
Internal boundary layers in the ocean circulation

Lecture 10 by Jan Zika

This section follows on from Andy’s ‘Internal boundary layers in the ocean circulation’.

1 Equations of motion in the equatorial region

We may now define the scaled boundary layer equations

− (y + ζn)vn = −∂Bn

∂y
, ζn = −∂un

∂y
. (1)

Here the Bernoulli potential is defined as

Bn = Pn +
1
2
u2

n (2)

and close to the equator we assume the relative vorticity is dominated by its local component −∂u
∂y .

Beneath the surface, the streamfunction (ψ) may be defined on each layer such that

hn~un = k̂ ×∇ψn. (3)

We also define the potential vorticity

qn =
y − ∂un

∂y

hn
, (4)

which is the combination of both the planetary and relative components of vorticity. By combining
(3) and (5), the streamfunction and Bernoulli function may be related by

qn
∂ψn

∂x
=

∂Bn

∂x
, (5)

and combined with zonal geostrophy (yun = −∂Pn
∂y ) equation (4) may be extended to

qn∇ψn = ∇Bn. (6)

Here the gradient of the Bernoulli function is related to the motion of potential vorticity. Although
Bn is a closely related to streamfunction in rotating flows, in areas of no rotation this is not so
(i.e. consider a non rotating flow where qn = 0 hence Bn is a constant whereas there can by a
complicated function for the flow (ψ) but for a rotating fluid the functions are intimately linked).
By taking the dot product of ~un on both sides of (6), we may derive the following relationships in
the equatorial region

qn~un · ∇ψn = ~un · ∇Bn. (7)
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Above this region, ~un · ∇ψn = 0 by definition. Also, the streamfunction and potential vorticity are
related by ∇qn ×∇ψn = 0, and from this and (7)

~un · ∇qn = o & ~un · ∇Bn = 0. (8)

So, in this equatorial region both qn and Bn are conserved on streamlines and hence they may be
related to one and another on each layer by the function Qn such that

qn = Qn(Bn) (9)

i.e. when Bn is constant on a streamline (qn must be also). Assuming the flow is once again
hydrostatic the pressure p on layers 1 and 2 may be represented in terms of the depth h such that
p2 = h, p1 = h + Γ12h1 for Γi,j = γi

γj
. Writing the relationship between potential vorticity and B

for layer 2 in full,

y − ∂u2
∂y

h2
= Qn(h+

1
2
u2

2). (10)

For geostrophic balance of u2, we must have ∂h
∂y = −yu2. We have defined systems of equations

that describe both the large f midlatitude regions and those of small f close to the equator. It is
now pertinent to merge the two solutions and derive a solution for the full system.

2 Linking the equatorial and mid-latitude regions

The physically important question now arises as to what Q2 must be in order to link the equatorial
regions to those of the multitudes in a consistent way. For large y (where y is a coordinate of the
equatorial region), the solutions must merge. About the transition region on layer 2

q2 ≈
y

h2
B2 ≈ h. (11)

Using (11) from the ventilated thermocline solution we have

Q2(B2) =
y2

B2
(12)

and hence

y − ∂u2
∂y

h2
=

y2

h+ 1
2u

2
2

. (13)

As Joe pointed out in the principal lectures, equation (13) is the water parcel analogy to marriage.
A girl with a lot of potential (y2) is united with a boy of great thickness (h2) at high latitudes.
Together the flow of life takes them to lower latitudes and although the girl develops added spin
(∂u2

∂y ) and the boy becomes more energetic (1
2u

2
2), the relationship between the now man and

woman remains the same. However, as Antonello points out, there is a lot of turbulence in the
world and such simple models are often not able to be generalized. It is left to the reader to derive
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a relationship incorporating turbulent terms (both theoretically and experimentally).We may now
simply define the following set of ODEs in y only.

∂u2

∂y
= y − y2

h+ 1
2u

2
2

; (14)

∂h

∂y
= −yu2; (15)

h2 = h− h1. (16)

In order for the system defined above to be solved we require a relationship between the depth h
and thickness of layer 2 h2. As the solution must hold for the equatorial regions, the Sverdrup
relation breaks down and may not be applied here. We will thus attempt to match the solutions at
the equatorial boundary. It is feasible to add additional layers, because it is simply the relationship
between h1 and h2 that we desire. Indeed the inclusion of additional layers reduces the influence
of our assumptions about h at the surface.

We will apply two closure techniques. In both cases we allow the solutions to merge at yn >> 1.
The first closure assumes that

h(x, y) = h(x, yn) (17)

for all y and the second assumes

h(x, y) = h1(x, yn) +
h(x, yn)− h(x, y)

Γ12
, (18)

which implies that the upper layer pressure gradient is independent of y (a somewhat ‘sketchy’
assumption that should suffice for the present). In order to conserve potential vorticity we may
allow no normal flow across the equator. So at y = 0 B2 = const. = B0 where Bo = h(0, yn). So B0

will be the final value of h as it makes a transition from higher latitudes to y=0 (figure 1). Thus

u2h2 =
1
q2

∂B2

∂y
= − ∂

∂y

(
B2

2

2y2

)
. (19)

Thus integrating from y = 0 to yn∫ yn

0
u2h2dy =

[
−

(
B2

2

2y2

)]yn

0

=
B2

0 − h2(0, yn)
2y2

. (20)

This integration may now be carried out for each x so that the closure is met at large y and
B2 = B0 at y = 0 for all x. This is done by the ‘shooting’ method, where u2 is guessed at y = yn

in an attempt to ‘hit’ B0, with the u2 guess being adjusted at each attempt. The method is
repeated iteratively until convergence to a solution for u and h. Figure 2 shows solutions, using
the second closure, gained through this method for various points in the domain. An interesting
result is the prediction of increased zonal velocity close to the equator. The feature is known as
the Equatorial Undercurrent (EUC). Indeed the increase in deep flow is coincident with shallowing
of the thermocline from west to east (Figure 3). The same essential result is gained using the
alternative closure (Figure 4).
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Figure 1: Image showing how Bo is defined at yn as h(0, yn) defining a boundary higher and lower
latitudes.
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Figure 2: Solutions of (20) for u2 (solid line), ∂u2
∂y (dashed line) and h (dashed-dotted). In this

case Γ12 = 1 (second closure). The three panels correspond to profiles at x=0.25, 0.50 and 0.75
respectively. B0 = 1.265 and y2 = 5. Pedlosky (1987)
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Figure 3: Depth of the base of the moving thermocline layer representing the core of the undercur-
rent shown as a solid line at the equator and as a dashed line in the matching region at y = yn.
Pedlosky (1987)
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Figure 4: Profiles of u2, ∂u2
∂y , h, and h1 for the case in which (17) is satisfied. The parameters are

otherwise as in Figure (2). The calculation is at x = 0.5. The maximum eastward velocity is now
0.910.
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Figure 5: Lines of Constant B2, which are surrogates for streamlines, calculated from results of
2nd matching (figure 2). Pedlosky (1987)
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Analyzing the Bernoulli function B2 on layer 2 reveals the structure of the undercurrent (Figure
4) as lines of constant B are surrogates of streamlines. The flow is largely southward from the
matching region and steers towards the East as the equator is approached.

Modifications to this model, allowing for multiple layers, have been made and show that the
undercurrent is still present on deeper layers and reduces in magnitude away from the surface
(Figure 6). Indeed, this undercurrent is observed and known as the equatorial undercurrent (EUC)

Figure 6: Results of a four-layer model showing the monotonic decrease of the velocity with depth
in the undercurrent solution. (Courtesy of R Samelson, pers. comm.)

and has been observed as a clear zonal velocity maximum at around 120m depth in the Atlantic
and observed also in the Pacific (Figures 7 and 8). Numerical studies also predict this inertially
driven EUC (Figure 9).

3 The Internal Boundary Layer in the Thermocline

We now turn our attention to the boundary between the warm surface waters of the thermocline
and the dense abyssal waters derived from the poleward regions. We wish to consider the interaction
between the coldest water in the subtropical thermocline downwelled from the equatorward bound-
ary of a subpolar gyre and the denser waters below. In order to have a smooth transition between
these two regions, it has been anticipated Welander (1971) that a diffusive ‘internal’ layer might
exist. In order to explore this layer and its effect on the ocean and its sensitivity to the magnitude
of vertical diffusivity, we follow the approach of Samelson and Vallis Samelson and Vallis (1990).
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Figure 7: Panel a shows contours of zonal velocity measured using current meters in the Pacific.
Panel b show the density field of the same region. It should be noted that the meridional density
gradient vanishes at the equator. Johnson and Luther (1994)
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Figure 8: Evidence of the EUC from temperature and zonal velocity profiles from the Atlantic and
Pacific Oceans. In each case measurements represent 2-year means. Halpern and Weisberg (1994)
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Figure 9: Numerical studies McCreary (1994) show a shadow zone which strikes the equator within
the basin. In this case the EUC is fed from the subtropical gyre through the interior as well as the
western boundary current.

By assuming a geostrophic and Boussinesq fluid we may define the following set of equations:

− fv = −∂p
∂x
− εu , −fu = −∂p

∂y
− εv, (21)

∂u

∂x
+
∂v

∂y
+
∂w

∂dz
= 0. (22)

Here a traditional (and somewhat unsatisfying) friction term ε is included to avoid singularities in
u when f=0. We shall assume that the fluid is hydrostatic and conserve buoyancy (b = ρ−ρ0

ρ g)
such that

bt + ubx + vby + wbz = κvbzz + κH∇2b− λ∇4b &
∂p

∂z
= b, (23)

and the Laplacian is defined only in the horizontal (∇2 = ∂2

∂x2 + ∂2

∂y2 ). Specifying the Ekman pumping
and applying typical boundary conditions, a double structure of the thermocline is revealed (Figure
10). The temperature gradient in (10) reveals a local maxima at which point the vertical velocity
switches from a downward pumping to a deep positive w, which reduces with depth. Since w is
zero at the base of the adiabatic thermocline and the horizontal gradient of buoyancy is determined
by the slope of the isopycnals in the ventilated thermocline solution we may use the scalings

∂w

∂z
=
β

f
v ⇒ W =

β

f
Uδ (24)

uz = −by/f ⇒ ∆b
L

=
fU

Da
, (25)
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Figure 10: Vertical profiles of T (left panel), Tz (centre), and w (right) at the centre of the domain,
(x,y)=(0.5,0.5)
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and hence we define the vertical scale of the adiabatic thermocline Da as

D2
a

f2WeL

β∆b
. (26)

We see that in the region of the internal thermocline, vertical diffusion balances vertical advection
(Figure 11) such that wTz ≈ κTzz (in this model T is a proxy for b) and such that the vertical
velocity scales by W/δ κvδ

2. Again using scalings (24) and (25) we have

We =
β

f

∆b
L
Daδ =

κv

δ
& δ =

(
κfL

β∆bDa

)
(27)

⇒ δ = κ1/2
v

(
κf2L

β∆bWe

)1/4

(28)

Here we have uncovered a κ1/2
v relationship by using the scaling height δ which is the scale over

which the velocities u and w vary rather than the scale of the thermocline Da which yields a 1/3
power law. Analysis of the model of Samelson and Vallis indeed reveals the 1/2 power law as shown
in figure (12). So Samelson and Vallis, with their simple thermocline model, establish that the flux
through the internal boundary is intrinsically diffusive, scaling as κ1/2

z . Indeed others have treated
the internal boundary layer problem in a different way, looking at the entirety of the Thermocline
as a diffusive boundary layer. Salmon (1990) looks at this problem and combines the geostrophic
balance relationships

fv =
1
ρ0

∂P

∂x
& βv = f

∂w

∂z
(29)

to get

1
ρ0

∂P

∂x
=

f2

β

∂w

∂z
. (30)

It is implied from the above that there exists some function M such that

1
ρ0
P = Mz &

f2w

β
= Mx (31)

and therefore

u = −Mzy

f
, v = Mzx

f ,
gρ

ρ0
= Mzz. (32)

From density conservation (u · ∇ρ = κvρzz) the following relationship for M results

1
f

[MzxMzzy −MzyMzzx] +
β

f2
MxMzzz = κvMzzzz. (33)

If we take the simple case where M = M(x, z), using the scaling factors L,U, d, g′ and W and
writing (29) and the one dimensional density equation (wρz = κvρzz) in terms of these gives

U

d
=

g′

fL
, U = fW

βd , W =
κv

d
(34)
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Figure 11: Vertical profiles of terms in the thermodynamic equation for Kh = 0.002 with
Kv = 0.003 at (a) the centre of the domain, (x,y)=(0.5,0.5), and (b) near the western boundary,
(x,y)=(0.024,0.5). The profiles for horizontal advection (−uTx − vTy), vertical advection (−wTz),
vertical diffusion (κvTzz) and the horizontal (Laplacian plus biharmonic) diffusion (HD) are la-
beled accordingly. The corresponding profiles of T are also shown (right panels). The units are
T∗/t∗ = 5.4× 10−4Kyr−1.
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Figure 12: (a) Thickness of the internal peak of Tz versus κv, from the profiles in Figure 11. The
internal boundary layer scale δi and the advective-diffusive scale δ are also shown (dashed lines),
along with the corresponding thickness from solutions of the similarity equations (...) and (...). (b)
Maximum upward vertical velocity at (x,y)=(0.5,0.5) versus κv, from solutions in Figure 11. The
internal boundary layer scale Wi, the asymptotic estimate Winf = Winf and the advective-diffusive
scale Wd are also shown (dashed lines).
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and hence

d =
(
κvf

2L

βg′

)1/3

& W = κ2/3
v

(
βg′

f2L

)
. (35)

So, by this simple scaling argument we have found evidence for a thicker boundary layer and a
weaker vertical flow w below the thermocline. Solutions of the one-dimensional version of equation
(33) with appropriate boundary conditions applied at the surface and ocean bottom are shown in
figure (13). These indeed show a deeper boundary layer and small vertical velocity in the interior.

Figure 13: Solution of the one dimensional version of thermocline equation (33) for two different
values of the diffusivity: κ̂ = 3.2 × 10−3 (solid line) and κ̂ = 0.4 × 10−3 (dashed line), in the
domain 0 ≤ ẑ ≤ −1.‘Vertical velocity’ is W, ‘temperature’ is −Wẑẑ, and all units are the non-
dimensional ones of the equation itself. A negative vertical velocity, ŴE = −1, is imposed at the
surface (representing Ekman pumping) B0=10. The inertial boundary layer thickness increases as
κ̂1/3, so doubling in thickness requires an eightfold increase in κ̂. The upwelling velocity above the
internal boundary layer is much larger and almost independent of κ̂. The depth of the boundary
layer increases as Ŵ 1/2

E , so if ŴE = 0 the boundary layer is at the surface. Vallis (2006)

Somewhat different one-dimensional thermocline models have been described, and these have
slightly different scaling properties. However, their qualitative features are very similar. For ex-
ample, in both cases the thickness of the internal thermocline increases with increasing diffusivity
(κv), and the thickness gets smaller with increasing temperature difference across it. The strength
of the vertical velocity increases with increasing diffusivity also. This has an obvious implication
for the overturning circulation as the upwelling velocity is an integral component of it.
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