
Internal boundary layers in the ocean circulation

Lecture 9 by Andrew Wells

We have so far considered boundary layers adjacent to physical boundaries. However, it is also
possible to find boundary layers in the interior of the fluid domain. Two specific examples which
we will discuss later are the oceanic thermocline and the equatorial undercurrent.

1 A simple example of an internal boundary layer: heat flow in a
pipe

To demonstrate some of the characteristics of internal boundary layers we first consider a simple
problem. Consider one-dimensional flow in a cylindrical pipe as shown in figure 1. The fluid is
initially at a uniform temperature T0 throughout the pipe, with flow at a constant velocity U
along the length of the pipe. For time t ≥ 0 the opening of the pipe is heated and maintained
at a constant temperature T1. The transfer of heat down the pipe can be described by the one
dimensional advection-diffusion equation

∂T

∂t
+ U

∂T

∂x
= κ

∂2T

∂x2
. (1)

The thermal diffusivity κ is typically small, and so as a first approximation we might neglect the
diffusion term on the right hand side of (1). This yields the solution

T = T1 x− Ut ≤ 0, (2)
T = T0 x− Ut > 0, (3)

corresponding to a discontinuous jump in temperature propagating down the pipe at velocity U , as
shown in figure 2(a). Clearly the discontinuity is unphysical, and we need an internal boundary layer

Figure 1: Fluid is pumped down a cylindrical pipe at a constant velocity U parallel to the pipe
axis. The temperature is maintained at the constant value T1 at the opening of the pipe at x = 0,
with the remainder of the fluid initially at a temperature T0.
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Figure 2: Snapshots of the temperature variation along the pipe, taken at a fixed value of t. (a)
The solution in the absence of diffusion, showing a discontinuous jump in temperature. (b) The
solution of the full advection diffusion equation. Diffusion acts to smooth the jump across an
internal boundary layer of width δ = O(

√
κt).

to smooth it out. The discontinuity arises due to the neglect of the diffusion term, mathematically
giving a singular perturbation.

In this case we can obtain a solution of the full heat equation with the diffusion term included.
We introduce a new system of co-ordinates moving with the shock, ξ = x − Ut and τ = t , so
that (1) yields

∂T

∂τ
= κ

∂2T

∂ξ2
. (4)

In this reference frame, there are no imposed horizontal lengthscales and so we obtain the similarity
solution

T =
T0 + T1

2
+
T0 − T1

2
erf

(
ξ

2
√
κτ

)
, (5)

where the error function is defined as

erf(x) =
∫ x

0
exp

(
−u2

)
du. (6)

The full solution is plotted in figure 2(b), where we see that the jump in temperature has been
smoothed out by diffusion over an internal boundary layer of width δ = O(

√
κt). In the following

discussion we will see that several structures of the ocean circulation are explained by the presence
of internal boundary layers within the ocean.

2 The ventilated thermocline

The sub-tropical oceans have an interesting density profile, with a rapid variation in density over
the upper kilometer of depth and a much weaker density gradient in the abyss at depths of 1 to
5.5 km. Typical density profiles in the Pacific Ocean are plotted in figure 3. The upper region
of rapid variation, or thermocline, shows a distinct bowl-like shape in each hemisphere with the
isopycnals sloping upward as we approach both poles and also as we approach the equator.

We outline a qualitative description of the dynamics here to motivate the detailed mathematical
model presented in §2.1. The abyssal deep water beneath the thermocline is of polar origin and
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Figure 3: The zonally averaged potential density field for the Pacific Ocean. Note the change of
vertical scale below 1000km reflecting the decrease in stratification below this depth. Image from
Pedlosky (1998).
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is thought to slowly upwell at mid-latitudes, establishing a temperature contrast with the warmer
waters of the thermocline. The atmosphere imposes a temperature distribution on the surface of
the ocean. This generates a decrease in surface density from the poles to the equator and hence the
ispoycnals must intersect the surface. The surface wind stress in the sub-tropical gyres produces
a downward Ekman pumping, carrying the surface density distribution downwards to generate a
vertical density stratification. However, it is not immediately clear why we have an upwelling of the
density distribution at low latitudes, creating a strongly stratified upper ocean close to the equator.
By analogy with our pipe flow example, we might think of the downward pumping of the density
distribution being interrupted in an internal boundary layer close to the equator, where a different
dynamical balance takes over.

In the following section we develop a model of the ventilated thermocline, and use it to answer
two principal questions:

1. Why does the isopycnal bowl become shallow at low latitudes?

2. Why does the surface forcing only penetrate to 1km?

2.1 The LPS model of the ventilated thermocline

Luyten et al. (1983) developed a model of the thermocline by considering the upper ocean as
consisting of a series of layers of constant density. The entire wind driven circulation in the sub-
tropical gyre is driven by a downward Ekman pumping of typical magnitude we ≈ 10−4cm s−1,
generated by the wind shear stress exerted on the ocean surface. This is incorporated into the
model by imposing an Ekman flux

we = k̂ · ∇ × τ

ρf
, (7)

at the upper ocean surface as derived in a previous lecture (we do not resolve the upper mixed
layer here.) We will consider a model with steady motion in two layers with thicknesses h1(x, y)
and h2(x, y), lying above a deep abyss that is at rest. The structure and notation is illustrated
schematically in figure 4. Note that the isopycnal at z = −h1, marking the lower boundary of layer
1, outcrops at the latitude y = y2 so that layer 2 is in contact with the surface forcing for y > y2.
This model is rather simplistic, but it describes the key characteristics of the circulation and it is
possible to use it to construct a continuum model by resolving further layers.

2.1.1 Governing equations

We assume that the fluid flow is steady and effectively inviscid in the interior, with frictional effects
confined to the surface Ekman layers and described by the imposed Ekman flux we. We treat the
flow in each layer using inviscid shallow water theory, so that there is negligible frictional stress
between the layers and no normal flow across the density interfaces. Applying mass conservation
to each layer we obtain

∂

∂x
(u2h2) +

∂

∂y
(v2h2) = −we y > y2,

= 0 y < y2, (8)
∂

∂x
(u1h1) +

∂

∂y
(v1h1) = −we y < y2. (9)
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Figure 4: The two layer LPS model. The co-ordinates (x, y, z) vary with longitude, latitude and
depth respectively. Fluid of density ρ1 and pressure p1(x, y, z) flows with velocity u1(x, y) in a layer
−h1(x, y) < z < 0. This overlies fluid of density ρ2, pressure p2 and velocity u2 in −(h1 + h2) <
z < −h1. The abyssal layer of density ρ3 is at rest in z < −(h1 + h2). The circulation is driven by
an imposed Ekman downwelling velocity we.

In a steady state the horizontal mass flux in each layer changes only due to fluid input across the
upper and lower interfaces. Hence each layer is fed by an Ekman pumping we while in contact with
the free surface, and then after becoming submerged has no divergence of the horizontal mass flux
because there is no normal flow across density interfaces.

In previous chapters we have seen that the dominant terms in the momentum balance will
depend on the relevant scales for the problem. The Coriolis parameter is given by f = 2Ω sin θ
where θ varies with latitude y. We let β = ∂f/∂y describe the variation of the Coriolis parameter
with latitude. For a typical oceanic basin scale L and horizontal velocity U we have U/βL2 � 1,
so that the inertial scale is small relative to the basin scale. Alternatively we might think of this
as implying that relative velocity gradients are small compared to planetary vorticity gradients.
We can therefore neglect the non-linear advection terms, in addition to the viscous terms, so that
the appropriate horizontal momentum equations are those of planetary geostrophic balance and
hydrostatic balance in each layer. This gives

ρnfvn =
∂pn

∂x
, (10)

ρnfun = −∂pn

∂y
, (11)

ρng = −∂pn

∂z
, (12)

∂un

∂x
+
∂vn

∂y
+
∂wn

∂z
= 0. (13)

where the final equation describes incompressibility. We can combine (10), (11) and (13) to derive
the Sverdrup balance in each layer

βvn = f
∂wn

∂z
. (14)
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Integrating vertically over all layers, and using continuity of wn at each density interface we obtain

β
∑

n

vnhn = fwe. (15)

It will also prove useful to consider the evolution of the potential vorticity in each layer, f/hn.
Using incompressibility (13) to eliminate ∂w/∂z from the Sverdrup balance (14) and combining
with the mass conservation relations (8-9) we obtain, after some algebra,

u2
∂

∂x

(
f

h2

)
+ v2

∂

∂y

(
f

h2

)
=

f

h2
2

weΘ [y − y2] , (16)

u1
∂

∂x

(
f

h1

)
+ v1

∂

∂y

(
f

h2

)
=

f

h2
1

weΘ [y2 − y] . (17)

We use Θ to denote the Heaviside step function here,

Θ [x] =
{

1 x > 0,
0 x < 0.

We note that potential vorticity is conserved in submerged layers, and it changes only due to Ekman
pumping when the layer is in contact with the surface.

The horizontal pressure gradient in each layer can be related to the layer thicknesses. Verti-
cally integrating the hydrostatic balance (12) and substituting into the geostrophic balance condi-
tions (10-11) we obtain

fu2 = − ∂

∂y
(γ2h) , fv2 =

∂

∂x
(γ2h) , (18)

fu1 = − ∂

∂y
(γ2h+ γ1h1) , fv1 =

∂

∂x
(γ2h+ γ1h1) , (19)

where h = h1 + h2 and the relevant reduced gravities are

γ1 =
ρ2 − ρ1

ρ0
g, γ2 =

ρ3 − ρ2

ρ0
g. (20)

2.1.2 Solution for the single moving layer

At large latitudes (y > y2) layer 2 is in direct contact with the ocean surface and forms the
only active layer, so that h = h2. The depth-integrated Sverdrup balance (15) and geostrophic
balance (18) then yield

βv2h2 = fwe, v2 =
γ2

f

∂h2

∂x
. (21)

Eliminating v2 we obtain a differential equation for h2

∂h2
2

∂x
= 2

f2

βγ2
we. (22)

There is no normal flow across the eastern boundary of the basin, and so u2 = 0 at x = xe. In
general we can satisfy this condition by taking h2 as a constant - however for our purposes it is
sufficient to assume h2 = 0 at x = xe, so that upper layer has zero depth at the boundary. We
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ignore the details of the boundary conditions on the western boundary here, and assume that these
are satisfied by an appropriate western boundary current similar to that obtained in the previous
chapter. Integrating (22) gives the layer depth

h2
2 = −2

f2

βγ2

∫ xe

x
we(x′, y) dx′ for y ≥ y2. (23)

The entire solution is uniquely specified in terms of h2 for y ≥ y2, with the horizontal velocities
given by the conditions of geostrophic balance (18).

2.1.3 Solution for two moving layers

As we move closer to the equator layer 2 is subducted under layer 1 for y ≤ y2. The Ekman
pumping then transfers to layer 1, so that the subducted layer is no longer driven directly by the
surface forcing. The potential vorticity equation (16) for layer 2 then yields

u2 · ∇
(
f

h2

)
= 0 (24)

so that the potential vorticity is conserved on each streamline. We define a geostrophic stream-
function ψ2, such that fv2 = γ2∂ψ2/∂x and fu2 = −γ2∂ψ2/∂y. We can then satisfy geostrophic
balance (18) in layer 2 by setting ψ2 = h. Hence we can write

f

h2
= Q2(h) (25)

for an arbitrary function Q2, so that the potential vorticity is a function of streamline.
In order to determine the form of Q2, we consider matching of the two solutions at the subduc-

tion point y = y2, where h1 = 0, h = h2 and f = f2. The constant f2 is defined by

f2 ≡ f0 + βy2. (26)

Substituting these values into (25) we determine

Q2 [h2(x, y2)] =
f2

h2(x, y2)
=

f2

h(x, y2)
, (27)

so that we can write the potential vorticity as

f

h2(x, y)
=

f2

h(x, y)
, (28)

at any point in layer 2 with y ≤ y2. We can use the potential vorticity relation (28) to express the
individual layer thicknesses in terms of f and h, giving

h1 =
(

1− f

f2

)
h, h2 =

f

f2
h. (29)

In order to determine the evolution of h we again use the depth integrated Sverdrup balance (15).
The geostrophic balance relations (18-19) can be used to eliminate v1 and v2, so that we obtain

∂

∂x

(
h2 +

γ1

γ2
h2

1

)
= 2

f2

βγ2
we. (30)
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The appropriate boundary conditions are h = h1 = h2 = 0 at x = xe, required to enforce no normal
flow at the Eastern boundary. Integrating (30) gives

h2 +
γ1

γ2
h2

1 = −2
f2

βγ2

∫ xe

x
we(x′, y) dx′ for y ≤ y2. (31)

We eliminate h1 in favor of h using (29) and obtain a solution for h in y < y2, given by

h =

(
D2

0

)1/2[
1 + γ1

γ2

(
1− f

f2

)2
]1/2

, (32)

where

D2
0 ≡ −2

f2

βγ2

∫ xe

x
we(x′, y) dx′ ≥ 0. (33)

The characteristic depth D0 is a measure of the strength of the Ekman pumping which is forcing
the circulation.

2.1.4 Structure of the full solution

We now look at the detailed structure of the solution for a particular example of Ekman pumping.
Figure 5 shows calculated layer depths for an idealized Ekman pumping given by

we = sin
(
πf

f0

)
. (34)

The contours show the characteristic bowl structure as seen in field observations of the thermocline

h1

h2

y

z

Figure 5: Plot of variation of the with latitude y of the density interfaces at z = −h1 and z=−h
for we = sin(πf/f0).

density structure (see figure 3.) The horizontal circulation is plotted in figure 6. The layer 1
circulation, confined to y < y2, shows a similar qualitative circulation pattern to that given by
the Sverdrup interior solution for a homogenous fluid. The layer 2 streamlines show the same
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Figure 6: Plots of streamlines in layer 1 (blue curves) and layer 2 (red curves) in a square oceanic
basin, for we = sin(πf/f0). The blue dashed line shows the line y = y2, where layer 2 subducts
under the Northern most edge of layer 1. The red dotted curve marks the edge of a shadow zone
in layer 2, with no flow to the South of this curve.

characteristic shape, except in a shadow zone towards the South-East of the basin. This shadow
zone is an interesting prediction of the theory and can be explained as follows. The no normal flow
boundary condition on the Eastern boundary requires that h2 is constant on x = xe. However,
after layer 2 subducts and loses contact with the surface we have conservation of potential vorticity
on streamlines (u2 · ∇(f/h2) = 0 for y < y2). Since f varies with y, we cannot satisfy the potential
vorticity condition with constant h2, unless u2 = 0 in a stagnant shadow zone adjacent to the
boundary.

We now consider the behavior of the solution as we approach the equator at y = 0. If the wind
stress τ is aligned in the x direction, we have

we = − ∂

∂y

(
τ

ρ0f

)
= − 1

ρ0f

∂τ

∂y
+

β

ρ0f2
τ, (35)

and (33) becomes

D2
0 = (xe − x)

2
ρ0γ2

(
∂τ

∂y

f

β
− τ

)
. (36)

As f → 0, D2
0 approaches the finite value

D2
0 = −τ(xe − x)

2
ρ0γ2

. (37)

At low latitudes the trade winds generate a negative shear stress τ < 0, and so (32) implies that
the layer thicknesses remain finite as y → 0 and we approach the equator. However, if geostrophic
balance is still to hold,

v2 =
γ2

f

∂h

∂x
, (38)
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so that v2 diverges as f → 0. This singularity is clearly unphysical, and reflects the fact that a new
physical balance must become important near the equator. We will resolve this problem in §2.1.6
by introducing an inertial boundary layer close to the equator, where the dynamical balances are
modified.

2.1.5 Extensions and the continuous model

The simple model we have developed can be extended to improve the description of the physical
processes at work. Rhines and Young (1982)considered how the wind driven circulation might
impact directly on the lower layer and the ideas were developed further by Pedlosky and Young
(1983) (see also Pedlosky, 1998). The extension towards a continuous model was considered by
Huang (1989), who added a larger number of layers into the model. As the number of layers
increases we approach a high resolution finite difference approximation to the continuous form of
the solution. This solution also shows upwelling of isopycnals as we approach the equator.

2.1.6 The equatorial inertial boundary layer

Our current model of the thermocline breaks down as y → 0 and we approach the equator, with
geostrophic balance implying a divergence of the equator-ward velocity v2 (we can also deduce a
similar result for layer 1.) This singularity occurs due to the neglect of certain terms in the governing
equations - in order to heal the singularity we must reintroduce the relevant terms to make sure we
capture the correct physical balances. We return to the full non-linear inviscid governing equations
in each layer, with mass conservation and horizontal momentum conservation in each layer yielding

∂

∂x
(unhn) +

∂

∂y
(vnhn) = 0, (39)

un
∂un

∂x
+ vn

∂un

∂y
− βyvn = − 1

ρ0

∂pn

∂x
, (40)

un
∂vn

∂x
+ vn

∂vn

∂y
+ βyun = − 1

ρ0

∂pn

∂y
. (41)

We note that near to the equator the Coriolis parameter is approximately linear in y, so that
f = 2Ω sin θ ≈ βy.

To determine the appropriate balances, we consider the scaling of all terms in the governing
equations. We set

(x, y) = (Lx′, ly′), h = Hh′, (u, v) = U

(
u′,

l

L
v′

)
, p = ρ0βl

2Up′, (42)

where l, L and H are all lengthscales, and U is the appropriate velocity scale. Typically the basin
width is L ≈ 1000km and we will show that the width of the equatorial layer is l ≈ 100km, so
that l� L. Note that the scaling of the pressure has been chosen for a system where the pressure
gradient will be of the same order as the coriolis acceleration. With these scalings in place, the
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non-dimensional forms of (39-41) are

∂

∂x′
(
u′nh

′
n

)
+

∂

∂y′
(
v′nh

′
n

)
= 0, (43)

U

βl2

(
u′n
∂u′n
∂x′

+ v′n
∂u′n
∂y′

)
− y′v′n = −∂p

′
n

∂x′
, (44)

U

βl2
l2

L2

(
u′n
∂v′n
∂x′

+ v′n
∂v′n
∂y′

)
+ y′u′n = −∂p

′
n

∂y′
. (45)

In order to avoid singular behavior of v as y → 0, we need to include the non-linear inertia terms
in the x-momentum balance (44). This requires that

U/βl2 = O(1). (46)

The retention of some non-linearity reflects the fact that the relative component of vorticity becomes
comparable to, and exceeds the planetary vorticity as we approach the equator. However, we can
neglect the inertial terms in (45) due to the extra factor of l/L � 1, so that the y-momentum is
in geostrophic balance. We have a loss of symmetry in a narrow region close to the equator, with
only the x-component of inertia being important - this is sometimes called semi-geostrophy.

We require two further scaling relations in order to determine the depth scale H, boundary layer
width l and velocity U uniquely in terms of the imposed physical scales. We assume the pressure
will satisfy hydrostatic balance, so that

p ∼ ρ0γ2H ∼ ρ0Uβl
2, (47)

where the second balance is obtained from the direct scaling introduced for p. We determine a
scale for H by assuming smooth matching of the depth of the thermocline outside of the internal
boundary layer. This requires H ∼ D0, so that scaling of (36) yields

H2 =
τL

ρ0γ2
. (48)

Combining (46-48) we obtain the lengthscales

l =
(
γ2τL

ρ0β4

)1/8

, H =
(
τL

γ2ρ0

)1/2

, U =
(
γ2τL

ρ0

)1/4

. (49)

Using typical oceanic values of γ ≈ 0.01m s−2, L ≈ 1000km and τ ≈ 0.01m2 s−2, we find that
l ≈ 200km, H ≈ 100m and U ≈ 1ms−1.
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