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1 Itō calculus

Recall that for the stochastic differential equation

dXt = f(Xt)dt+ g(Xt)dWt (1)

we have the important relations

E(g(Xt)dWt) = 0 (2)

dWtdWt = dt (3)

E(dW (t1)dW (t2)) = δ(t1 − t2)dt1dt2 (4)

We would like to reconcile the fact that we have terms of order dt and terms of order√
dt in the same equation. Essentially, dWt is large and incoherent, whereas dt is small but

coherent, and they act together to result in equal contributions. The fact that dWtdWt = dt
means that when attempting to work with the chain rule when changing variables, we need
to evaluate more derivatives than expected in order to complete the stochastic differental
equation to the correct order. For example,

d(F (Xt)) = F ′(Xt)dXt + F ′′(Xt)dXtdXt/2 + o(dXtdXt). (5)

Additionally, dWtdWt = dt requires careful interpretation. Recall that for finite incre-
ments in the Weiner process,

E(∆W 2) = ∆t (6)

and so the infinitesimal statement should be interpreted as any errors associated with ap-
proximating ∆W 2 ≈ ∆t are canceled in the limit of infinitesimal increments which are then
summed over as an integral, and this process works because we are summing a family of
independent Gaussian-distributed random variables.

With the Itō calculus rule (5) we may re-examine the examples already considered
without reference to the Fokker–Planck equation.
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1.1 Ornstein-Uhlenbeck Equation

Consider again the Ornstein-Uhlenbeck stochastic differential equation

dUt = −γUtdt+ σdWt. (7)

We can in fact integrate this exactly by multiplying through by eγt to get

d(eγtUt) = eγtσdWt, (8)

and so

Ut = U0e
−γt + σe−γt

∫ t

0
eγsdWs, (9)

which gives the expectation
E(Ut) = e−γtE(U0) (10)

and variance

E(U2
t ) = σ2e−2γt

∫ t

0

∫ t

0
eγ(s1+s2)E(dW (s1)dW (s2)). (11)

We could instead obtain these results directly from the stochastic differential equation
by forming an equation for d(U2

t ) using Itō calculus. From the Itō formula (5) we have

UtdUt =
d(U2

t )

2
− dUtdUt

2
, (12)

and from (7) and the relation dWtdWt = dt,

dUtdUt = σ2dt+ o(dt), (13)

which gives
d(U2

t )

2
− σ2

2
dt = −γU2

t dt+ UtσdWt. (14)

In steady state Es(d) = 0 and so

σ2

2
= Es(γU2

t ), (15)

which is the fluctuation-dissipation relation for this process.

1.2 Linear population model

Consider the stochastic differential equation

dXt = µXtdt+ σXtdWt. (16)

This equation can be interpreted as a random interest rate model.
We have

E(dXt) = µE(Xtdt), (17)

and so
E(Xt) = X0e

µt. (18)
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We also have

d(Xn
t ) = nXn−1

t dXt +
n(n− 1)Xn−2

t dXtdXt

2
(19)

=

(
nµ+

n(n− 1)σ2

2

)
Xn
t dt+ nσXn

t dWt, (20)

and so the n-th moment is

E(Xn
t ) = Xn

0 exp

[(
nµ+

n(n− 1)σ2

2

)
t

]
. (21)

Alternatively, using the Itō calculus formula (5), we note that in the absence of noise,
we would be interested in d(log(X)), and so we compute

d(log(Xt)) =
dXt

Xt
− dXtdXt

2X2
t

=
dXt

Xt
− σ2dt

2
(22)

= µdt− σ2

2
dt+ σdWt. (23)

Hence, the solution is

Xt = X0 exp

[(
µ− σ2

2

)
t+ σWt

]
. (24)

We can reconcile the fact that at first glance the results E(Wt) = 0 and E(Xt) = X0e
µt

appear incompatible with this solution by recognising that the occasions for which Wt > 0
and Wt < 0 do not contribute equally after exponentiating.

From this solution we see that if σ2 > 2µ, then extinction is guaranteed almost surely,
as for the nonlinear population model discussed in a previous lecture. This is since near
extinction, X is small, and so the linearised approximation is accurate.

We can find the transition density ρ(x, t|x0, 0) by solving the Fokker–Planck equation
for ρY (y, t|y0, 0) for the variable Yt = log(Xt), since

∂ρY
∂t

=

(
σ2

2
− µ

)
∂ρY
∂y

+
σ2

2

∂2ρY
∂y2

, (25)

which can be solved with Fourier transforms to give

ρY =
1√

2πσ2t
exp

−
(
y − y0 −

(
µ− σ2

2

)
t
)2

2σ2t

 , (26)

and so Yt is normally distributed, meaning that Xt is log-normally distributed, with

ρ(x, t|x0, 0) =
1

x
√

2πσ2t
exp

−
(

log x− log x0 −
(
µ− σ2

2

)
t
)2

2σ2t

 . (27)
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Now let ε > 0. Then,

P(Xt > ε|X0 = x0) =

∫ ∞
ε

ρ(x, t|x0, 0)dx =
1√
π

erfc

(
log ε− log x0 − (µ− σ2

2 )t
√

2σ2t

)
, (28)

and so if σ2 > 2µ, we have that P(Xt > ε|X0 = x0) → 0 as t → ∞, despite the fact
that E(Xt) = X0 exp(µt). Almost all trajectories decay eventually, but the moments of the
distribution grow rapidly, and so in an ensemble we expect an occasional ‘success’. We can
see that the distribution becomes more shifted towards x = 0 as time t increases in Figure
1, in which the distribution for µ = 1, σ = 2 and x0 = 1 is plotted at various times.
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Figure 1: The transition density ρ(x, t|1, 0) for the linear population growth model with
µ = 1 and σ = 2 at times t = 0.0001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1 and 2.

1.3 Nonlinear population model

Consider the stochastic differential equation

dXt = (µXt −X2
t )dt+ σXtdWt. (29)

Let Yt = X−1t . Then, the Itō calculus formula (5) gives

dYt = −dXt

X2
t

+
dXtdXt

X3
t

(30)

= −(µXt −X2
t )dt+ σXtdWt

X2
t

+
σ2X2

t dt

X3
t

(31)

= (1− (µ− σ2)Yt)dt− σYtdWt, (32)
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which is linear in Yt.
Then,

E(dYt) = −(µ− σ2)E(Ytdt), (33)

which gives
E(Yt) = Y0e

−(µ−σ2)t →∞ as t→∞ if µ < σ2, (34)

as expected from a previous lecture.

2 Probability currents and steady states

Recall the Fokker-Planck equation for x ∈ Rn and noise w ∈ Rm subject to

dXi = fidt+ gijdWj , (35)

namely
∂ρ

∂t
+∇ · (ρf) =

∂2

∂xi∂xj

(
Dij

2
ρ

)
, (36)

where Dij = gikgjk is an n× n matrix.
We can introduce a probability current J by

∂ρ

∂t
+∇ · J = 0, (37)

and so

Ji = fiρ−
∂

∂xj

(
Dij

2
ρ

)
(38)

To have a steady state we need ∇ · J = 0, which can be achieved in two ways.

1. J = 0 corresponds to equilibrium solutions, or detailed balance solutions in which
each point of any boundary has zero net flux across it.

2. J 6= 0 corresponds to solutions with flux.

First consider J = 0. Then, write ρ = e−φ > 0. The condition J = 0 becomes

Dij

2

∂φ

∂xj
= −(fi + vi), (39)

where

vi = − ∂

∂xj

(
Dij

2

)
, (40)

and so provided that Dij is invertible the solution is obtained from

∂φ

∂xj
= −2D−1ij (vi + fi). (41)

Given that the left hand side of this equation is ∇φ, we have a compatibility condition
for the existence of such a solution,

curl(D−1 · (v + f)) = 0. (42)

We now show some examples of density currents satisfying ∇ · J = 0.
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2.1 Uniform noise

This is an example of ∇ · J = 0 achieved through J = 0. Let Dij ∝ δij . Then (41) becomes
f = ∇φ, which is a gradient drift solution, and for compatibility we require ∇× f = 0.

2.2 Gradient flow plus Hamiltonian flow

In two dimensions, let f = −σ2∇φ+∇× (Hx̂3) and Dij = 2σ2δij .
The corresponding deterministic equation would be

ẋ1 = −φx1 −Hx2 , (43)

ẋ2 = −φx2 +Hx1 , (44)

i.e. the sum of a gradient flow φ and a Hamiltonian flow H.
An example of such a stochastic differential equation would be noisy rotating decay

dUt = −γUtdt+ fVtdt+ σdWt1 , (45)

dVt = −γVtdt− fUtdt+ σdWt2 . (46)

For this f and D, try the solution ρ = e−φ to get

J = e−φf + σe−φ∇φ. (47)

When taking the divergence, many terms cancel, and we are left with

∇ · J = −e−φ∇φ · ∇ × (Hx̂3), (48)

and so we obtain ∇ · J = 0 provided that

J(φ,H) = 0, (49)

where J(· , ·) is the Jacobian.

2.3 Forced harmonic oscillator

The stochastic differential equation

dXt = Ytdt, (50)

dYt = −Xtdt− γYtdt+ σdWt, (51)

has stationary solution

ρs = N exp
(
− γ

σ2
(x2 + y2)

)
. (52)

3 Kolmogorov Backward Equation

We have so far considered the Fokker-Planck equation, which tells us the evolution forwards
in time of a probability distribution for a given SDE from a corresponding initial condition.
We now derive the Kolmogorov Backward Equation (KBE), which can be thought of as the
PDE governing the evolution of a distribution backwards in time, and will subsequently
demonstrate the application of this equation to a variety of problems of interest.
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3.1 Derivation of the KBE

Starting from the Chapman-Kolmogorov equation (which follows simply from the Markov
property for all Markovian processes)

ρ(x, t|y, s) =

∫ ∞
−∞

ρ(x, t|x′, t′)ρ(x′, t′|y, s) dx′, (53)

differentiate with respect to t′ to obtain

0 =

∫ ∞
−∞

[
∂ρ

∂t′
(x, t|x′, t′)ρ(x′, t′|y, s) + ρ(x, t|x′, t′) ∂ρ

∂t′
(x′, t′|y, s)

]
dx′. (54)

Now substituting for ∂ρ
∂t′ (x

′, t′|y, s) using the Fokker-Planck (forward) equation, and using
integration by parts

0 =

∫ ∞
−∞

dx′
∂ρ

∂t′
(x, t|x′, t′)ρ(x′, t′|y, s)

+ ρ(x, t|x′, t′) ∂

∂x′

(
−f(x′) +

1

2

∂

∂x′
g(x′)2

)
ρ(x′, t′|y, s)

0 =

∫ ∞
−∞

dx′ ρ(x′, t′|y, s)
[
∂ρ

∂t′
(x, t|x′, t′) + f(x′)

∂ρ

∂x′
(x, t|x′, t′) +

1

2
g(x′)2

∂2ρ

∂x′2
(x, t|x′, t′)

]
.

If we now let the time interval |t′− s| → 0, then ρ(x′, t′|y, s)→ δ(x′− y), so we are left with

0 =
∂ρ

∂s
(x, t|y, s) + f(y)

∂ρ

∂y
(x, t|y, s) +

1

2
g(y)2

∂2ρ

∂y2
(x, t|y, s), (55)

or
∂ρ

∂s
(x, t|y, s) =

(
f(y)

∂

∂y
+

1

2
g(y)2

∂2

∂y2

)
ρ(x, t|y, s), (56)

which is known as the Kolmogorov Backward Equation. Note that the operator L ≡
f∂x+ g2

2 ∂
2
x is the formal adjoint of the forward Fokker-Planck operator L† ≡ ∂x(−f+∂x

g2

2 ).

3.2 Survival times and first passage times

The power of the KBE becomes transparent if we consider the problem of a random process
on some specified domain, and wish to make statements about the time taken for the process
to stray outside the domain (variously known as the first passage time, the exit time, the
escape time, the stopping time, or the hitting time of the process), or if we wish to determine
the region of the boundary through which the process exits the domain.

3.2.1 Survival time

Consider a 1D process X(t) on x ∈ (xa, xb), and impose absorbing boundary conditions
ρ(xa, t|x0, t0) = ρ(xb, t|x0, t0) = 0. It is of interest to compute the survival probability
S(t|x0, t0) ≡ P(xa < X(u) < xb ∀u < t). By definition, S is a monotonically decreasing
function of t, with S(t0|x0, t0) = 1 for x0 ∈ (xa, xb) and S(t|x0, t0) → 0 as t → ∞, so
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probability can be thought of as “leaking” over the edge of the domain as time progresses.
Thus probability density is not conserved, and it can be seen that S(t|x0, t0) is given by

S(t|x0, t0) =

∫ xb

xa

ρ(x, t|x0, t0) dx. (57)

Consequently we may obtain a PDE for S by integrating the KBE for the process, as follows∫ xb

xa

[
∂ρ

∂t0
(x, t|x0, t0) =

(
f(x0)

∂

∂x0
+

1

2
g(x0)

2 ∂
2

∂x20

)
ρ(x, t|x0, t0)

]
dx (58)

− ∂

∂t0
S(t|x0, t0) =

(
f(x0)

∂

∂x0
+

1

2
g(x0)

2 ∂
2

∂x20

)
S(t|x0, t0), (59)

which can be solved for survival time S given boundary conditions S(t|xa, t0) = S(t|xb, t0) =
0 and initial condition S(t0|x0, t0) = 1 for xa < x0 < xb.

3.2.2 First passage time

For the 1D process above, define random variable texit as the first time at which X = xa or
X = xb. Then the mean exit time for a process starting at (x0, t0) is, by definition

Ex0(texit − t0) =

∫ ∞
t0

(t− t0)p(t|x0, t0) dt, (60)

where p(t|x0, t0) ≡ − d
dtS(t|x0, t0) is the probability of absorption at time t. Integrating by

parts,

Ex0(texit − t0) = −
[
(t− t0)S(t|x0, t0)

]∞
t0

+

∫ ∞
t0

S(t|x0, t0) dt, (61)

and it can be seen that the boundary terms vanish provided S(t|x0, t0) ∼ o(t−1) as t→∞,
which holds provided the mean survival time is well-defined, so

Ex0(texit − t0) =

∫ ∞
t0

S(t|x0, t0) dt. (62)

To get an equation for the mean exit time, we then integrate equation (59) between (t0,∞)
to give

− ∂

∂t0

∫ ∞
t0

S(t|x0, t0) dt− S(t0|x0, t0) =

∫ ∞
t0

(
f(x0)

∂

∂x0
+

1

2
g(x0)

2 ∂
2

∂x20

)
S(t|x0, t0) dt,

(63)
using Leibniz’s rule. Now noting that the mean exit time is independent of t0 for an
autonomous system, and that S(t0|x0, t0) = 1, we have

−1 =

(
f(x0)

∂

∂x0
+

1

2
g(x0)

2 ∂
2

∂x20

)
Ex0(texit − t0), (64)

which may be solved for mean exit time Ex0(texit − t0).
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3.3 Alternative derivation: Change of variables

An alternative derivation of the KBE to that above is to consider the change of variables
Y = u(X, t) in the SDE dX = f(X)dt+ g(X)dW , for some function u. Using Itō calculus,
the change of variables becomes

dY = utdt+ uXdX +
1

2
uXXdXdX (65)

= (ut + fuX +
g2

2
uXX)dt+ uXgdW, (66)

on substituting for dX using the governing SDE, and noting that dWdW = dt. We then
have

dY = (ut + Lu)dt+ uXgdW (67)

for operator L ≡ f∂x + g2

2 ∂
2
x, as before. The KBE is precisely the equation ut + Lu = 0,

and (as a backward heat equation) is well-posed when conditions are specified on some
final time t = T > t0. It can be seen from integrating equation (67) that the solution
to the homogeneous problem ut + Lu = 0 with condition u(X,T ) = φ(X) generates the
expectation u(X,T ) = E(φ(X(T ))|X(t) = x), so for this reason L is sometimes referred to
as the generator.
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