-i. This inverse dependence on age ensures that the flying and

sticking PDFs, Pp and Ps in (7), decay algebraically. Thus (56) incorporates important
experimental information into the mode12. One can make a dimensional argument in

2 As far as scaling exponents are concerned, only the a :;:; i structure of aF and as matter. We
use the specific functional form in (56) for simplicity.
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Figure 8: Trajectories of particles in the generalized telegraph random process. All
particles are released from x = o.

support of (56): O!F and o!s have the dimensions of inverse time. If the only time-scale

relevant for long-lived particles is the particle age, a, then it follows that O!F and o!s

are inversely proportional to a. We now show that the parameters VF and Vs are easily
related to the experimentally measured exponents J.F and J.s in (9).

4.2 The equilibrium solution
The system (52) through (55) has a solution which is homogeneous (ax = 0) and steady
(at = 0). This equilbrium solution is

R(a, x, t) = £(a, t, x) = rW F(a), S(a, t, x) = 2rW s(a) (57)
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Figure 9: A simulation with N = 104 particles; aF(a) = as(a) l- 1.35/a. Upper panels:
PDFs as a function of age and position show that there are many particles that either stick
or move at a constant velocity for nearly the whole simualtion. Center panels: PDFs of the
position of particles develop tails larger than Gaussians as time goes on. Lower panels: PDFs
of the age of particles have a spike at large times, because there is a fraction of particles that

never die.
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where WF,s(a) is

WF,s(a) = exp ( -l~F,s(a') da') . (58)

The constant r in (57) is the transition rate between the different states; r is determined
by the normalization condition:

N = 2r (7S + 7F) , 7F,S = l°OWF,s(a) da. (59)

We can use the results from section 3 to interpret 7F and 7S as the average lifetimes
in the flying and sticking states respectively. Using (46), the PDF of lifetimes in those
states is given by

PF,S = ClF,SWF,S' (60)

Using the expression in (56) for ClF,S, we see that as a -- 00, the survival functions

decay algebraically with W F,S f' a-VF,s, and so PF,s f' a-VF,s-l. It follows that the

exponents f-F and f-s defined in (9) are related to VF and Vs by

lip S = VF S + 1 .r' , , (61)

We can summarize our arguments to this point by observing that the experiments
provide the flying velocity, U; the average lifetime in the flying and sticking states, 7F,S,
and the exponents f-F,S. These five experimental data determine the five parameters
in the generalized telegraph model, namely (U, VF,S, OF,S).

4.3 Formulation of the initial value problem
Now that we have determined the model parameters using experimental constraints it
is time to do some mathematics and use the model to predict the exponent 'l in (6).
The simplest intial value problem we can consider is (52) through (55) with

(R(a, 0, x), S(a, 0, x), £(a, 0, x)) = r (w F(a), 2w s(a), wF(a)) c5(x). (62)

The constant r is given in (57). Thus, the initial population has an equilbrium dis-
tribution of ages and is released at x = O. Because of the symmetry between left and
right moving particles

R(a, t, x) = £(a, t, -x), S(a, t, x) = S(a, t, -x). (63)

Equation (63) greatly simplifies subsequent algebra.
One technical point (which I confess confuses me) is using the equilbrium age

distribution as the initial condition in (62). This choice leads to simple calculations
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below. And perhaps the gross details of the dispersion process, such the exponent 'Y,
are independent of the initial distribution of ages? As an excercise I suggest solving the
initial value problem using other initial conditions e.g., n(a, 0, x) = Ó(a)Ó(t) etcetera.
Are there any significant differences in the t -t 00 structure of the solution?

Our strategy wil be to obtain a closed hierarchy of spatial moments by multiplying
the conservation laws (52) and (53) by xn and integrating over x. It is possible to solve
the first few members of the hierarchy and show that if aF,S and has the form in (56)
with 1 .. v .. 2 then as t -t 00

(x2) = 100 1:2 (n(a, t, x) + S(a, t, x) + £(a, t, x)J dxda ex t3-VF . (64)

Before entering this calculation, we give a simple argument which suggests how the
anomalous exponent 3 - VF :; 1 arises in (64).

The variance (x2) in (64) can alternatively be written as

N

(x2) = ~ Lx~.
n=l

(65)

At time t :; 0 some of the N particles wil have moved coherently with unchanging

velocity (either +U or -U) ever since t = 0; half of these particles wil be at x = Ut
and the other half at x = -Ut. These "coherent particles" each contribute a term U2t2

to the sum on the right hand side of (65). The number of coherent flying particles is
just 8(t)N where 8(t) is given by (51) with v replaced by VF. Thus, because every

term in the sum in (65) is positive, one has

(x2) :; 8(t)U2t2 rv U2()~-lt3-VF (66)

The inequality (66) has teeth only if 3 - VF :; 1: then we learn that the coherent

particles alone produce a superdiffusive contribution to the variance.
The argument above may suggest to you that superdiffusion is due solely to the few

extreme particles which move without changes in direction. This is an overstatement:
the lower bound in (66) is generously less than the exact result for (x2) which we
obtain in the next section. Thus "nearly-coherent" particles, meaning particles which

change direction only once or twice, also make a large contribution to the sum in (65).
This is an essential point, because in their analysis of the experiments Solomon et aL.
discarded all coherent particles from the data set3. Thus the exponent measured by
Solomon et al reflects only the contribution of nearly coherent particles.

3This drastic procedure is necessary because some fraction of the experime nta! paricles are in
integrable regions and will fly forever. Retaining all these paricles wil ultimately lead to the trival

ballstic exponent 'Y = 2.
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4.4 Solution of the initial value problem

This is a dry section which contains the details of the analytic calculation of (x2). The
main point of interest here is that a lot of the algebra can be avoided by proving (75)
below. (I suggest this as an exercise.)

The spatial moments are defined by

(Rn (a, t) , 5n(a, t), £n (a, t)J = l:n (R(a, t, x), S(a, t, x)£(a, t, x)J dx, (67)

Because of the symmetry in (63)

Rn(a, t) = (-it£n(a, t), Sn(a, t) = 0 if n is odd. (68)

The result above allows us to work exclusively with Rn and Sn while retaining full
information about the distribution. Using the symmetry, the variance can be written

as

(x2) = 1r;R2 + 52 da. (69)

The zeroth moment of (52) through (55), with the initial condition in (62) is

(Ro(a, t), So (a, t), £o(a, t)J = r (w F(a), 2w s(a), W F(a)J . (70)

That is, the zeroth moment is just the equilibrium solution. (This is why using the
equilibrium age distribution as the initial condition is so convenient.)

Using (68), the first spatial moment is Si = 0, £i(a, t) = -Ri(a, t) and

RIt + Ria + O:FRi = UrWF, Ri(O, t) = 0, Ri(a,O) = o. (71)

The solution of the initial value problem (71) is

Ri(a, t) = UrWF(a) min(a, t). (72)

The second moment equations are £2 = R2 and

R2t + R2a + O:FR2 = 2URi, S2t + S2a + O:SS2 = 0, (73)

with the a = 0 boundary condition that

2R2(0, t) = lOOo:s (a)S2 (a, t) da, S2(0, t) = 21°OO:F(a)R2(a, t) da. (74)

To obtain the variance in (69) we do not need the complete solution of (73) and (74).
Instead, after some judicious integration over a, one finds that

d 100
dt (x2) = 4U 0 Ri(a, t) da. (75)
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Substituting (72) into the result above we obtain

:t (x2) = 4U2r ¡l~WF(a) da + t l°OWF(a) daJ . (76)

If the right hand side of (76) approaches a constant as t -+ 00 then the variance grows
diffusively. Otherwise there is anomalous diffusion.

With (76) in hand, one can easily determine if particular models of O!F and W F lead

to anomalous diffusion. For example, with the model in (56), evaluating the integrals
in (42) gives a pleasant exact solution

~ (x2) = 4U2r8~ r (1 + l)2-vF + 1 J 'dt L (2 - lIF )(lIF - 1) (lIF - 1)(lIF - 2)
where l- t18.

The asymptotic behaviour at large time depends crucially on lIF. If lIF ). 2 then
there is normal diffusion:

(77)

d ( 2) 4U2rO~ O( 2-vF)-x ~ + t .dt (lIF - 1)(lIF - 2) (78)

If 1 ~ lIF ~ 2, there is superdiffusion

d 4U2r82l2-VF
dt (x2) ~ (2 _ lIF )(lIF _ 1) + 0(1) . (79)

(At lIF = 2 there is a logarithmic term.)
Notice the minor role of O!s(a) in the solution above: if liS ). 1, so that the mean

sticking time is finite, then the parameters liS and Os occur only in r.

4.5 An exercise for the diligent student
Consider an asymmetric two-state model

Lt + La + ULLx + O!L(a)L = 0, 'Rt + 'Rx + UR'Rx + O!R(a)'R = 0, (80)

with the boundary conditions

L(O, t, x) = l°OO!R(a)'R(a, t, x) da, 'R(O, t, x) = l°OO!da)L(a, t, x) da. (81)

Show that the average velocity is

u= TLUL+TRUR,
T£ + TR

TL,R = l°OWL,R(a) da, (82)
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where WL and WR are defined by analogy with (41). Show that the Laplace transform
of the velocity autocorrelation function is given by

A ( ) _ U2 ¡! _ 7"£ + TR (1 - ?,L)(1 - ?,R)Jcorr s - RMS A A ,S TLTR s2(1 - 'ØL'ØR) (83)

where

2 _ TL + TRURMS = ~ URUL.
V TL TR

(84)

(If you use the moment method, you wil need Laplace transforms to solve the integral
equation which arises at n = 1.) Using the model

1/RL
aR,da) = () , ,

R,L+a

perform an asymptotic analysis of (83) to identify the anomalous diffusion exponents
which occur if either or both of 1/L and 1/R are less than 2.

(85)
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A Solution of an initial value problem
In this appendix we discuss the issue raised at the end of section 3.1 and analyze a
problem in which the death rate of old items is so small that the average lifetime T is
infinite. For example, this is the case 1/ .: 1 in (42). Specifically, consider the initial
value problem posed by (37) with the initial and boundary conditions

j(a,O) = Nó(a), j(O, t) = r(t) . (86)
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In (86) the replacement rate r(t) is determined by requiring that

N = l°Oj(a, t) da. (87)

The solution of (37) and (86) is

j = Nw(t)8(a - t) + w(a)r(t - a). (88)

The first term on the right hand side of the equation above is the cohort of initial items
aging and dying. The second term is influx of new items. Imposing (87) on (88), we
obtain an integral equation for r:

N = Nw(t) + l~(a)r(t - a) da. (89)

The integral relation above is known as the renewal equation
Because of the convolution in (89), the Laplace transform

(\Î(s), f(s)) = l°Oe-sa(w(a), r(a)) da,

is gratifying. In this way we find from (89) that

f = N 1 - ASW .
S W

(90)

(91)

The large-time behaviour of r(t) can be obtained from (91) using standard asymptotic
methods.

If a(a) ex 1/a as a -+ 00, then the rightmost singularity of ~(s)in the complex

s-plane is th~ branch-point at s = O. We show below in (94) through (97) that the
. structure of W at this branch-point is

w(s) = wsv-1 + T + ... (92)

If ZI .. 1 then the singular term involving sv-l dominates the constant T as s -+ O. In
this case, from(91),

f(s) r- ~,
wsV

=:
Ntv-1

r(t) r- wr(zi)' as t-+oo (93)

Because ZI .. 1 the replacement rate vanishes as t -+ 00.
To explain the small-s expansion in (92), we use the model death-rate in (42), which

produces the survival function

w(a) = (8~a)V (94)
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The Laplace transform in (90) is then

~(s) = 0IlSIi-1ellsl(1 -Zl,OS), (95)

where l(a, x) is the incomplete l-function defined by Abramowitz & Stegun in their
article 6.5.3. This Laplace transform can be rewritten as

~(S) = Oil SIi-1ellsl(1 - ZI) - Ol(l - ZI) f (Os)n .
n=O l (2 - ZI + n)

(96)

The form above is convenient because the singular terms containing SIi-1 are localized
in the first function on the right hand side. When s -(-( 1 the expansion of (96) is~ 0

w(s) = Olll(l - ZI)SIi-1 + -- + O(s, Sll) ,
ZI - 1 (97)

which is the form assumed in (92).
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