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1 Stratonovich Interpretation of an SDE

There are different ways of interpreting stochastic differential equations (SDE). We know
Itō’s interpretation that gives the evolution equation for the transition density
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∂xi
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)
ρ = − ∂
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Here, ~J is a probability current vector field and gij are functions of x and t (i.e. g = g(x, t),
but for simplicity we will suppress the arguments).

The transition density satisfies an evolution equation when we differentiate with respect
to the initial time, i.e. the Kolmogorov backward equation
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We are still in a white noise limit and we should still get Markov process as the solution
of the SDE (i.e. X(t)).

Now, we consider two examples where two different kinds of white noise limits give the
same answer. Consider the process (in one dimension for simplicity)

Ẋ = f(X) + g(X)× (“approximate white noise”).

White noise has a spectrum that is flat, meaning that correlation function is the delta-
function. However if there is a very short time correlation (that we just can not resolve well
enough), then this noise can be considered as an approximate white noise (note it is still
a real noise). We take a very specific example of approximate white noise as a Gaussian
process g(X), that is statistically stationary with a very short correlation time τ . For
example, we may consider the Ornstein - Uhlenbeck process ζ(t), whose SDE is

dζ(t) = −1

τ
ζ(t)dt+

1√
τ
dW.
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We pick the amplitude of the noise to be 1/
√
τ , when the relaxation time gets smaller and

smaller, the noise influence gets bigger and bigger. The Fokker - Planck equation for ζ(t)
becomes
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and we see that τ is a time scale for the evolution transition density. The stationary solution
of this equation is the Gaussian distribution

ρstat(z) =
1√
π
e−z

2 ∼ N (0, 1).

Moreover, the stationary correlation function is an exponential decay

E(ζ(t)ζ(s)) =
1

2
e−
|t−s|
τ ,

so that the power spectrum of the process is a Lorentzian spectrum

S(w) =
τ

1 + w2τ2
.

When τ goes to zero, the spectrum widens but the amplitude decreases to zero. In order
to prevent this the amplitude from vanishing, we rescale

ζ(t)→ 1√
τ
ζ(t),

so that the spectrum becomes

S(w) =
1

τ

τ

1 + w2τ2
.

The amplitude of the spectrum is now 1 when τ → 0.
The arguments above lead us to conclude that the system of SDEs

dX

dt
= f(X) + g(X)

1√
τ
ζ(t), (1)

dζ

dt
= −1

τ
ζ +

1√
τ
ξ(t), (2)

in the limit of short correlation time τ behaves similarly to an SDE for X where the noise
is approximately white (note the functions f and g could have explicit time dependence).
The combination (1) and (2) is a vector-valued Markov process, and the Fokker - Planck
equation for its transitions density is

∂
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We would like to deduce from this an evolution equation for the distribution of X alone, i.e.
the marginal (reduced) distribution

r(x, t|x0, t0) =

∫
dz

(∫
ρ(x, z, t|x0, z0, t0)ρstat(z0)dz0

)
,
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in the limit τ → 0.
To this end, let ε =

√
τ and rearrange equation (3) by grouping terms of order εn. We

obtain

0 =

(
1

ε2
F0 +

1

ε
F1 + F2

)
ρ, (4)

where

F0 =
∂

∂z
(z +

1

2

∂

∂z
) – the Ornstein - Uhlenbeck operator,

F1 = −z ∂
∂x
g,

F2 = −(
∂

∂t
+

∂

∂x
f).

Our ansatz is

ρ(x, z, t|x0, z0, t0) = ρ0 + ερ1 + ε2ρ2 + ... ,

i.e. the subscript of each ρi in the expansion indicates the corresponding power of ε. Now
we plug this expression for ρ into (4) and group the terms according to the order of ε to
obtain

O(ε−2) : 0 = F0ρ0 (5a)

O
(
ε−1
)

: 0 = F0ρ1 + F1ρ0 (5b)

O(ε0) : 0 = F0ρ2 + F1ρ1 + F2ρ0 (5c)

We keep in mind that we want to derive from this an evolution equation for the reduced
distribution

r(x, t|x0, t0) =

∫
dz

(∫
ρ(x, z, t|x0, z0, t0)ρstat(z0)dz0

)
= r0 + εr1 + ε2r2 + ... (6)

We know all properties of the operator F0; in particular, we can solve the eigenvalue problem

F0pn(z) = −npn(z),

to find the eigenfunctions

pn(z) = Hn(z)pstat(z) ≡ Hn(z)p0(z),

where the Hermite polynomials Hn are defined as

Hn(z) = (−1)nez
2 dn

dzn
e−z

2
,

H0(z) = 1,

H1(z) = 2z,

H2(z) = 2(2z2 − 1).

32



We may compute all Hermite polynomials using the recursion relation

zHn(z) =
1

2
Hn+1(z) + nHn−1(z).

Now we are ready to solve (5a) to find

0 = F0ρ0 ⇒ ρ0(x, z, t) = p0(z)r0(x, t)

where p0(z) can be multiplied by any function of x and t (it plays the role of the amplitude
of the eigenfunction p0 at each point in space and time). In this case this function is r0(x, t)
because if we integrate ρ = ρ0 + ερ1 + ... over z to obtain r, the leading term is exactly r0.

To order ε−1, equation (5b) now reads

F0ρ1 = −F1ρ0 = zp0(z)
∂

∂x
gr0(x, t) =

1

2
p1(z)

∂

∂x
gr0(x, t)

where we used the recursion relation to replace zp0 = p1/2. Here, we deal with a linear
inhomogeneous differential equation and the general solution of this equation is a particular
solution plus a general solution of the homogeneous equation. Therefore

ρ1 = − 1

2

∂

∂x
gr0(x, t)p1(z)︸ ︷︷ ︸

particular solution

+ r1(x, t)p0(z)︸ ︷︷ ︸
general solution

.

Finally, upon substitution of ρ0 and ρ1, equation (5c) becomes

F0ρ2 = z
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g

(
−1

2
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)
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+

∂

∂x
f

)
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Let us now use zp1 = 2z2p0 = 1
2p2 + p0 and zp0 = 1

2p1, to show that
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]
.

(7)

Again, we need to add a particular solution and the solution of the homogeneous equation,
i.e. ρ2 = ρpart + r2(x, t)p0. In order for a particular solution for this equation to exist
the right hand side should be orthogonal to null space of the operator F0. We know that
F0p1(z) = −p1(z) and F0p2(z) = −2p2(z), but we can not invert F0 on p0(z). Thus, in
order to solve (7) the coefficient of p0(z) has to vanish and this gives a condition on r0(x, t)

∂

∂t
r0(x, t|x0, t0) =

∂

∂x

(
−f +

1

2
g
∂

∂x
g

)
r0(x, t)
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If we find r0(x, t) that satisfies this, we can get an explicit equation for r1(x, t), r2(x, t)
etc. So if start with a real noise that is very fast (τ → 0, or ε → 0 in (6)), equation (1)
becomes an SDE with an approximate white noise, r(x, t)→ r0(x, t) as r0(x, t) is the leading
order term and we conclude that ρ(x, t|x0, t0) of the process X satisfies the Fokker - Planck
equation (a.k.a. Forward Kolmogorov Equation)

∂

∂t
ρ =

∂

∂x

(
−f +

1

2
g
∂

∂x
g

)
ρ︸ ︷︷ ︸

Stratonovich Fokker - Planck

. (8)

We remark that Itō’s interpretation of the SDE yielded the Fokker - Planck equation

∂

∂t
ρ =

∂

∂x

(
−f +

1

2

∂

∂x
g2

)
ρ︸ ︷︷ ︸

Itō’s the Fokker - Planck

. (9)

Thus if g is not a function of x (an additive noise), the transition density satisfying (8) is
the same as that obtained from Itō’s interpretation.

In the case of multiplicative noise, i.e. g = g(x, t), can rewrite equation (8) as

∂

∂t
ρ =

(
−f − 1

2
gg′ +

∂

∂x
g2

)
ρ (10)

and then this equation is in the Itō form but with the modified drift. So if we let f 7→ f+ 1
2gg
′

in the SDE (9), then equation (10) describes the evolution of X according to the Itō’s SDE.

2 Interpretation of an SDE: Itō vs Stratonovich

As remarked at the end of the previous section, in Itō’s calculus the solution Xt = X(t) of
the SDE

dXt = f(Xt, t) dt+ g(Xt, t) dWt (11)

is the Markov process Xt whose transition density ρ(x, t|x0, t0) satisfies the Itō’s Fokker-
Planck equation

∂ρ

∂t
=

∂

∂x

(
−f +

1

2

∂

∂x
g2

)
ρ (12)

(note the convention that an operator acts on all terms to its right). As previously explained,
this followed from interpreting (11) as the continuous-time limit of the discrete-time process
X(t + ∆t) −X(t) = f [X(t), t] ∆t + g[X(t), t] ∆W , where ∆W = W (t + ∆t) −W (t) is the
jump of a Wiener process over the time interval ∆t.

In the Stratonovich interpretation of (11), instead, the stochastic forcing in the SDE
is obtained as the white-noise limit of a coloured stochastic process, such as the Ornstein-
Uhlenbeck process. In this case, it is customary to write the SDE as

dXt = f(Xt, t) dt+ g(Xt, t) ◦ dWt, (13)

where the “ ◦ ” sign indicates that dWt should be interpreted as the white-noise limit of a
coloured noise. The difference with Itō’s interpretation is that the solution to (13) is the
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Markov process Xt whose transition density ρ(x, t|x0, t0) satisfies the Stratonovich Fokker-
Planck equation

∂ρ

∂t
=

∂

∂x

(
−f +

1

2
g
∂

∂x
g

)
ρ. (14)

Clearly, the differential operators in equations (12) and (14) differ unless g(x, t) is a
constant, and the evolution of the PDF ρ depends on which interpretation of the SDE is
chosen. However, an Itō SDE can easily be reformulated as a Stratonovich SDE (and vice
versa). In fact, the solution of (11) is the same (in the sense of its statistics) as that of the
Stratonovich SDE

dXt =

[
f − 1

2
g
∂g

∂x

]
dt+ g ◦ dWt, (15)

since the corresponding Fokker-Planck equation, computed from (14) using the modified
drift f − 1

2g
∂g
∂x , can be rearranged to obtain (12). Similarly, one can see that the solution

of (13) is the same (again, in the sense of its statistics) as the solution of the Itō SDE

dXt = f dt+
1

2
g
∂g

∂x
+ g dWt. (16)

This is particularly convenient since many physical systems are modelled by a coloured
noise with very fast dynamics, which corresponds to a Stratonovich interpretation of the
SDE; however, Itō’s formulation is easier to implement numerically to simulate the system
(for example, via the simple Euler-Maruyama or Milstein discretisation schemes).

Finally, we note that the Stratonovich interpretation maintains the standard rules of
calculus for the differential of the random variable Yt = F (Xt), i.e.

dYt = dF (Xt) = F ′(Xt) ◦ dXt. (17)

The symbol “ ◦ ” indicates that Xt obeys a Stratonovich SDE. Equation (17) can be shown
for one-dimensional processes if we assume that F is invertible, with inverse G. Then, the
transition density ρY (y, t|y0, t0) of Yt is related to ρX(x, t|x0, t0) by

ρY (y, t|y0, t0) = ρX [G(y), t|G(y0), t0)]G′(y), (18)

Moreover, noticing that G′(·)F ′(·) = 1 and ∂
∂y = G′ ∂∂x one obtains

∂
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∂

∂t
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=
∂

∂x

(
−f +

1

2
g
∂

∂x
g

)
ρY

=
∂
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(
−F ′f +

1

2
F ′g

∂

∂x
g
F ′

F ′

)
ρY

=
∂
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(
−F ′f +

1

2
F ′g

∂

∂y
gF ′
)
ρY .

(19)

The claimed result follows from the Fokker-Planck equation for a Stratonovich SDE, which
implies dYt = F ′(f dt+ g ◦ dWt) = F ′(Xt) ◦ dXt.
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Example 1. (Stratonovich Logistic Equation) Consider the logistic equation

dXt = (µ̄Xt −X2
t )dt+ σXt ◦ dWt

where Xt ≥ 0 is the size of a population at time t and µ̄ and σ are given constants. The
corresponding Fokker-Planck equation is

∂ρ

∂t
=

∂

∂x

(
x2 − µ̄x− σ2

2
x+

σ2

2

∂

∂x
x2

)
ρ,

and the corresponding stationary distribution can be calculated as

ρstat(x) = N x

(
2µ̄

σ2−1
)

exp

(
−2x

σ2

)
,

N =

(
σ2

2

)− 2µ̄

σ2
[
Γ

(
2µ̄

σ2

)]−1

.

Moreover, the exact solution of the Stratonovich Logistic equation can be found using an
appropriate change of variables. Dividing (1) by X2

t dt and applying the chain rule (17), we
have

− d

dt

(
1

Xt

)
=

µ̄

Xt
+

σ

Xt

dWt

dt
− 1.

Letting Yt = (Xt)
−1, we obtain the differential equation

dYt
dt

+ [µ̄+ σξ(t)]Yt = 1,

which can be solved to find

Yt = Y0 e
−µ̄t−σW (t) + e−µ̄t−σW (t)

∫ t

0
eµ̄s+σW (s)ds

∴ Xt =
X0 e

µ̄t+σW (t)

1 +

∫ t

0
eµ̄s+σW (s)ds

.

Sample realisation of the SDE are shown in Figure 1, while Figure 2 illustrates the
stationary transition density functions. For any noise amplitude σ, the process is driven by
the exponential growth eµ̄t, until saturation. The qualitative difference with Itō’s interpre-
tation of the same SDE (the solution of which can be found by substituting µ̄ 7→ µ̄− 1

2σ
2,

cf. Lecture 3) is remarkable: in the Itō’s interpretation a stationary probability distribution

ceases to exist when σ2 > 2µ̄, i.e. when the exponential term e(µ̄−
1
2
σ2)t decays in time. In

terms of the population dynamics described by the SDE, this means that Itō’s formulation
predicts extinction (at least in the infinite-time limit) when σ2 > 2µ̄, while the individuals
are always alive for any σ according to the Stratonovich solution (see the case σ = 2 in
Figure 1).
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Figure 1: Sample realisation of the stochastic logistic equation, compared to the determin-
istic version (no noise) for µ̄ = 1, x0 = 0.1 and increasing noise amplitude σ. Clockwise
(starting top-left): σ = 0, σ = 0.05, σ = 0.5, σ = 2.
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Figure 2: Comparison between the analytical transition density ρstat(x) and the density
function computed over 104 realisations of the SDE for σ = 0.5 (top) and σ = 2 (bottom).
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3 Stratonovich SDEs for Vector-Valued Processes

The results presented in the previous section can be generalised to vector-valued processes.
If X(t) = (X1(t), X2(t), ...) satisfies the set of SDEs

dXi(t) = fi(X(t), t)dt+ gij(X(t), t) ◦ dWj(t), i = 1, 2, ..., N, j = 1, 2, ...,M, (20)

then its transition density ρ(x, t|x0, t0) can be computed with the Fokker-Planck equation

∂

∂t
ρ =

∂

∂xi

(
−fi(x, t) +

1

2
gik(x, t)

∂

∂xj
gjk(x, t)

)
ρ. (21)

Finally, we can translate this into the Itō’s formulation (and vice versa) by modifying
the drift in the same way as for the one-dimensional case.

4 White-noise Limit of a Dichotomous Markov Process

A symmetric dichotomous (a.k.a. two-step) Markov process I(t) (t ≥ 0) can take two values
A and −A (see Figure 3), the transition between one state and the other taking place at
a constant rate α. The time intervals between state transitions are thus exponentially
distributed and the probabilities p+(t) = P[I(t) = A] and p−(t) = P[I(t) = −A] evolve
according to the master equation

d

dt

(
p+(t)
p−(t)

)
=

(
−α α
α −α

)(
p+(t)
p−(t)

)
. (22)

This equation can be solved to find(
p+(t)
p−(t)

)
=

1

2

(
1 + e−2αt 1− e−2αt

1− e−2αt 1 + e−2αt

)(
p+(0)
p−(0)

)
, (23)

where p+(0) and p−(0) are the probabilities that the process starts at A or −A respectively,
with p+(0) + p−(0) = 1. The stationary distributions are immediately found as(

pstat
+

pstat
−

)
=

(
1
2

1
2

)
(24)
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Figure 3: Sample realisation of I(t) for α = 1, A = 5.
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and the conditional distributions P[I(t) = A|I(0) = ±A], P[I(t) = −A|I(0) = ±A] are
obtained by setting p+(0) and p−(0) to 1 and 0 in turn. Specifically, one has

P[I(t) = A|I(0) = ±A] =
1

2

(
1± e−2αt

)
,

P[I(t) = −A|I(0) = ±A] =
1

2

(
1∓ e−2αt

)
.

(25)

The conditional expectations can be used to compute the correlation

E[I(t)I(0)] =
∑

n,m∈{A,−A}

nmP[I(t) = n; I(0) = m]

=
∑

n,m∈{A,−A}

nmP[I(t) = n|I(0) = m]P[I(0) = m]

= A2 e−2αt,

(26)

for t ≥ 0, which can be generalised to E[I(t)I(s)] = A2 e−2α|t−s| for any two time instants t
and s. This means that the dichotomous process has the Lorenzian power spectrum

S(ω) =

∫ +∞

−∞
A2 e−2α|t|e−iωtdt =

A2

α

4α2

4α2 + ω2
. (27)

Note that, as shown in Figure 4, S(ω) tends to a white spectrum in the limit α → ∞ if
A =

√
α.

Let us now consider a stochastic process Xt evolving according to

dXt = f(Xt, t)dt+ g(Xt, t)I(t). (28)

The transition density of this process can be computed as ρ(x, t|x0, t0) = ρ+(x, t|x0, t0) +
ρ−(x, t|x0, t0), where the transition densities ρ+ and ρ− correspond to the mutually exclusive
cases I(t) = A and I(t) = −A and satisfy the master equation

∂

∂t

(
ρ+

ρ−

)
=

(
−α− ∂

∂x (f +Ag) α

α −α− ∂
∂x (f −Ag)

)(
ρ+

ρ−

)
. (29)
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Figure 4: Correlation spectrum of I(t) for A =
√
α and increasing values α.
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Letting α = A2 in order to obtain the correct scaling of the noise spectrum, the equations
for ρ = ρ+ + ρ− and for q = ρ+ − ρ− then read

∂

∂t

(
ρ
q

)
=

(
− ∂
∂x (fρ+Agq)

−2A2q − ∂
∂x (fq +Agρ)

)
. (30)

When the noise amplitude A is very large, we argue that ρ and q can be expanded as

ρ(x, t) = ρ0(x, t) +
1

A
ρ1(x, t) + higher order terms

q(x, t) = q0(x, t) +
1

A
q1(x, t) + higher order terms

(31)

so that the evolution of the random variable Xt in the white-noise limit is described by ρ0.
Substituting into (30) and collecting terms of the same order yields

O(A2) : 2q0 = 0, (32a)

O(A) :


2q1 +

∂

∂x
(g ρ0) = 0,

∂

∂x
(g q0) = 0,

(32b)

O(1) :


∂q0

∂t
+ 2q2 +

∂

∂x
(fq0 + g ρ1) = 0,

∂q0

∂t
+

∂

∂x
(fρ0 + g q1) = 0,

(32c)

from which the following Fokker-Planck equation can be derived for ρ0:

∂ρ0

∂t
=

∂

∂x

(
−f +

1

2
g
∂

∂x
g

)
ρ0. (33)

This equation is the same as the Stratonovich Fokker-Planck equation. We conclude that
the solution to the SDE

dXt

dt
= f(Xt, t) + g(Xt, t) ◦ ξ(t), (34)

where ξ(t) is the white-noise limit of a dichotomous Markov process (a.k.a. dichotomous
noise or DMN), is the process Xt whose transition density satisfies the Stratonovich Fokker-
Planck equation.
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