
Boundary Layers: Sloping bottoms in a stratified, rotating fluid

Lecture 5 by Iva Kavčič

In oceanic coastal regions, e.g. on the shelf regions between the coast and the deep ocean, the
bottom generally slopes and the fluid is stratified.
We have already seen the way the thermal boundary layers on vertical walls can control the interior
flow and how the Ekman layers on horizontal boundaries can do the same for rotating fluids. Sloping
boundaries are a type of a hybrid of these two.

1 The model

We begin with the schematic of the bottom boundary layer (hereafter: BL), shown in Fig. 1. Fluid

Figure 1: A schematic of the bottom BL, upwelling case

is stratified with the density gradient ∂ρ/∂z′. Here z′ denotes the direction of the true vertical (Fig.
2), aligned with the direction of gravity, g, and planetary rotation, Ω. The bottom is in direction y
of the slant coordinate frame (y, z), rotated counterclockwise with the angle θ with respect to the
reference coordinate frame (y′, z′), (Fig. 2). The density gradient, ∂ρ/∂z′, produces the buoyancy

Figure 2: The reference, (y′, z′), and the slant coordinate frame, (y, z)
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force in the true vertical, with the frequency, (Fig. 1),

N2 = −g

ρ

∂ρ

∂z′
. (1)

As in the linear Ekman layer problem, the flux is to the left (from high to low pressure) of the along
isobar flow component U (Fig. 1). Here this results in canceling of the density gradient component
perpendicular to the bottom (∂ρ/∂z) due to the upslope transport of the heavier fluid by the cross
isobar flow component V , and formation of the mixed BL (Fig. 1). The density gradient component
along the slope (∂ρ/∂y) can be derived as

4ρ

4z′
=

4ρ

4y sin θ
, (2)

g
∂ρ

∂y
= −ρN2 sin θ. (3)

From (3) we see that fluid moving up the slope a distance 4y = 4z′/ sin θ, (Fig. 3), will produce
a density anomaly

4ρ = −1
g
N2ρ0 sin θ4y. (4)

Figure 3: The distances in reference and slant coordinate frame

From (3) and the thermal wind relation

f
∂U

∂z
=

g

ρ

∂ρ

∂y
, (5)

we see that over a depth of the bottom BL of the order

H = − fU

N2 sin θ
(6)

it would be possible to adjust the speed of the current to zero without Ekman layers and their
dissipation, i.e. currents could flow long distances without decay. Here f is the Coriolis parameter,
f = 2Ωcos θ ≈ 2Ω, for θ small.
Following MacCready and Rhines, MacCready and Rhines (1993), we write the equations in the
slant coordinate frame (Fig. 2):

v = v′ cos θ + w′ sin θ (7)
w = −v′ sin θ + w′ cos θ (8)
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Far from the lower boundary the temperature is:

T∞ = 4Tvz
′/D, (9)

with 4Tv being the mean temperature difference in the true vertical, z′ (Fig. 2). The buoyancy
frequency now can be defined as:

N =
(

gα4Tv

D

)1/2

. (10)

The temperature equation is then:

T = 4Tvz
′/D + ϑ (y, z) (11)

= 4Tv (z cos θ + y sin θ) /D + ϑ (y, z) , (12)

where the ϑ (y, z) is the temperature perturbation. We assume that ϑ→ 0 as z →∞.

2 The steady-state solution

As in the case of stratified fluid, we investigate the steady-state behavior of the flow in the BL and
interior. Here we simplify the problem by searching for the solutions independent of y, i.e. only
functions of z. As z → ∞, u → U , and a constant v is independent of y. The above, together
with the assumption of incompressibility, gives w ≡ 0. Furthermore, nonlinear terms in equations
vanish identically.
The governing equations of motions then are:

2Ω cos θu = − 1
ρ0

∂p̃

∂y
+ Avzz + b sin θ, (13)

−2Ω cos θv = Auzz, (14)

2Ω sin θu = − 1
ρ0

∂p̃

∂z
+ b cos θ, (15)

vN2 sin θ = κbzz. (16)

Here A is the momentum mixing coefficient, κ is the thermal diffusivity and p̃ (y, z) is the pressure
perturbation. Buoyancy perturbation, b, is given by

b = αgϑ, (17)

where α is the coefficient of thermal expansion, and Coriolis parameter is f = 2Ωcos θ.
The boundary conditions (hereafter: BC) at the lower boundary (z = 0) are:

u (z = 0) = 0, (18)
v (z = 0) = 0, (19)

bz (z = 0) = −N2 cos θ. (20)

Here (20) represents the insulating BC at z = 0.
Since u, v and b are independent of y, derivation of (15) with respect to y gives:

∂2p̃/∂y∂z = 0. (21)
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Then, from (13) and (14) we derive the boundary layer equation:

−f2

A
v = Avzzzz + bzz sin θ. (22)

If the fluid were homogeneous (∂ρ/∂z′ = 0) or if the bottom were flat (θ = 0) we would recover the
Ekman layer problem. Using the thermal equation (16) to eliminate b in favor of v yields:

vzzzz + 4q4v = 0, (23)

q4 =
1
4

[
f2

A2
+

N2

Aκ
sin2 θ

]
. (24)

The general form of the solution of (23) is v ∼ exp(rz), which gives

r1,...,4 = ± (1± i) q. (25)

Since it is not physical for the solutions to grow exponentially in space, we keep the ones with
Re (r) < 0. Their linear combination is also the solution of (23):

v = C exp (−qz) cos (qz) + B exp (−qz) sin (qz) (26)

From (24) we can see that if the bottom is flat (θ = 0) the BL scale is the Ekman layer thickness.
If the bottom is vertical, i.e. if θ = π/2, the scale is the buoyancy layer thickness. Applying the
BC (19) gives C = 0. Then, from the thermal equation (16) follows

bz = −B
N2 sin θ

2qκ
exp (−qz) (cos (qz) + sin (qz)) , (27)

and from (14)

u = − f

2Aq2
B exp (qz) cos (qz) + U∞. (28)

The insulating BC, (20), gives B = 2qκ cot θ, while the non slip condition on u, (18), yields

U∞ = − f

Aq
κ cot θ, (29)

giving the solution for u
u = U∞ [1− exp (−qz) cos (qz)] . (30)

Therefore, we see that the flow at infinity is not arbitrary - it is the part of the solution. Moreover,
equation (29) gives the two limiting cases for u on horizontal (for θ = 0, U∞ → ∞) and vertical
(U∞ = 0 for θ = π/2) bottom.
Similarly to the linear Ekman problem, only the frictionally driven flow up the slope (v component)
contributes to the total flux (stream function)

Ψ (z) =
∫ z

0
vdz = κ cot θ {1− exp (qz) [cos (qz) + sin (qz)]} . (31)

The total, as z →∞, is:

Ψ (∞) = κ cot θ =
Aq

f
U∞. (32)
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This also follows directly from the integral of the thermal equation (16), together with the insulating
BC (20).
Now, we see that the boundary layer controls the interior through the dependence of the U∞ on
the thermal diffusion and the slope (29). This result, while at first glance non intuitive, is really
just a manifestation of the control mechanisms we have already met in our discussion of the linear
flow in the cylinder, although here in a more extreme form.
Unlike in the linear Ekman layer case, now we are not any more able to drive the system as we
would like and establish some arbitrary equilibrium velocity along the isobaths. We continue our
presentation by investigating the possibility of initially specifying a different far field along shore
flow, and monitor its evolution in time. Further reference can be found in the work of MacCready,
Rhines and Garrett, Garrett and Rhines (1993).

3 The slow diffusion equation

We now derive the ”slow diffusion equation” (hereafter: SDE) from the time-dependant system of
driving equations (13)-(16):

∂v

∂t
+ 2Ω cos θu = − 1

ρ0

∂p̃

∂y
+ Avzz + b sin θ, (33)

∂u

∂t
− 2Ω cos θv = Auzz, (34)

2Ω sin θu = − 1
ρ0

∂p̃

∂z
+ b cos θ, (35)

∂b

∂t
+ vN2 sin θ = κbzz. (36)

As in the case of Ekman layer in a stratified fluid, we apply the scaling: y = Ly′, z = Dz′, t = D2

κ t′,
where L, D and D2/κ are the characteristic length, depth ant time scales, respectively, and y′, z′ and
t′ are the non-dimensional variables. The velocity components are scaled with (u, v) = U (u′, v′),
pressure is scaled with respect to the geostrophic balance, p̃ = ρ0fULp̃′, and buoyancy with b =
fUL
D b′.

After defining the BL thickness as δ = D/L and dropping the primes, the dimensional system
(33)-(36) can be written in the non-dimensional form:

E

2σ

∂v

∂t
+ u = −∂p̃

∂y
+

E

2
vzz + b

sin θ

δ
, (37)

E

2σ

∂u

∂t
− v =

E

2
uzz, (38)

−δ tan θu = −∂p̃

∂z
+ b cos θ, (39)

E

2σ

∂b

∂t
+

sin θ

δ
Sv =

E

2σ
bzz, (40)

where f = 2Ωcos θ is the Coriolis parameter, E = 2A
fD2 is the Ekman number, and S = N2δ2

f2 is the
stability parameter.
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In the interior (as in the case of stratified fluid before) it is reasonable to neglect friction and to
assume stationarity. Also, tan θ is small. Therefore, the system (37)-(40) reduces to:

uI = −∂pI

∂y
+ bI

sin θ

δ
, (41)

bI cos θ =
∂pI

∂z
. (42)

Eliminating v between (38) and (40) yields:

1
σ

∂

∂t

[
uI +

δ

S sin θ
bI

]
=

1
2

∂2

∂z2

[
uI +

δ

σS sin θ
bI

]
. (43)

Eliminating the pressure in (41) and (42) and noting that b is independent of y gives:

∂uI

∂t
=

∂bI

∂z

[
sin θ

δ

]
, (44)

and the SDE is then:
∂

∂t

(
∂uI

∂z

)
= σ

1 + δ2

σS sin2 θ

1 + δ2

S sin2 θ

∂2

∂z2

(
∂uI

∂z

)
. (45)

We introduce the modified stability parameter, S∗, as:

S∗ ≡ S
sin2 θ

δ2
=

N2

f2
sin2θ. (46)

The effective diffusion coefficient then becomes:

µdiff = σ

(
1
σ + S∗

1 + S∗

)
, (47)

in the non-dimensional form, whereas its dimensional form is given with:

(µdiff )dimensional = A

(
1
σ + S∗

1 + S∗

)
. (48)

From both (47) and (48) we can see that if σ > 1, the diffusion coefficient would be smaller than
in the absence of stratification.
Now, if u is independent of z and t as z →∞, we obtain the final form of the SDE:

∂uI

∂t
= mudiff

∂2uI

∂z2
. (49)

To obtain the BC for SDE we need to consider the BL at sloping bottom, i.e. find BC such as to
match the boundary.
We introduce the BL coordinate:

ζ = zE−1/2, lim
z→0

ζ = 0. (50)
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Then (labeling correction variables with ”e”) the BL equations for correction functions are:

ue = −∂pe

∂y
+

1
2
vzζζ + be

sin θ

δ
, (51)

−ve =
1
2
ueζζ , (52)

−δ tan θue = − 1
E1/2

∂pe

∂ζ
+ be cos θ, (53)

sin θ

δ
ve =

1
2σS

beζζ . (54)

These are the same steady equations, (13)-(16), and BC, (18)-(20) we dealt with before, yielding
the equation for ve:

∂4ve

∂ζ4
+ 4q4

eve = 0, (55)

q4
e =

[
1 + σS

sin2 θ

δ2

]
. (56)

Like for the steady-state case, the BL solution is then:

ve = C exp (−qeζ) cos (qeζ) + B exp (−qeζ) sin (qeζ) (57)

be = σS
sin θ

δ
{exp (−qeζ) [(C −B) sin (qeζ)− (C + B) cos (qeζ)]} (58)

ue =
1
q2
e

[C exp (−qeζ) sin (qeζ)−B exp (−qeζ) cos (qeζ)] (59)

(60)

Matching conditons between BL and the interior:

uI + ue = 0 (61)
vI + ve = 0 (62)

Here: vI ∼ O (E)→ B = 0, and

∂bI

∂z
+ E−1/2 ∂be

∂ζ
= −S

ε
cos θ → A = 0, (63)

where ε = U
fL .

The frictional BL vanishes to the lowest order. Also, uI must satisfy the no-slip BC at z = 0, giving
us the solution for uI :

uI = U∞
2√
π

∫ ζ/
√

µdiff t

0
exp

(
−ϕ2

)
dϕ (64)

Next order BL solution still has Ve = 0⇒ A = 0.
BL contribution to buoyancy flux yields:

B = − δα

2σS sin θ

[
S

ε
cos θ +

δU∞

sin θ
√

πµdiff t

]
(65)
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The long time solution in BL is obtained as t→∞:

be = −E1/2 S

εα
cos θ exp (−αζ) cos (αζ) , (66)

which is the steady state solution (in non-dimensional form) already attained.
Hence it is possible to consider arbitrary interior flows but, at least with the simple physics here,
the boundary layer control eventually expunges the along isobath flow and yields an asymptotically
weak frictional boundary layer. This, in one sense resolves the conundrum posed by the steady
boundary layer solution in which the interior flow and the cross-shelf flow depended only on the
stratification and the vertical thermal diffusion coefficient. Nevertheless, the solution presented
here eventually approaches that very constrained solution.
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