
Lecture 4: Radiative-Convective Equilibrium and Tropopause

Height

Geoff Vallis; notes by Erica Rosenblum and Ashley Payne

June 19

We now consider what the effect of convection might be on all the concepts and so-
lutions found in lecture 2. Because our interest in mainly in the large scale structure of
the atmosphere we will take a somewhat simplistic view of convection and suppose that
it acts to restore an unstable lapse to something that is neutrally stable, that lapse rate
being given by either the dry adiabatic or moist adiabatic lapse rate. Readers interested
in finding out more about convection and radiative-convective equilibrium should consult
Kerry Emanuel’s lecture notes.

1 Radiative-convective equilibrium

In lecture 2 we found that in radiative equilibrium the temperature falls off very rapidly
with height in the lower atmosphere, so much so that it is likely to be convectively unstable.
We imagine the atmosphere will convect and that the lapse rate will adjust until it is stable,
as in Fig. 1, up to some height HT . Sometimes, either instead of or in addition to, heat may
be transported upwards by large-scale motion such as baroclinic waves. In either case, let us
suppose that the dynamics acts such as to produced constant lapse rate up to some height
HT , which we will later associate with the tropopause. We wish to obtain an expression for
that height. That is, we seek a solution for which

z ≤ HT : T = Ts − Γz (1a)

z > HT : Radiative equilibrium, satisfying (lec.2:26) and (lec.2:32) (1b)

Further, since we are imposing a convective heat flux, we can suppose that at the surface the
temperature is continuous, so that the ground temperature is such that σT 4

g = U(z = 0).
To obtain a solution we might just think of adjusting the lapse rate in (lec2:fig.7) so that

there is no net heating, and this may indeed be what convection does on a short timescale.
However, an overall radiative balance is not necessarily then achieved, so that the system
will then evolve further. The variable in this equation is HT , and this can be adjusted until
(lec.2:36) is satisfied, with the outgoing radiation The solution of these equations requires
an iterative approach and the algorithm is as follows.

1. First solve the radiative transfer equations for radiative equilibrium.

2. Make a guess for the height of the tropopause, and hence obtain the temperature all
the way down to the ground.
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Figure 1: Radiative equilibrium temperature (solid curve) calculated using (lec.2:36), with
an optical depth of τ0 = 8/3, Ha = 2 km and a net incoming solar radiation of 239 W m −2.
The dashed line shows a schematic adjusted temperature with a lapse rate of 6.5 K km −1

up to a tropopause (at about 11 km here) and a radiative equilibrium temperature in the
stratosphere.

3. Integrate the radiative transfer equations down from the top. The outgoing radiative
balance is achieved this way, but there is no balance at the surface if temperature is
continuous. That is, σT 4

g 6= U(z = 0).

4. Change the height of the tropopause, find another solution, and iterate until the
surface radiative balance is achieved.

An alternative is to specify the surface temperature and integrate the radiative transfer
equations up along a given lapse rate from the bottom to a certain height, beyond which we
suppose that radiative equilibrium holds. This procedure will not give the correct outgoing
radiation, so the procedure must again be iterated.

1.1 Global Warming

Without actually solving the RCE equations we can make an important deduction as to
what happens to the height of the tropopause under global warming, that is what happens
when additional carbon dioxide is added to the atmosphere. If the atmosphere stays in
radiative balance (which it will in the long term) then the outgoing radiation remains the
same. If the stratosphere has a small optical depth then its temperature stays the same
from (lec.2:40). Therefore the temperature of the tropopause must stay the same! However,
the height of the emitting temperature must increase, because the emissivity of the lower
atmosphere increases, and the photons that reach space come, on average, from a higher
level in the troposphere. And, as a consequence, the troposphere warms as illustrated in
Fig. 2. But if the temperature of the tropopause is to stay the same then its height must
increase, and a simple calculation tells us by how much.
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Figure 2: Schematic of temperatures before (blue line) and after an increase in optical depth
of the atmosphere, such as happens in global warming. The troposphere warms but the
emitting temperature stays the same. Hence the tropopause temperature stays the same
and the height of the tropopause increases.

If the lapse rate stays the same then the tropopause height will increase by an amount
∆HT given by

∆Ht =
∆Ts

Γ
(2)

where ∆Ts is the change in surface temperature. If we allow the lapse rate to change also,
then

∆Ht =
∆Ts

Γ
−Ht

∆Γ

Γ
(3)

or
∂Ht

∂Ts
=

1

Γ
− HT

Γ

∂Γ

∂Ts
. (4)

If we suppose that Γ is the moist adiabatic lapse rate then we can calculate this expression
analytically, and some results are shown in Fig. 3, where the lapse rate is assumed constant
with height and a function of surface temperature. It is interesting that the increase in
tropopause height is quite significant – about 400 m per degree – and that both the direct
temperature effect and the lapse rate effect are important (at least in regions where the lapse
rate is moist adiabatic). An increase in tropospheric height is one of the most robust results
we have concerning changes of the structure of the atmosphere under global warming, as
discussed more in Vallis et al. (2014).

2 The Height of the Tropopause

We now provide an approximate, analytic, expression for the height of the tropopause.1 We
assume the following.

1This section is joint work with Pablo Zurita-Gotor.
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Figure 3: (a) Contours of change in tropopause height (km) as a function of temperature
change and lapse rate change, calculated using (3). (b) Rate of change of tropopause height
with temperature (∂Ht/∂T ) as a function of temperature, calculated using (4).

1. Single column (so a one-dimensional calculation).

2. Grey atmosphere with an optical thickness that decays exponentially with height.

3. A specified lapse rate to some height HT , beyond which there is radiative equilibrium.

4. An optically thin atmosphere in the upper troposphere and stratosphere.

5. An overall radiative balance. So the outgoing IR radiation is specified (equal to net
incoming solar).

6. No surface temperature discontinuity. So ground temperature equals surface air tem-
perature (Tg = Ts), and the upwards radiation at z = 0 is given by σT 4

g .

2.1 Algorithm

To find an exact solution the equations must be iterated, and an algorithm for that is as
follows.

1. First numerically integrate (lec.2:33) to obtain a radiative equilibrium solution.

2. Guess a height for the tropopause and thus obtain a temperature at all levels below
that, including the ground, using the given lapse rate.

3. Calculate the radiative fluxes by integration of (lectire 2:33) down from the top. The
upwards radiation at the ground will in general not equal σT 4

g .

4. Adjust the height of the tropopause and repeat step (2) and (3).

5. Iterate the calculation until a surface balance is achieved.
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An alternative procedure is to guess a surface temperature and integrate the equations up,
assuming a constant lapse rate up to a height HT , with radiative equilibrium beyond. When
this is done the temperature at HT will not be the correct one, and outgoing radiation will
not equal to the incoming radiation, and again we have to iterate.

2.2 Analytic approximation

The analytic approach involves obtaining an analytic expression for the outgoing radiation
for a given temperature profile along the lines of (lec.2:30). The OLR so obtained will be a
function of the height of the tropopause, and by making the expression equal to the incoming
solar radiation we obtain an expression for the tropopause height. Instead of actually using
(lec.2:30) it is easier to solve the equations approximately ab initio. We make one other
approximation, that the value of B/U varies linearly from the tropopause (where its value
is 0.5) to its value at the surface (where B/U = 1). Thus,

B

U
= 1− z

2HT
. (5)

Numerical calculations suggest this is a decent approximation (can it be improved upon?).
Rewrite (lec.2:26a) as

d logU

dτ
= 1− B

U
=

z

2HT
. (6)

Using τ(z) = τs exp(−z/Ha) we obtain

d logU

dz
= − z

2HTHa
τs exp(−z/Ha). (7)

We can integrate this expression by parts to obtain a value of the upwelling radiation at
the tropopause U(HT ), namely

log

(
U(HT )

U(0)

)
= − τs

2HT

∫ HT

0
exp(−z/Ha) dz ≈ −τsHa

2HT
. (8)

for HT � Ha. This is an expression for the outgoing longwave radiation, and we see that
the only variable in the equation is HT – note that the upwelling radiation at the surface is
given by the surface temperature, which is a function of the tropopause temperature, HT

and the lapse rate, Γ.
To obtain a closed form for the tropopause height assume that the stratosphere is opti-

cally thin and note that U(HT ) = U(HT ) = 2σT 4
T and U(0) = σT 4

g = σT 4
s . Furthermore,

TT and Ts are related by TT = Ts − ΓHT . The left-hand side of (8) then becomes

log

(
2σT 4

T

σT 4
s

)
= log 2 + 4 log

TT
Ts

= log 2 + 4 log

(
TT

TT + ΓHT

)

≈ log 2− 4ΓHT

TT
. (9)

Using (9), (8) becomes

log 2− 4ΓHT

Ts
= −τsHa

2HT
(10)
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Figure 4: Analytic approximation and numerical calculation for tropopause height.

or
8ΓH2

T − CHTTT − τsHaTT = 0. (11)

where C = 2 log 2 ≈ 1.38. The solution of this equation is

HT =
1

16Γ

(
CTT +

√
C2T 2

T + 32ΓτsHaTT

)
. (12)

For Earth’s atmosphere, Ha ≈ 2 km , τs ≈ 8/3 and Γ ≈ 6.5 K km −1. All three terms
in the quadratic are then approximately the same size and HT = 10.3 km , which is in
fact reasonably close to the exact numerical solution (obtained iteratively) of the radiative-
convective equations (Fig. 4).

The numerical approximation of the logarithm in (9) can be improved by using Tm
instead of TT , where Tm is the temperature half way between the surface and the tropopause.
However, we still want to have TT as a parameter in the quadratic for HT (because TT is
given if the OLR is known). Thus, we have to do some more algebraic fiddling and the
upshot is that we get a quadratic similar to (11) but with different coefficients. [Student
exercise. See also Vallis et al (2014) for another way to proceed.]

Once we have the tropopause height we can obtain an expression for the temperature
everywhere in the troposphere, and the surface. We could then perform a calculation similar
to that of section (lec.2:3.2) and obtain an analytic expression for how the surface temper-
ature increases with carbon dioxide content, and the conditions for a runaway greenhouse
effect. [With extensions this could be a student project.]

Optically thick and thin limits

The above approach allows us to be precise about what it means for an atmosphere to
be optically thin or thick. Using (12) and approximating C2 = 2 we easily find that the
optically thick limit arises when

τsHa �
TT
16Γ

whence HT ≈
√
TT τsHa

8Γ
(13)
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The optically thin case has

τsHa �
TT
16Γ

whence HT ≈
1.38TT

8Γ
. (14)

With parameters appropriate for Earth’s atmosphere both of the above limits give estimates
in the range 5–10 km , and note that they are additive effects. What is the interpretation
of these expressions? Do they work on other planets? What is the role of lateral heat
transport?

A number of these issues have been taken up by Shineng Hu in his summer project, and
the interested reader is referred to his report for more details.

3 Lateral Transport

The actual tropopause height is determined by a combination of lateral heat transport and
the RCE state above. Suppose we think of the energy balance of a column of air. If there
is no horizontal divergence of heat flux into the column then we have the same situation as
before, and the tropopause height is determined by the RCE argument. This in fact will be
the situation somewhere in mid-latitudes where the horizontal heat flux is a maximum. At
this particular location we have the RCE problem above.

Elsewhere there is a flux of heat into or out of the column and this will affect the
tropopause height. As far as the column is concerned these effects are similar to changes
in the outgoing longwave radiation, and so it would change the tropopause height in the
same way that changing the outgoing longwave radiation would. That is, suppose you have
separately solved the problem on how heat is transferred horizontally as well as the RCE
problem above. In that case you know the outgoing radiation at any particular latitude and
you know the lapse rate and so you can determine the tropopause height. In fact, this effect
probably will not make a big difference to the tropopause height because the sensitivity of
tropopause height on tropopause temperature is fairly weak. Thus, if the lapse rate is fixed
independently of the horizontal dynamics the height of the tropopause will only be affected
by these dynamics to a limited degree.

However, there are other ways that the dynamics affects things, and one is in the deter-
mination of the lapse rate itself. This may occur in either the tropics or the extratropics,
where the mechanisms will be slightly different. In the tropics the prime determinant of the
lapse rate is moist convection, and a simple possibility is that the lapse rate is given by the
moist adiabatic lapse rate. However, this is itself a fairly strong function of temperature,
so that the tropopause height becomes a function of temperature mainly through the effect
that horizontal transfer has on the moist adiabatic lapse rate, not temperature itself.

Another argument (Held?) is that the moist static energy at the tropopause is almost
the same as what it is at the surface, whence

N2 ≈ Lqsg

cpTsHT
(15)

where HT is, again, tropopause height and qs and Ts are the surface values of water vapour
and temperature. Note that HT decreases with increasing stability in this expression,
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whereas it increases with stability (i.e., decreases with lapse rate) in the RCE expression
(12). Only one value of the tropopause height is consistent with both.

In midlatitudes the situation is complicated because the heat transport is effected by
baroclinic instability and this has a characteristic height. One possibility is to try to adjust
things so that height of the tropopause is consistent both with baroclinic instability and
with the radiative constraint. There are a number of possibilities that we might wish to
consider (good student projects!).

Suppose that baroclinic instability is like the Eady problem. In this case the instability
goes from the surface to the tropopause; there is no additional height scale.

But suppose that we have a β-plane. In this case the vertical scale is given by the
‘Charney height’ which, in a Boussinesq system, is

h =
f2Λ

βN2
(16)

where Λ is the vertical shear of the zonal wind, Λ = ∂U/∂z . We might argue that the
height, h, in (16) must be the same as that given by the radiative constraint, and this gives
us a theory of the stratification of the atmosphere. Just as in the tropics, h decreases with
increasing stability so there is only one solution. If we suppose that h = HT , where HT is
the height of the tropopause given by the radiative constraint, then using the thermal wind
equation, fΛ = −∂b/∂y and with N2 = ∂b/∂z we find

HT = −f∂b/∂y
β∂b/∂z

(17)

or

s =
f

βHT
∼ a

HT
, (18)

where s is the slope of the isopycnals and a is the Earth’s radius. This means that an
isopycnal roughly goes from the surface at the equatorward edge of the midlatitudes to
the tropopause at the pole. This hypothesis and its friends have generated quite a lot of
controversy in the community. . . .

4 Appendix: Dry and Wet Lapse Rates

4.1 A dry ideal gas

The negative of the rate of change of the temperature in the vertical is known as the
temperature lapse rate, or often just the lapse rate, and the lapse rate corresponding to
∂θ/∂z = 0 is called the dry adiabatic lapse rate and denoted Γd. Using θ = T (p0/p)

R/cp

and ∂p/∂z = −ρg we find that the lapse rate and the potential temperature lapse rate are
related by

∂T

∂z
=
T

θ

∂θ

∂z
− g

cp
, (19)

so that the dry adiabatic lapse rate is given by

Γd =
g

cp
. (20)
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The conditions for static stability are thus:

stability :
∂θ̃

∂z
> 0; or −∂T̃

∂z
< Γd

instability :
∂θ̃

∂z
< 0; or −∂T̃

∂z
> Γd

, (21a,b)

where a tilde indicates that the values are those of the environment. The atmosphere is, in
fact, generally stable by this criterion: the observed lapse rate, corresponding to an observed
buoyancy frequency of about 10−2 s−1 , is often about 7 K km −1, whereas a dry adiabatic
lapse rate is about 10 K km −1. Why the discrepancy? One reason, particularly important
in the tropics, is that the atmosphere contains water vapour.

4.2 Saturated lapse rate

The amount of water vapour that can be contained in a given volume is an increasing
function of temperature (with the presence or otherwise of dry air in that volume being
largely irrelevant). Thus, if a parcel of water vapour is cooled, it will eventually become
saturated and water vapour will condense into liquid water. A measure of the amount of
water vapour in a unit volume is its partial pressure, and the partial pressure of water
vapour at saturation, es, is given by the Clausius–Clapeyron equation,

des
dT

=
Lces
RvT 2

, (22)

where Lc is the latent heat of condensation or vapourization (per unit mass) and Rv is the
gas constant for water vapour. If a parcel rises adiabatically it will cool, and at some height
(known as the ‘lifting condensation level’, a function of its initial temperature and humidity
only) the parcel will become saturated and any further ascent will cause the water vapour
to condense. The ensuing condensational heating causes the temperature and buoyancy of
the parcel to increase; the parcel thus rises further, causing more water vapour to condense,
and so on, and the consequence of this is that an environmental profile that is stable if the
air is dry may be unstable if saturated. Let us now derive an expression for the lapse rate
of a saturated parcel that is ascending adiabatically apart from the effects of condensation.

Let w denote the mass of water vapour per unit mass of dry air, the mixing ratio, and
let ws be the saturation mixing ratio. (ws = αes/(p− es) ≈ αwes/p where αw = 0.622, the
ratio of the mass of a water molecule to one of dry air.) The diabatic heating associated
with condensation is then given by

Qcond = −Lc
Dws

Dt
, (23)

so that the thermodynamic equation is

cp
D ln θ

Dt
= −Lc

T

Dws

Dt
, (24)

or, in terms of p and and T

cp
D lnT

Dt
−RD lnP

Dt
= −Lc

T

Dws

Dt
. (25)
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Figure 5: The saturated adiabatic lapse rate as a function of temperature and pressure
when water (H2O) is the condensate.

If these material derivatives are due to the parcel ascent then

d lnT

dz
− R

cp

d ln p

dz
= − Lc

Tcp

dws

dz
, (26)

and using the hydrostatic relationship and the fact that ws is a function of T and p we
obtain

dT

dz
+
g

cp
= −Lc

cp

[(
∂ws

∂T

)

p

dT

dz
−
(
∂ws

∂p

)

T

ρg

]
. (27)

Solving for dT/dz , the lapse rate, Γs, of an ascending saturated parcel is given by

Γs = −dT

dz
=

g

cp

1− ρLc(∂ws/∂p)T
1 + (Lc/cp)(∂ws/∂T )p

≈ g

cp

1 + Lcws/(RdT )

1 + L2
cws/(cpRvT 2)

. (28)

where the last near equality follows with use of the Clausius–Clapeyron relation. The
quantity Rd is the gas constant for dry air and Rv is the gas constant for water vapor, and
Rv = Rd/αw. The quantity Γs is variously called the pseudoadiabatic or moist adiabatic or
saturated adiabatic lapse rate, and it is plotted in Fig. 5.

Because g/cp is the dry adiabatic lapse rate Γd, Γs < Γd, and values of Γs are typically
around 6 K km −1 in the lower atmosphere; however, dws/dT is an increasing function of
T so that Γs decreases with increasing temperature and can be as low as 3.5 K km −1. For
a saturated parcel, the stability conditions analogous to (21) are

stability : −∂T̃
∂z

< Γs, (29a)

instability : −∂T̃
∂z

> Γs. (29b)
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where T̃ is the environmental temperature. The observed environmental profile in convect-
ing situations is often a combination of the dry adiabatic and moist adiabatic profiles: an
unsaturated parcel that is is unstable by the dry criterion will rise and cool following a dry
adiabat, Γd, until it becomes saturated at the lifting condensation level, above which it will
rise following a saturation adiabat, Γs. Such convection will proceed until the atmospheric
column is stable and, especially in low latitudes, the lapse rate of the atmosphere is largely
determined by such convective processes.
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