
Lecture 10a: The Hadley Cell

Geoff Vallis; notes by Jim Thomas and Geoff J. Stanley

June 27

In this short lecture we take a look at the general circulation of the atmosphere, and in
particular the Hadley cell. Look again at the zonally averaged circulation in the top panel of
(lec.2:fig.2). The centre two circulations are the Hadley cells. Deep tropical convection lifts
air near at the Intertropical Convergence Zone (ITCZ) near the equator. At the tropopause
its vertical motion is inhibited by strong static stability, so it begins a poleward migration
which extends as far as some critical latitude ϑH . In this lecture we will attempt to explain
why the Hadley cell terminates at ϑH , and not some other latitude. We will outline three
possibilities.

1. The Hadley cell is terminated in order to satisfy certain thermodynamic constraints,
described in section 1.

2. The Hadley cell is terminated by the onset of baroclinic instability, described in section
2.

3. The Hadley cell is terminated by the effects of the breaking of Rossby waves, described
in section 3.

Almost certainly none of these models describes the real Hadley cell in anything other than
an approximate way, but this does not mean they are not useful.

1 A Zonally Symmetric Steady Model of the Hadley cell

We begin with a a model of the zonally symmetric circulation – that is, the circulation has
no eddies, in fact no variation at all in the zonal direction. A parcel of air moving polewards
away from the boundary layer will then conserve its axial angular momentum, as shown in
Figure 1. To construct a mathematical model, following Schneider & Lindzen (1977) and
Held & Hou (1980), we suppose the following.

1. The circulation is steady.

2. The polewards moving air conserves its axial angular momentum, whereas the zonal
flow associated with the near-surface, equatorwards moving flow is frictionally re-
tarded and weak.

3. The circulation is in thermal wind balance.

4. The flow is symmetric about the equator. Seasons can in fact be added to such a
model.
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Figure 1: A simple model of the Hadley cell. Rising air near the equator moves polewards
near the tropopause, descending in the subtropics and returning near the surface. The
polewards moving air conserves its axial angular momentum, leading to a zonal flow that
increases away from the equator. By the thermal wind relation the temperature of the
air falls as it moves polewards, and to satisfy the thermodynamic budget it sinks in the
subtropics. The return flow at the surface is frictionally retarded and small.

1.1 Angular momentum conservation

Momentum equation:

∂u

∂t
− (f + ζ)v + w

∂u

∂z
= − 1

a cos2 ϑ

∂

∂ϑ
(cos2ϑu′v′) − ∂u′w′

∂z
, (1)

where ζ = −(a cosϑ)−1∂ϑ(u cosϑ) and the overbars represent zonal averages. We simplify
this to

(f + ζ)v = 0. (2)

It is easy to show that this is equivalent to

2Ω sinϑ =
1

a

∂u

∂ϑ
− u tanϑ

a
. (3)

and the solution is (c.f. Fig. 2)

u = Ωa
sin2ϑ

cosϑ
≡ UM . (4)
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Axis of rotation

Figure 2: If a ring of air at the equator moves polewards it moves closer to the axis of
rotation. If the parcels in the ring conserve their angular momentum their zonal velocity
must increase; thus, if m = (u+ Ωa cosϑ)a cosϑ is preserved and u = 0 at ϑ = 0 we recover
(4).

Temperature field

Thermal wind balance:

2Ω sinϑ
∂u

∂z
= −1

a

∂b

∂ϑ
, (5)

where b = g δθ/θ0 is the buoyancy and δθ is the deviation of potential temperature from
a constant reference value θ0. (Be reminded that θ is potential temperature, whereas ϑ is
latitude.) Vertically integrating from the ground to the height H where the outflow occurs
and substituting (4) for u yields

1

aθ0

∂θ

∂ϑ
= −2Ω2a

gH

sin3ϑ

cosϑ
, (6)

where θ = H−1
∫ H
0 δθ dz is the vertically averaged potential temperature. If the latitudinal

extent of the Hadley cell is not too great we can make the small-angle approximation, and
replace sinϑ by ϑ and cosϑ by one, then integrating (6) gives

θ = θ(0) − θ0Ω
2y4

2gHa2
, (7)

where y = aϑ and θ(0) is the potential temperature at the equator, as yet unknown.
Away from the equator, the zonal velocity given by (4) increases rapidly polewards and the
temperature correspondingly drops. How far polewards is this solution valid? And what
determines the value of the integration constant θ(0)? To answer these questions we turn
to thermodynamics.
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1.2 Thermodynamics

In the above discussion, the temperature field is slaved to the momentum field in that it
seems to follow passively from the dynamics of the momentum equation. Nevertheless, the
thermodynamic equation must still be satisfied. Let us assume that the thermodynamic
forcing can be represented by a Newtonian cooling to some specified radiative equilibrium
temperature, θE ; this is a severe simplification, especially in equatorial regions where the
release of heat by condensation is important. The thermodynamic equation is then

Dθ

Dt
=
θE − θ

τ
, (8)

where τ is a relaxation time scale, perhaps a few weeks. Let us suppose that θE falls
monotonically from the equator to the pole, and that it increases linearly with height, and
a simple representation of this is

θE(ϑ, z)

θ0
= 1 − 2

3
∆HP2(sinϑ) + ∆V

(
z

H
− 1

2

)
, (9)

where ∆H and ∆V are non-dimensional constants that determine the fractional temperature
difference between the equator and the pole, and the ground and the top of the fluid,
respectively. P2 is the second Legendre polynomial. At z = H/2, or for the vertically
averaged field, this approximates to

θE = θE0 − ∆θ
(y
a

)2
, (10)

where θE0 is the equilibrium temperature at the equator, ∆θ determines the equator–pole
radiative-equilibrium temperature difference, and

θE0 = θ0(1 + ∆H/3), ∆θ = θ0∆H . (11)

Now, let us suppose that the solution (7) is valid between the equator and a latitude
ϑH where v = 0, so that within this region the system is essentially closed. Conservation
of potential temperature then requires that the solution (7) must satisfy

∫ YH

0
θ dy =

∫ YH

0
θE dy, (12)

where YH = aϑH is as yet undetermined. Polewards of this, the solution is just θ = θE .
Now, we may demand that the solution be continuous at y = YH (without temperature
continuity the thermal wind would be infinite) and so

θ(YH) = θE(YH). (13)

The constraints (12) and (13) determine the values of the unknowns θ(0) and YH . A little
algebra gives

YH =

(
5∆θgH

3Ω2θ0

)1/2
, (14)
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Figure 3: The radiative equilibrium temperature (θE , dashed line) and the angular-
momentum-conserving solution (θM , solid line) as a function of latitude. The two dotted
regions have equal areas. The parameters are: θEO = 303 K , ∆θ = 50 K , θ0 = 300 K , Ω =
7.272 × 10−5 s −1, g = 9.81 m s −2, H = 10 km . These give R = 0.076 and YH/a = 0.356,
corresponding to ϑH = 20.4◦ .

and

θ(0) = θE0 −
(

5∆θ2gH

18a2Ω2θ0

)
. (15)

A useful non-dimensional number that parameterizes these solutions is

R ≡ gH∆θ

θ0Ω2a2
=
gH∆H

Ω2a2
, (16)

which is the square of the ratio of the speed of shallow water waves to the rotational
velocity of the Earth, multiplied by the fractional temperature difference from equator to
pole. Typical values for the Earth’s atmosphere are a little less than 0.1. In terms of R we
have

YH = a

(
5

3
R

)1/2
, (17)

and

θ(0) = θE0 −
(

5

18
R

)
∆θ . (18)

The solution, (7) with θ(0) given by (18) is plotted in Fig. 3. Perhaps the single most
important aspect of the model is that it predicts that the Hadley cell has a finite merid-
ional extent, even for an atmosphere that is completely zonally symmetric. The baroclinic
instability that does occur in mid-latitudes is not necessary for the Hadley cell to terminate
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Figure 4: The zonal wind corresponding to the radiative equilibrium temperature (UE ,)
and the angular-momentum-conserving solution (UM ) as a function of latitude, given (19)
and (20) respectively. The zonal wind (in the model) follows the thick solid line: u = Um

for ϑ < ϑH (y < YH), and u = UE for ϑ > ϑH (y > YH), and so has a discontinuity at ϑH .

in the subtropics, although it may be an important factor, or even the determining factor,
in the real world.

1.3 Zonal wind

The angular-momentum-conserving zonal wind is given by (4), which in the small-angle
approximation becomes

UM = Ω
y2

a
. (19)

This relation holds for y < YH . The zonal wind corresponding to the radiative-equilibrium
solution is given using thermal wind balance and (10), which leads to

UE = ΩaR, (20)

and this holds polewards of YH , or ϑH , as sketched in Fig. 4.

2 Baroclinic Instability and Termination of the Hadley Cell

One mechanism that could halt the Hadley cell is baroclinic instability. Having assumed
that the surface winds are weak, and knowing the upper level zonal velocity from (4), the
shear ∂UM/∂z is determined by the height of the tropopause H, which we suppose to be a
constant. At some latitude ϑC the shear will become baroclinically unstable at which point
any assumption of zonal symmetry will break down and the Hadley cell will terminate.
What model of baroclinic instability should we use to calculate this? The Eady model has
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no critical shear — all shears are unstable — but it has no beta-effect and beta is almost
certainly important. The Charney model has beta, but it too has no critical shear. However,
small shears give rise to shallow, weak instabilities that may not be important. Thus, we
are led to the two-level Phillips model of baroclinic instability, because it accounts for the
β effect.

In the Phillips model, a flow becomes unstable when it reaches a critical velocity differ-
ence between upper and lower levels given by

U = U1 − U2 =
1

4
βL2

d (21)

where Ld = NH/f is the baroclinic deformation radius, and on the sphere β = 2Ω cosφ/a.
Both β and the f hiding in Ld make this U grow towards the equator and decay towards
the pole.

Now, from the Hadley cell solution

U = Ωa
sin2 φ

cosφ
(22)

so that, modulo constant factors, the Hadley cell terminates when

sin4 φc
cos2 φc

=
N2H2

Ω2a2
, (23)

or, with a small angle approximation,

ϑH ≈
(
N2H2

Ω2a2

)1/4
∼ (NH)1/2. (24)

As we discussed previously, both theory and modelling suggest that the tropopause will
move higher as Global Warming progresses. This model shows that such an increase in
H should be accompanied by a poleward expansion of the Hadley cell, perhaps by 1◦ –
2◦ over the 21st century. But perhaps even more significant will be the changes in N2,
which is essentially set by the moist adiabatic lapse rate. A warmer atmosphere will hold
more moisture by Clausius-Clapeyron (assuming no major changes in the relative humidity)
which reduces the moist adiabatic lapse rate and reduces N2. Thus the Hadley cell might
in fact shrink equatorward based on this reasoning. However, the value of N in (24) should
be evaluated at ϑH where the baroclinic instability occurs. This is not determined by the
moist adiabatic lapse rate, and indeed model results suggest that subtropic static stability
may increase with global warming, which would lead to an expansion of the Hadley cell.

3 Effect of Rossby-wave breaking

We will conclude this lecture with an outline of a third model for the extent of the Hadley
cell. Recall we had reduced the zonal momentum equation (1) to a balance of two terms;
let us now include a third for the momentum balance within the Hadley cell:

(f + ζ)v = − ∂

∂y

(
u′v′

)
. (25)
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Figure 5: A schematic for the mechanism described in section 3. Rossby waves are gen-
erated through baroclinic instability at mid-latitudes, accelerating the flow eastwards:
∂(u′v′)/∂y > 0. Some propagate equatorwards, and deposit westward momentum,
∂(u′v′)/∂y < 0, near the critical latitude inside the Hadley cell. At some latitude the
Rossby wave momentum flux is neither convergent nor divergent, ∂(u′v′)/∂y = 0, corre-
sponding to the edge of the Hadley cell.

However, at the edge of the Hadley cell we have v = 0, and thus ∂y
(
u′v′

)
= 0. This is not

necessarily the latitude where the flow is baroclinically unstable (Section 2). Rather, baro-
clinic instability, occurring at some latitude possibly poleward of here, generates Rossby
waves; some of these propagate equatorwards and attenuate as they approach a critical lat-
itude where the mean zonal wind matches the Rossby wave’s phase speed (see the discussion
of lecture 10b). Recalling our previous discussion, angular momentum conservation initiates
a situation with weak winds in low-latitudes and strongly eastward winds in mid-latitudes.
Thus a Rossby wave generated at mid-latitude has a phase speed somewhat less than the
peak eastward wind speed, but certainly still positive for realistic parameters. This Rossby
wave, then, will encounter a critical latitude equatorward of which it cannot flow. The wave
breaks near this critical latitude and accelerates the zonal wind westward. This acceleration
means that the next Rossby wave will encounter its critical latitude slightly more polewards.
We thus have a situation in which the Rossby wave momentum flux convergence ∂(u′v′)/∂y
is positive in the mid-latitudes and negative in the low-latitudes, requiring a zero crossing
∂(u′v′)/∂y = 0 at some latitude in between, shown schematically in Figure 5. This, as was
argued through (25), is the edge of the Hadley cell. Note that this edge is equatorward of
where the baroclinic instability occurs (which was taken to be the edge in Section 2). The
precise latitude will be established through a feedback between the eastward acceleration
by angular momentum conservation and westward acceleration by Rossby wave breaking.
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