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1 Introduction

In the first lecture, we discussed radiative transfer in the climate system. Here, we will
delve into the convective heat transfer within the climate system, and how this leads to the
radiative-dry convection equilibrium as an extension of the radiative equilibrium that we
saw in Lecture 1.

2 The Buoyancy Equation

From the first lecture, we have that the buoyancy, B, of a fluid particle is given by the
formula (stemming from Archimedes’ Principle)

B = g
ρe − ρb
ρb

, (1)

where subscripts e and b denote that the variable pertains to the environment and the
sample fluid parcel, respectively. For convenience, we make two variable substitutions.
First, we switch from using density to specific volume α using the relation α = 1/ρ, which
yields

B = g
αb − αe
αe

= g
δα

αe
. (2)

Specific volume, however, is not conserved under adiabatic compression, but the entropy
s is conserved. Hence comes our second substitution from α to s. To make this substitution,
we go through a few steps as follows:

δα = (∂α∂p )sδp + (∂α∂s )pδs.

Setting the first term on the right side to zero, we are left with

δα = (∂α∂s )pδs.

We can then employ a Maxwell Relation

(
δα

δs
)p = (

δT

δp
)s. (3)
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(The Maxwell Relations are a set of equations stating the relation between derivatives
of thermodynamic variables. For a more in-depth discussion and derivation of the Maxwell
Relations, refer to a standard Thermodynamics textbook.)

The term on the right can be plugged into the above equation for buoyancy (2):

B = g
α( δTδp )sδs.

Assuming a hydrostatic environment, we can replace p with vertical height z according to
αdp = −gdz, giving the final equation

B = −(
δT

δz
)sδs = Γδs, (4)

where Γ is the adiabatic lapse rate.

3 Stability

One of the primary questions in this lecture pertains to the instability of the atmosphere to
convection. We can consider a parcel of air that we displace upwards. If the buoyancy of the
parcel is also upwards, then the parcel is unstable and will continue to accelerate upwards.
If, however, the buoyancy is downwards, then the parcel will accelerate back toward its
original position. Relating this now to entropy, we see that if entropy decreases with height,
then a particle displaced upwards will have a higher entropy than its surrounding and will
thus be unstable. If entropy is constant in height, then the atmosphere is neutrally stable.

Figure 1: The profile of virtual potential temperature, which can be considered to be entropy
for our purposes.

Figure 1 shows measurements taken from a model airplane of the entropy (the x-axis
shows the virtual potential temperature, which behaves essentially like entropy) in the

30



atmosphere up to around 800m. It is clear that the entropy profile is nearly constant, with
the exception of a few meters above the surface. This constant entropy layer implies the
existence of a convecting layer, which can account for the mismatch in temperatures between
the ground and the layer of air just above the ground in the radiative equilibrium model.
Convection acts on a small enough time scale that it is able to destabilize the atmosphere,
yielding a constant entropy layer.

4 The Prandtl Problem

(For a detailed description of the Prandtl problem discussed below, see Prandtl L 1925 Z.
Angew. Math. Mech. 5 136.)

We consider now the Prandtl Problem, as shown in Figure 2. There is a rough bottom
at constant temperature, which we set to be z=0. The fluid, which is subject to gravity,
is cooled such that the vertical integral of cooling over the whole depth is constant. In
mathematical terms, this can be written

∫ ∞

0
Q̇dz = const. (5)

Figure 2: Schematic of the Prandl problem.

There is a flux of heat from the lower boundary, which is the convective (buoyancy) flux
F . F should be constant, and can be written as an average defined by

F = w′B′, (6)

where w’ is the perturbation vertical velocity and B’ the perturbation buoyancy.
To find a scale for the velocity in terms of F and z, we perform dimensional analysis.

The following are the relevant dimensions in the problem:

F ∼ length2/time3

z ∼ length

The desired scaling for q ∼ length/time can be achieved by

q ∼ (Fz)
1
3 . (7)
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Similarly, we can find a scaling for the buoyancy (which has units of length/time2) in
terms of F and z:

B′ ∼ (
F 2

z
)
1
3 . (8)

Figure 3: The vertical temperature profile.

We can then express the buoyancy B in terms of the average buoyancy B0 and the
perturbation buoyancy B′:

B ∼ B0 − cF
2
3 [(zT0 )

−1
3 − z

−1
3 ], (9)

where we define zT0 to be the thermal roughness scale. This dependence is shown in figure 3,
where temperature is plotted on the x-axis in lieu of buoyancy, but they are simply related
by the coefficient of thermal expansion and thus have qualitatively similar behavior.

The radiative-dry convective equilibrium is shown in figure 4, with the pure radiative
equilibrium plotted for comparison. From the graph, a few observations can be made.
First, the temperature in the radiative-convective equilibrium in the troposphere and near
the surface is significantly larger than in the purely radiative state. Why do we see this
temperature increase in the troposphere and surface? This is because we assumed a constant
relative humidity (a big assumption!), which implies more water vapor, hence a greater
greenhouse effect, and thus a warmer temperature. However, there remains an important
question - why is this graph so different than what we observe in the real world? This will
be answered in the next section!
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Figure 4: Full calculation of radiative-dry convective equilibrium.

5 Radiative - Dry Convective Model

In figure 5 is shown a simple model, very much like the one discussed in the first lecture.
There are two layers, both opaque, but we are now assuming that, in addition to radiative
fluxes, there are convective fluxes, denoted by F . By assumption (i.e. because we are
forcing convective neutrality), we write

T1 = T2 + ∆T
TS = T1 + ∆T = T2 + 2∆T .

We can still write σT 4
e = σT 4

2 , yielding the temperature of the second layer T2 = Te. This
dictates the temperatures of the other layers:

T1 = Te + ∆T
TS = Te + ∆T .

At the surface we can write the equation

σT 4
e + σT 4

1 = σT 4
S + FS .

This can be rearranged to solve for the surface convective flux:

FS = σ(−T 4
S + T 4

e + T 4
1 ) = σT 4

e [1 + (1 + x)4 − (1 + 2x)4], (10)
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Figure 5: A simple radiative-convective energy balance model.

where x is defined to be x = ∆T
Te

.
Similarly, the equation for the second layer can be written

2σT 4
e = σT 4

1 + FC ,

and then solving for the convective flux

FC = σT 4
e [2 − (1 + x)4]. (11)

The convective fluxes are needed to maintain a constant lapse rate. This leads into the
topic introduced below, and discussed in detail in Lecture 5 about moist convection.

6 Introduction to Moist Convection

Moist convection is important for a number of reasons, and it will shape the equilibrium
curve into something that looks more similar to the real-world picture.

Water in the atmosphere is responsible for a significant amount of heating due to phase
changes (discussed below), and is considered one of the most important greenhouse gasses.
Moist convection also plays a key role in stratiform cloudiness, and thus the planet’s albedo
and long-wave trapping.

6.1 Water Variables

The following are the variables which will be used in subsequent lectures.

q = Mwater
Mair

specific humidity

e vapor pressure (partial pressure of water vapor)

e∗ = 6.112hPa e
17.67(T−273)

T−30 saturation vapor pressure
H = e

e∗ relative humidity
q∗ saturation specific humidity
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The ideal gas law will be used, where R∗ and m̄ are the universal gas constant and the
molecular weights of the constituents, respectively:

p = ρR
∗T
m̄ ,

which can be rewritten in terms of the vapor pressure

e = ρv
R∗T
m̄v

,

with m̄v referring to the mass of the vapor particles. The specific humidity is the ratio of
water vapor density to total density:

q = ρv
ρ = mv

m̄
e
p ,

and thus the saturation specific humidity is expressed as

q∗ =
mv

m̄

e∗

p
. (12)

In Lecture 5, which continues the discussion of convective heat transfer, we will use
these quantities and equations defined above to study moisture in the atmosphere, which
will lead us to the Radiative-Moist Convective Equilibrium (RCE).
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