
Boundary Layers: Stratified Fluids

Lecture 3 by Jeroen Hazewinkel

continued from lecture 2
Using wI = E/(2σS)∇2TI , the interior of the cylinder is be described by

E

2σS
∇2TI +

E1/2

4
∇2

∫ 1

0
TI(r, z′)dz′ =

E1/2

4
1
r
(rvT )r. (1)

This result can be rewritten as a Poisson equation

∇2Θ = λ
1
r
(rvT )r, (2)

where we introduced the new temperature

Θ = TI + λ

∫ 1

0
TIdz

′, (3)

with

λ =
σS

2E1/2
. (4)

This λ will be the determining parameter to the problem. Remember that, although being small,
the term σS in λ is as yet undefined relatively to E1/2. When λ is relatively small stratification
is of little importance and the problem reduces to the unstratified Ekman problem. In the other
limit, i.e. λ� 1, stratification suppresses most of the vertical motion.

In order to solve the Poisson equation 3 we need boundary conditions at all sides of the domain.
At the top and bottom of the cylinder, we simply have to match the interior temperature with
the forced exterior temperature. At the side walls we have to find solutions for Θ(r → r0). As we
anticipate side wall boundary layers, we introduce a boundary layer correction to all variables, e.g.
u = uI(r) + ubl(ζ) → ubl = 0, ζ → ∞. As before we will use a boundary layer coordinate ζ. Note
that the boundary layer scale has to be determined as yet, i.e. r = δζ with δ unknown. In order
to find this scale we turn back to the same balance equations that hold in the interior. However,
the full Laplacian is replaced by its first approximation in the rapidly changing coordinate ζ, i.e.
∇ → ∂ζζ . This gives
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v = pζ , (5)

u =
E

2
vζζ , (6)

0 = pz + T +
E

2
wζζ , (7)

uζ + wz = 0, (8)

σSw =
E

2
Tζζ . (9)

Combination of the above equations results in wz = −E/2p4ζ and Tz = −σSpζζ . Taking the
z-derivative of 7 and using the above found relations gives one equation for pressure p,

E2

4
p6ζ + σSpζζ + pzz = 0. (10)

Recall that we assume all derivatives to z are O(1) and those to ζ are O(1/δ). This means that for
example the first term of 10 is O(E2/δ6).

There are several balances that satisfy 10. We will examine the options. Firstly, there could be
a balance between the first term and the last term. This implies that E2/δ6 = O(1),− > δ = E1/3,
the so called Stewardson layer. This layer exists for a homogeneous, rotating fluid. In order for the
second term of 10 to be negligible we also find that σS � E2/3.

Considering σS � E2/3 there are two possible balances. For δ = E1/2/(σS)1/4 the first and
second term balance. This boundary layer only depends on the stratification and is therefore called
the buoyancy layer. For δ = (σS)1/2 we find a balance between the second and third term of 10.
This layer is the hydrostatic layer. As both boundary and hydrostatic layers are found in the limit
σS � E2/3 they coexist. In the larger hydrostatic layer, close to the side wall the buoyancy layer
is found. With decreasing stratification these two combine in the Stewardson layer. In both limits,
σS small and large compared to E2/3, the full sixth order of 10 is preserved. As we considered
the cylinder with a stratification we will have to see the impact of both hydrostatic and buoyancy
layers on the interior, or how they set the boundary condition for 3.

0.1 Hydrostatic boundary layer

Turning to the hydrostatic layer we introduce a stretched coordinate

η =
r0 − r

δhydrostatic
=

r0 − r
(σS)1/2

. (11)

We rewrite the azimuthal velocity as v = ṽ(r, η). This indicates, from the governing equations,
that u = E/(σS)ũ and p = (σS)1/2. The governing equations, accurate to terms of order larger
than E2/3, become
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ṽ = p̃η,

ũ =
1
2
ṽηη, (12)

T̃ = p̃z, (13)
ũη + w̃z = 0, (14)

w̃ =
1
2
T̃ηη. (15)

Friction is in this layer not of importance, as we balanced the second and third term in 10. Com-
bining all terms we find an equation for v. These can be combined to give, (with the assumption)
that v vanishes at r = r0

ṽηη + ṽzz = 0. (16)

To solve this we notice that the thickness of the hydrostatic layer, in the case of σS � E, is much
greater than that of the Ekman layer at the top and bottom. This means that for these Ekman
layers the dynamics of the hydrostatic layer is part of the interior. The vertical velocity shows that

wh =
E

(σ)3/2
w̃ =

E

(σ)3/2
T̃ηη =

E

(σ)3/2
ṽzη. (17)

From the Ekman transport we find that this vertical velocity is

E

2
ṽhr =

E1/2

(σ)1/2
ṽη, (18)

indicating that ṽzη = σS/E1/2vη or ṽz = λṽ at top and bottom of the hydrostatic layer. Compli-
mentary to this we will assume that ṽ = V (z)e−aη, so that 16 results in

(λ2 + a2)ṽ = 0. (19)

This shows that the hydrostatic boundary layer has a characteristic scale of a = (2σS)1/2/E1/4.

0.2 Buoyancy layer

In the very thin buoyancy layer we found the thickness to be δb = E1/2/(σS)1/4. Introducing the
boundary layer coordinate ξ = (r− r0)/δb and v = v̂ etc., we rewrite the governing equations again
to find

v̂ = p̂ξ, (20)

û =
1
2
v̂ξξ, (21)

T̂ =
1
2
ŵξξ, (22)

ûξ + ŵz = 0, (23)

ŵ =
1
2
T̂ξξ. (24)
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Note that, as we derived the buoyancy layer being the balance between buoyancy and the friction
we also see this in the third equation above. We see that combining the equations implies that

T̂4ξ + 4T̂ = 0, (25)

indicating an Ekman like boundary layer. Using the Ekman solution we find

T̂ = Ae−ξ cos ξ +Be−ξ sin ξ. (26)

As ψ̂ = T̂ξ we find that

ψ̂ =
r0
2

[−Ae−ξ(cosξ + sinξ) +Be−ξ(cosξ + sinξ)]. (27)

Now we have expressions for both hydrostatic and buoyancy layers. The sum of the solutions has
to meet the outer boundary conditions.

0.3 Matching at r = r0

At the outer rim, r = r0, there is no slip which means that

vI(r0, z) + ṽ(0, z) +
E

(σS)3/2
v̂(0, z) = 0. (28)

The last term on the lhs is negligible so we find that interior velocity is balanced by the velocity
from the hydrostatic layer. Taking the z-derivative and using the thermal wind relation, ??, leads
to

(TI)r − T̃η = 0. (29)

In case of an insulating side wall at r = r0 the radial derivative of total temperature should be zero,
i.e. (TI)r − T̃η − Tξ = 0. Combining these two results we see that Tξ = 0. Also the total stream
function should be zero. Combining previously found expressions for ψ we find

0 = ψI +
E

(σS)
ψ̂ +

E

σS
ψ̃ = ψI −

Er0
2σS

T̂η −
Er0
2σS

T̂ξ. (30)

Noting that we found an expression for T̃ (r0)η and T̂ (r0)ξ = 0, we see that

ψI =
Er0
2σS

(TI)r. (31)

By definition ψr = rw and we recall the interior balance between vertical flux and temperature and
forcing velocity. We recast this at position r = r0 so that we can use 31, and find

E1/2

4
r0vT −

E1/2

4
r0

∫ 1

0
∂rTIdz −

r0E

2σS
r0

∫ 1

0
∂rTIdz = 0. (32)

Assuming that there is no z dependence for the interior temperature, the integrals give us the
integrants so we have

∂rTI =
λ

1 + λ
vT (r0). (33)

4



Figure 1: Observations by Pedlosky et al. (1997) in a rotating cylinder with a temperature profile
on top. Shown are three different experiments in which the azimuthal velocity is visualized by dye.
Note that the profiles changes for different stratification. On the right their comparison between
observations (+) and theoretical predicted profile (line)

The z independence of T also means that Θ(r0)r ≡ Tr(r0)+λ
∫ 1
0 Tr(r0)dz = (1+λ)Tr(r0) = λvT (r0).

This means that we finally found the boundary condition for 3 being

Θr(r0) = λvt(r0). (34)

1 Two experiments

We will briefly discuss two experiments that can be seen as confirmation of the above theory for
a rotating, stratified fluid. In their experiment ? considered a cylinder, having a temperature on
top in the varying in the radial direction and bottom at a fixed temperature. The boundary on top
did not rotate differentially from the rotation of the whole tank. In this special set-up it turns out
that on the side walls both hydrostatic and buoyancy layers are inactive but a layer of the scale
(σS)1/2 exists in the vicinity of the upper boundary. For sufficiently large stratification, the Ekman
pumping into the interior is completely suppressed. The nearly inviscid interior velocity field has
to match the no-slip in a layer that decreases with decreasing stratification. Beneath this layer, a
smooth transition of the azimuthal velocity towards null at the bottom is found. In a comparison
between theory and experiments the velocity profiles were found to be in good agreement, as shown
in Figure 1.

In a second study Whitehead and Pedlosky (2000), again a stratified fluid in a rotating cylinder
was considered. However, in this case not the top, but a coil around the cylinder heated the fluid.
The heating was placed in the middle of the height of the cylinder. This sidewall warming forces
a vertical mass flux in the sidewall boundary layer. The divergence of this flux effects the interior
flow and drives a azimuthal velocity. Again, the theoretical predictions and observations were in
close agreement. In Figure 2 both theory and experimental velocity profiles at several radii are
shown. As the stratification increased, Whitehead and Pedlosky (2000) observed that the velocity
profile got a sharper peak.
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Figure 2: Comparison between a) theoretical prediction for the velocity profiles and b) the ob-
servations. The various lines and dots correspond to different sampling radii. in Whitehead and
Pedlosky (2000).
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