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1 Introduction

In this report, I will describe a series of calculations employing nonlinear optimal perturba-
tions. This technique was used by [4] to study transition to turbulence in shear flows. They
searched for the lowest energy perturbation to the laminar state that would yield turbulence
at late time. Since the kinetic energy of the perturbation is higher in the turbulent state
than in the laminar state (where it is zero), they tried to maximize the perturbation kinetic
energy at some late time T . This maximization was subject to the constraint that the initial
condition has a given perturbation kinetic energy E0. For E0 lower than some threshold
energy, Ec, they found that the optimization procedure was not able to find a turbulent
state. However, for E0 greater than Ec, the optimization procedure was able to find initial
perturbations which evolved into turbulence. This suggests that Ec is the minimum energy
required to trigger turbulence, and the perturbation with this energy that yields turbulence
is referred to as the minimum seed.

To illustrate this technique, I will describe the nonlinear optimization procedure for a
much simpler system: a system of 2 ODEs. The ODEs are

∂tx1 = −x1 + 10x2 (1)

∂tx2 = x2(x2 − 1)
(
10 exp(−x21/100)− x2

)
. (2)

This system has two stable fixed points, one at x = xl ≡ 0, and the other at x = xt ≈
(14.0174, 1.40174). To make an analogy to the transition to turbulence problem, the for-
mer can be thought of as the laminar state, and the latter as the turbulent state. It is
straightforward to check that the basin of attraction of the laminar state is the region with
x2 < 1, and the basin of attraction of the turbulent state is the region with x2 > 1. The
analogous problem to finding the minimum seed is then to maximize x2 at some late time
T , subject to the constraint that the initial perturbation from 0 has norm |x|2 = E0. I will
now describe how to perform this optimization.

Consider the functional L given by

L = x2(T ) + α
(
|x(0)|2 − E0

)
+

∫ T

0
dt ν(t) · (∂tx(t)− f(x(t))) , (3)

where α and ν(t) are Lagrange multipliers imposing the constraints that x(0)2 = E0 and
that x(t) satisfies the system of ODEs (1 & 2). ν(t) are referred to as the adjoint variables.
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Varying L yields

δL = δx2(T ) + δα
(
|x(0)|2 − E0

)
+ 2αx(0) · δx(0)

+

∫ T

0
dt δν(t) · (∂tx(t)− f(x(t)))

+

∫ T

0
dt ν(t) ·

(
∂tδx(t)− ∂f

∂x
· δx(t)

)
. (4)

The partial derivatives of L are thus

δL
δα

= |x(0)|2 − E0, (5)

δL
δν(t)

= ∂tx(t)− f(x(t)), (6)

δL
δx(T )

= (0, 1) + ν(T ), (7)

δL
δx(t)

= −∂tν(t)− ν · ∂f
∂x

, (8)

δL
δx(0)

= 2αx(0)− ν(0). (9)

If all these conditions are satisfied, then x(0) maximizes x2(T ) subject to |x(0)|2 = E0. (8)
is an evolution equation (backward in time) for the adjoint variables, and is referred to as
the adjoint equation.

The optimization procedure is an iterative algorithm which uses the above expressions
to update a guess for x(0), call it x(0)(0), to another initial condition, x(1)(0), which has a
larger x2(T ) than the first guess.

First, pick x(0)(0) which satisfies |x(0)(0)| = E0 (5). Then use (6) to integrate x(t) from
t = 0 to t = T . Then use (7) to set ν(T ), which in this case is always equal to (0,−1),
but in general will depend on x(T ). Next, (8) is integrated backward in time to get ν(0).
Finally, if ν(0) is parallel to x(0)(0), (9) shows that x(0)(0) maximizes x2(T ). If ν(0) is
not parallel to x(0)(0), then use (9) to update to a new initial perturbation using steepest
ascent,

x(1)(0) = x(0)(0) + ε
δL
δx(0)

, (10)

where ε sets the size of the update. For sufficiently small ε, the initial condition x(1)(0)
will lead to a larger x2(T ) than x(0)(0). Note that for arbitrary ε and α, x(1)(0) does not
satisfy the norm constraint (5) |x(1)(0)|2 = E0. Rather, α must be chosen to satisfy this
constraint.

In the remainder of this report, I will apply this technique to two new problems. The first
is an extension of the optimization procedure to allow for multiple perturbations, instead
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of just a single perturbation at t = 0. The second is an application of the optimization to
the Vlasov-Poisson equations.

2 Multiple Perturbations

For simplicity, I will consider the multiple perturbation problem only in the context of 2D
ODE systems. However, the approach is easily generalized to more complicated ODE or
PDE systems.

To be general, assume that I will maximize the quantity φ(x(T )), for some function φ.
I want to derive a procedure for finding the set of perturbations ξi, 0 ≤ i ≤ n − 1, which
act on x at

0 = T0 < T1 < · · · < Tn−1, (11)

with Tn−1 < T = Tn, which maximize φ(x(T )). I will also limit the size of the perturbations
ξi using some constraint N(ξi) = 0, e.g., N(ξi) =

∑
|ξi|2 − E0. This is a generalization of

the single perturbation case, in which n = 1.
To perform the optimization analysis, I will also split the dependent variable x into n

parts, xi(t) with 0 ≤ i ≤ n − 1, where xi(t) is defined between Ti ≤ t ≤ Ti+1. I take
x0(T0) = ξ0, and for 1 ≤ i ≤ n − 1, xi(Ti) = xi−1(Ti) + ξi. Thus, I am maximizing
φ(xn−1(T )) = φ(xn−1(Tn)). To simplify the equations, I will define x−1(T0) = xs.

The optimization will follow from extremizing

L = φ(xn−1(Tn)) + αN(ξi)

+

n−1∑
i=0

βi · (xi(Ti)− xi−1(Ti)− ξi)

+

n−1∑
i=0

∫ Ti+1

Ti

dt νi(t) · (∂txi − f(xi)) . (12)
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The variation of L is

δL =
∂φ

∂x
· δxn−1(T ) + δαN(ξi) + α

n−1∑
i=0

∂N

∂ξi
· δξi

+

n−1∑
i=0

δβi · (xi(Ti)− xi−1(Ti)− ξi)

+
n−1∑
i=0

βi · (δxi(Ti)− δxi−1(Ti)− δξi)

+
n−1∑
i=0

∫ Ti+1

Ti

dt δνi(t) · (∂txi − f(xi))

+

n−1∑
i=0

∫ Ti+1

Ti

dt νi(t) ·
(
∂tδxi −

∂f

∂xi
· δxi

)
. (13)

Thus, the partial derivatives are

δL
δα

= N(ξi), (14)

δL
δνi(t)

= ∂txi − f(xi), (15)

δL
δβi

= xi(Ti)− xi−1(Ti)− ξi, (16)

δL
δxn−1(T )

=
∂φ(xn−1(T ))

∂xn−1(T )
+ νn−1(T ), (17)

δL
δxi(t)

= −∂tνi(t)− νi ·
∂f

∂xi
, (18)

δL
δxi−1(Ti)

= −βi + νi−1(Ti), (19)

δL
δxi(Ti)

= βi − νi(Ti), (20)

δL
δξi

= α
∂N

∂ξi
+ βi. (21)

The optimization algorithm now follows from these partial derivatives. As before, start

with an initial set of perturbations ξ
(0)
i satisfying the norm condition (14). Integrate x(t)

(for simplicity, I drop the subscripts) forward in time using (15), adding in the perturbations
at the times Ti according to (16). Set ν(T ) using (17) and x(T ). Then integrate ν back in
time to t = 0 using (18). (19) and (20) imply that ν(t) is continuous at Ti. To update ξi, I
use steepest ascent along with (21), identifying βi with ν(Ti) (20).
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2.1 Changing the times of the perturbations, Ti

I also change Ti for 1 ≤ i ≤ n−1 to better optimize the functional. The variation of L with
Ti is

δL
δTi

= βi ·
(
∂xi
∂t

∣∣∣∣
Ti

− ∂xi−1
∂t

∣∣∣∣
Ti

)
, (22)

or,

δL
δTi

= βi · (f(xi)− f(xi−1)) . (23)

Ti is updated using steepest ascent.

2.2 Numerical Experiments

I found nonlinear optimal sets of perturbations for two systems of second order ODEs.
The first set are (1 & 2). The optimal perturbation for these equations is x = (0, 1 + ε).
The optimization algorithm has no difficulty in finding this optimal perturbation. When
considering multiple perturbations, it is important to pick the current norm for describing
the size of the set of perturbations. A naive choice would be to use the sum of magnitudes,
i.e.,

N(ξi) =
∑
i

|ξi|2. (24)

However, this norm has the flaw that N({(0, 1)}) = 1, but N({(0, 12), (0, 12)}) = 1
2 , where

{ξi} denotes the set of perturbations. That is to say, having multiple perturbations that
act at the same time and in the same direction is more efficient than a single perturbation.
To avoid this issue, I use the magnitude of sum norm,

N(ξi) =

∣∣∣∣∣∑
i

ξi

∣∣∣∣∣
2

. (25)

Using this norm, I find that having more than one perturbation does not change the mini-
mum norm required to perturb the system into the attractor of the second fixed point xt.
The minimum seed is the single perturbation (0, 1 + ε), which has energy 1 + 2ε.

The reason that multiple perturbations do not help the system transition to the second
fixed point xt is that ∂tx2 < 0 between 0 < x2 < 1 near 0 – ∂tx2 only becomes positive for
0 < x2 < 1 when |x1| & 15.17. This implies that the ODE flows downwards near 0. Having
multiple perturbations is thus not efficient, because the perturbations have to fight against
the ODE flow. Thus, putting all the energy into one big perturbation is the most efficient
way of pushing the system into the attractor of the second fixed point xt.

With this in mind, I have also investigated the related ODE system,

∂tx1 = −x1 + 10x2 (26)

∂tx2 = x2(x2 − 1)
(
20 exp(−(x1 − 7)2/14)− 10x2

)
. (27)
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As for (1 & 2), these ODEs also possess two linearly stable fixed points, one at x = xl ≡ 0,
and the other at x = xt ≈ (10.094, 1.0094). As before, the boundary between the basins of
attraction of the two fixed points is x2 = 1. This ODE system was chosen such that there
is a region with x2 > 0 and |x|2 < 1 which has ∂tx2 > 0, i.e., the ODE can flow the system
toward the boundary at x2 = 1.
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Figure 1: Trajectories for optimal sets of perturbations for ODEs (26 & 27), for two per-
turbations (blue) and fifty perturbations (green).

As before, optimizing over one perturbation yields a minimum seed of (0, 1 + ε), having
energy of 1 + 2ε. However, optimizing over two perturbations allows the system to take
advantage of the upwards flow of the ODE. In Figure 1, I have plotted the trajectories
of the optimal set of perturbations, for both two and fifty perturbations. The (mostly
vertical) discontinuities are the perturbations. Looking at the blue curve, there is an initial
perturbation upwards from x = 0. This is followed by allowing the ODE flow to the point
where ∂tx2 = 0, at which point a second perturbation is used to push the system above
x2 = 1. Once x2 > 0, the system is in the basin of attraction of the second fixed point xt,
and flows into this fixed point. This set of perturbations has a “magnitude of sum” norm
of 0.485, about a factor of two smaller than the single perturbation optimal.

Interestingly, the optimal set of perturbations for fifty perturbations is similar to the
optimal set for two perturbations. As before, there is a large perturbation near x = 0
to push the system into the region of phase space where ∂tx2 > 0. This is followed by
perturbations near the point at which ∂tx2 = 0 that push the system above x2 = 1.
Furthermore, the “magnitude of sum” norm of this set of perturbations is also 0.485, i.e.,
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it does no better than two perturbations. For this system of ODEs, two perturbations
is enough to realize the minimum seed. Presumably, one could cook up a slightly more
complicated ODE system which has two disconnected regions where ∂tx2 > 0 between
x2 = 0 and x2 = 1 – in this case, optimal sets of perturbations would require at least
three perturbations: the first perturbing the system from x = 0 to the first region where
∂tx2 > 0, the second moving the system from the first region where ∂tx2 > 0 to the second
such region, and then the third perturbation pushing the system above x2 = 1. In a real
fluids system, this would correspond to using several distinct mechanisms to amplify the
energy of a perturbation sufficiently to access a new nonlinear state.

2.3 Stochastic Forcing

In experiments, systems are rarely perturbed by the optimal perturbation. A more relevant
perturbation might be small amplitude random noise. I will analyze how easily an ODE
system can switch between stable equilibria under small amplitude random noise using the
mean exit time from the attractor of the fixed point at x = 0. It turns out that the mean
exit time is related to the energy of the minimum seed (allowing for multiple perturbations).
This is because, in the limit of low amplitude noise, the randomly perturbed system leaves
the attractor of the fixed point at x = 0 only when the random perturbations almost
coincide with the minimum seed. This is related to Large something-something theory [1].

I determine the mean exit time using two approaches. First, I integrate the stochastic
differential equations (SDEs)

∂txi = fi(x) +
√

2σi∂tWti, (28)

where Wti are Weiner processes, and σ is a constant. To integrate this SDE system, I
integrate the ODE system (ignoring the noise), applying a forcing

√
2σi∆Wi at each time

step, where ∆Wi are iid normally distributed random variables with expected value zero
and variance ∆t, the time step.

As an example, consider the SDE where f(x) given by (1 & 2), and with σ1 = 0.1,
σ2 = 0.4. In Figure 2, I plot three trajectories generated from this SDE, starting at x = 0
at t = 0 and integrated to t = 20. The green trajectory never leaves the basin of attraction
of the fixed point at x = 0. The red trajectory makes it to the basin of attraction of the
second fixed point, xt. However, the most interesting trajectory is the blue trajectory, which
makes it to the basin of attraction second fixed point at xt, but eventually is perturbed
back into the basin of attraction of the fixed point at 0.

Second, I evolve the probability distribution function (pdf), F (x, t), for the state of
the system as a function of time. Integrating F (x, t) in the neighborhood of x0 gives the
probability that x = x0 at the time t. F (x, t) satisfies a modified diffusion equation known
as a Fokker-Planck equation,

∂tF = −∇ · (Ff(x)) + ∂2xi(σiF ). (29)

I integrate the Fokker-Planck equation forward in time, using a sharply peaked Gaussian
centered at x = 0 as the initial condition. I set F (x, t) = 0 on the outer edge of the domain
in x-space – this is a good approximation provided that the domain is large enough (I test
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Figure 2: Three trajectories from the SDEs corresponding to (1 & 2), for σ1 = 0.1 and
σ2 = 0.4, integrated to t = 20.

this by confirming that the solution is insensitive to the domain size). I found that explicit
integration schemes have stability problems, so I integrate the Fokker-Planck equation using
the forward Euler scheme.

For example, Figure 3 shows F (x, 10) for when f(x) is given by (1 & 2), and σ1 = 0.1,
σ2 = 0.4. Note the similarities between the pdf and the trajectories in Figure 2.

The outer-most contour in Figure 3 shows the typical trajectory between the two fixed
points. Going from the fixed point at x = 0 to the fixed point at xt, the system typically
crosses x2 = 1 at around x1 ≈ 2− 3, goes up to x ≈ (6, 7), and then approaches xt, staying
near x = (16, 2). This has larger x1 and x2 than xt ≈ (14, 4). I assume this is because the
pull of the ODE back to the fixed point is stronger in the southwest direction than in the
northeast direction. However, the system is often kicked out of the attractor of this fixed
point. These features occur in both the trajectories and in the pdf.

As t increases, the pdf F (x, t) approaches a steady distribution. One could in principle
find this distribution by setting the ∂tF term in the Fokker-Planck equation equal to zero,
and then solving the corresponding elliptic equation. I have not done this, because one would
presumably need to be careful about the boundary conditions. However, if one integrates the
Fokker-Planck equation in time long enough, one can verify that the distribution function
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Figure 3: Contours of the probability density, as derived from the Fokker-Planck equation,
for the ODEs (1 & 2), using σ1 = 0.1, σ2 = 0.4, and integrating to t = 10.

converges. For instance, in this example,∫
d2x |F (x, 15)− F (x, 10)|∫

d2xF (x, 15)
≈ 0.01, (30)

and the analogous change between t = 15 and t = 20 is 0.002. Thus, it seems that F (x, t)
has reached the a steady state distribution.

Another comparison is to consider an ensemble average of many integrations of the
SDEs. I have integrated 20,000 instances of the SDEs to t = 10, and calculated a pdf of the
states (Figure 4). In the limit of the SDEs being integrated infinitely many times, the pdf
of the system states should converge to the result of the pdf given by the Fokker-Planck
equation. Indeed, Figure 4 agrees well with Figure 3. Presumably, including even more
integrations of the SDEs would improve the agreement.

3 Vlasov-Poisson

The Vlasov-Poisson equations describe a collision less electrostatic plasma. I will consider
the case of an electron plasma, with a uniform and stationary background of ions. Then
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Figure 4: Contours of the probability density from 20,000 integrations of the SDEs corre-
sponding to (1 & 2), using σ1 = 0.1, σ2 = 0.4, and integrating to t = 10.

the electron distribution function, f(x, v, t), satisfies

∂tf(x, v, t) + v∂xf(x, v, t)− e

me
E(x, t)∂vf(x, v, t) = 0, (31)

ε0∂xE(x, t) = ene − e
∫ +∞

−∞
dv f(x, v, t), (32)

where e is the electron charge, me is the electron mass, ne is proton number density (which
equals the average electron number density), and ε0 is the vacuum permittivity. The natural
frequency scale is the electron plasma frequency,

ωpe =

√
nee2

meε0
. (33)
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For simplicity, I assume that the plasma is periodic in the x direction with periodicity L.
Non-dimensionalizing according to

x → xL,

t → t/ωpe,

v → vLωpe,

f → fne/(Lωpe),

E → ELene/ε0, (34)

the Vlasov-Poisson equations become

∂tf(x, v, t) + v∂xf(x, v, t)− E(x, t)∂vf(x, v, t) = 0, (35)

∂xE(x, t) = 1−
∫ +∞

−∞
dv f(x, v, t). (36)

An alternative form of (36) is

∂t∂xE(x, t) =

∫ +∞

−∞
dv v∂xf(x, v, t) (37)

It has been observed through experiments and numerical simulation (e.g., [2] and refer-
ences therein) that some perturbations to a spatially uniform electron plasma decay to zero
in time, whereas others lead to non-linear states analogous to BGK waves, in which the
electric field stays finite as t → ∞. I am interested in finding the smallest perturbation to
the distribution function which will generate an electric field which stays finite as t → ∞.
There are many ways to perturb the distribution function, but I will limit myself to per-
turbations which change the electron density as a function of x, but which do not change
the velocity dependence of the distribution function.

The variational problem is as follows. The optimization is over the electric field at t = 0.
I want to maximize ∫ L

0
dx E(x, T )2. (38)

To limit the size of the perturbation, I fix∫ L

0
dx |∂xE(x, 0)|2 = N0. (39)

Recall that the velocity-averaged distribution function is given by ∂xE. Furthermore, for
E(x, 0) to be representable as the derivative of a periodic potential, it must have zero mean.
Thus, ∫ L

0
dx E(x, 0) = 0. (40)
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The initial distribution function must be consistent with E(x, 0), so I impose

f(x, v, 0) = F (v)(1− ∂xE(x, 0)), (41)

where F (v) is the initial velocity-space structure of the distribution function, which is
assumed to integrate to one. For instance, one could take,

F (v) =
1√
2π

exp(−v2/2). (42)

The optimization is based on the initial electric field, rather than the full distribution
function, because it is one dimensional. It would be possible to introduce additional degrees
of freedom regarding the velocity distribution. For instance, one could take

f(x, v, 0) = F (v)− ∂xE(x, 0)G(v), (43)

where G(v) integrates to one. If G(v) is assumed to be a Gaussian with width σ centered
at v0, then it would be possible to optimize over σ and v0 as well as E(x, 0).

3.1 Variational Problem

The functional I want to maximize is

L =

∫ L

0
dx E(x, T )2

+λ

(∫ L

0
dx |∂xE(x, 0)|2 −N0

)
+ γ

(∫ L

0
dxE(x, 0)

)
+

∫∫
dxdv β(x, v) [f(x, v, 0)− F (v)(1− ∂xE(x, 0))]

+

∫
dt

∫ L

0
dx ν(x, t)

(
∂t∂xE(x, t)−

∫ +∞

−∞
dv v∂xf(x, v, t)

)
+

∫
dt

∫∫
dxdv µ(x, v, t) (∂tf(x, v, t) + v∂xf(x, v, t)

−E(x, t)∂vf(x, v, t)) . (44)
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Varying L yields

δL =

∫ L

0
dx 2δE(x, T )E(x, T ) + δγ

∫ L

0
dxE(x, 0) + γ

∫ L

0
dxδE(x, 0)

+δλ

(∫ L

0
dx |∂xE(x, 0)|2 −N0

)
+ λ

∫ L

0
dx 2∂xδE(x, 0)∂xE(x, 0)

+

∫∫
dxdv δβ(x, v) [f(x, v, 0)− F (v)(1− ∂xE(x, 0))]

+

∫∫
dxdv β(x, v) [δf(x, v, 0) + F (v)∂xδE(x, 0)]

+

∫
dt

∫ L

0
dx δν(x, t)

(
∂t∂xE(x, t)−

∫ +∞

−∞
dv v∂xf(x, v, t)

)

+

∫
dt

∫ L

0
dx ν(x, t)

(
∂t∂xδE(x, t)−

∫ +∞

−∞
dv v∂xδf(x, v, t)

)
+

∫
dt

∫∫
dxdv δµ(x, v, t) (∂tf(x, v, t) + v∂xf(x, v, t)

−E(x, t)∂vf(x, v, t))

+

∫
dt

∫∫
dxdv µ(x, v, t) (∂tδf(x, v, t) + v∂xδf(x, v, t)

−δE(x, t)∂vf(x, v, t)− E(x, t)∂vδf(x, v, t)) . (45)
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Thus, the partial derivatives are

δL
δλ

=

∫ L

0
dx |∂xE(x, 0)|2 −N0, (46)

δL
δβ(x, v)

= f(x, v, 0)− F (v)(1− ∂xE(x, 0)), (47)

δL
δγ

=

∫ L

0
dx E(x, 0), (48)

δL
δν(x, t)

= ∂t∂xE(x, t)−
∫ +∞

−∞
dv v∂xf(x, v, t), (49)

δL
δµ(x, v, t)

= ∂tf(x, v, t) + v∂xf(x, v, t)− E(x, t)∂vf(x, v, t), (50)

δL
δE(x, T )

= 2E(x, T )− ∂xν(x, T ), (51)

δL
δE(x, 0)

= −2λ∂2xE(x, 0) + ∂xν(x, 0) + γ

−
∫
dv ∂xβ(x, v)F (v), (52)

δL
δf(x, v, T )

= µ(x, v, T ), (53)

δL
δf(x, v, 0)

= −µ(x, v, 0) + β(x, v), (54)

δL
δf(x, v, t)

= v∂xν(x, t)− ∂tµ(x, v, t)− v∂xµ(x, v, t)

+E(x, t)∂vµ(x, v, t), (55)

δL
δE(x, t)

= ∂t∂xν(x, t)−
∫
dv µ(x, v, t)∂vf(x, v, t). (56)

The nonlinear optimization algorithm is as follows: First, make a guess E(0)(x, 0). Then
integrate the Vlasov-Poisson equations to t = T . Then solve for the adjoint variables at
t = T using

ρ(x, T ) = 2E(x, T ), (57)

µ(x, v, T ) = 0, (58)
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where I define ρ(x, t) = ∂xν(x, t). Integrate the adjoint equations back to t = 0 using

∂tρ(x, t) =

∫
dv µ(x, v, t)∂vf(x, v, t), (59)

∂tµ(x, v, t) + v∂xµ(x, v, t)− E(x, t)∂vµ(x, v, t) = vρ(x, t). (60)

Finally, update the guess to E(1)(x, 0) by

E(1)(x, 0) = E(0)(x, 0) + ε
δL

δE(x, 0)
, (61)

where

δL
δE(x, 0)

= −2λ∂2xE
(0)(x, 0) + ρ(x, 0)−

∫
dv ∂xβ(x, v)F (v) + γ. (62)

At this stage λ, γ, and β(x, v) are all still unknown. They must be chosen to satisfy∫ L

0
dx |∂xE(x, 0)|2 = N0, (63)

∫ L

0
dx E(x, 0) = 0, (64)

δL
δf(x, v, 0)

= β(x, v)− µ(x, v, 0) = F (v)∂x

(
δL

δE(x, 0)

)
. (65)

The last condition implies

β(x, v) = F (v)∂x

(
δL

δE(x, 0)

)
+ µ(x, v, 0), (66)

and thus

δL
δE(x, 0)

= −2λ∂2xE
(0)(x, 0) + ρ(x) + γ −

∫
dv ∂xµ(x, v, 0)F (v)

−∂2x
(

δL
δE(x, 0)

)∫
dv F (v)2. (67)

Putting the δL/δE terms on the LHS yields(
1 +

∫
dv F (v)2∂2x

)
δL

δE(x, 0)
= −2λ∂2xE

(0)(x, 0) + ρ̂(x), (68)

where

ρ̂(x) = ρ(x)−
∫
dv ∂xµ(x, v, 0)F (v) + γ. (69)

To solve for λ, first calculate ρ̂(x), picking γ such that ρ̂(x) has zero mean. Then Fourier
transform the equations, and invert the derivative operator acting on δL/δE,

δL
δE(k)

=
2λk2E(0)(k) + ρ̂(k)

1− k2
∫
dv F (v)2

, (70)
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where k denotes the wavenumber. Then (61) becomes

E(1)(k) = 2λε
k2E(0)(k)

1− k2
∫
dv F (v)2

+ E(0)(k) +
ερ̂(k)

1− k2
∫
dv F (v)2

. (71)

Multiplying this equation by its complex conjugate times k2 and then integrating over k
yields

N0 = 4λ2ε2
∫
dk

k6|E(0)(k)|2

(1− k2
∫
dv F (v)2)2

+4λε

∫
dk

k4

1− k2
∫
dv F (v)2

×

<
[
E(0)(k)

(
E(0)(k)∗ +

ερ̂(k)∗

1− k2
∫
dv F (v)2

)]

+

∫
dk k2

∣∣∣∣E(0)(k) +
ερ̂(k)

1− k2
∫
dv F (v)2

∣∣∣∣2 . (72)

Solving this quadratic equation for λ specifies δL/δE (70), allowing E(0) to be updated
to E(1). For sufficiently small ε, this update will increase

∫
dxE(x, T )2. To find a NLOP,

E(x, 0) is updated in this way until a local maximum is found.

3.2 Numerical Method

Stefan and Neil have provided a code that solves the Vlasov-Poisson system (35-36). The
code uses operator splitting, separately solving

∂tf(x, v, t) + v∂xf(x, v, t) = 0, (73)

and

∂tf(x, v, t)− E(x, t)∂vf(x, v, t) = 0. (74)

These can be solved by shifting the x and v coordinates of f(x, v, t) appropriately.
The code input is f(x, v, tn) in Fourier space (in x). To evolve to f(x, v, tn+1), where

tn+1 = tn + ∆t, the code does the following:

1. Shift x by an amount −v∆t/2:

f(x, v, tn+1/2) = f(x− v∆t/2, v, tn). (75)

2. Solve the Poisson equation (36) for E(x, tn+1/2) using f(x, v, tn+1/2).

3. Transform to real space (in x).

4. Shift v by an amount E(x, tn+1/2)∆t:

f∗(x, v, tn+1/2) = f(x, v + E(x, tn+1/2)∆t, tn+1/2). (76)
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5. Transform to Fourier space (in x).

6. Shift x by an amount −v∆t/2:

f(x, v, tn+1) = f∗(x− v∆t/2, v, tn+1/2). (77)

If this procedure is repeated many times, steps (6) and (1) can be done simultaneously (i.e.,
shift x by −v∆t).

The adjoint equations (59 & 60), have rather different structure. In particular, there is
a source term for µ (the variable adjoint to f). This is important, given that µ is initialized
to zero. Furthermore, ρ (adjoint to E) now satisfies a hyperbolic equation, rather than an
elliptic equation.

My method for solving the adjoint equations is essentially a generalization of the operator
splitting algorithm above. The adjoint equations evolve backward in time, so start with
ρ(x, tn+1/2) (in real space) and µ(x, v, tn) (in Fourier space). In the following, ∆t > 0.

1. Shift x by an amount v∆t/2 in µ:

µ∗(x, v, tn−1/2) = µ(x+ v∆t/2, v, tn). (78)

2. Transform µ∗(x, v, tn−1/2) to real space (in x).

3. Shift v by an amount −E(x, tn−1/2)∆t/2 in µ∗:

µ∗∗(x, v, tn−1/2) = µ∗(x, v − E(x, tn−1/2)∆t/2, tn+1/2). (79)

4. Update ρ using the implicit step

ρ(x, tn−1/2)

(
1 +

∆t2

2

∫
dvf(x, v, tn−1/2)

)
= ρ(x, tn+1/2)

−∆t

2

∫
dv µ(x, v, tn+1/2)∂vf(x, v, tn+1/2)

−∆t

2

∫
dv µ∗∗(x, v, tn−1/2)∂vf(x, v, tn−1/2). (80)

5. Update µ∗∗ using ρ(x, tn−1/2):

µ(x, v, tn−1/2) = µ∗∗(x, v, tn−1/2) + v∆tρn−1/2. (81)

6. Shift v by an amount −E(x, tn−1/2)∆t/2 in µ

µ̃(x, v, tn−1/2) = µ(x, v − E(x, tn−1/2)∆t/2, tn−1/2). (82)

7. Transform µ̃(x, v, tn−1/2) to Fourier space (in x).

8. Shift x by an amount v∆t/2 in µ̃:

µ(x, v, tn−1) = µ̃(x+ v∆t/2, v, tn−1/2). (83)

When repeating the algorithm, steps steps (8) & (1) are combined.
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3.3 Numerical Results

The goal for the optimization problem is to start with an initial distribution function for
which the electric field decays to zero, and then find a different distribution function with an
initial electric field of the same size for which the electric field does not decay to zero. I will
start with initial distribution functions similar to those studied in [2, 3]. They considered

f(x, v, 0) =
0.1√
2π

exp(−(v/0.1)2/2)× (1 + ε cos(8πx)), (84)

i.e., a Gaussian with width 0.1, with a sinusoidal perturbation with a wavelength one fourth
the box size, with strength ε.

It is nontrivial to determine the critical ε∗ such that if ε > ε∗ the electric field will stay
finite as t→∞, but if ε < ε∗, the electric field will decay to zero as t→∞. This is because
numerically, the electric field can never decay to zero, only to the limits of the accuracy of
the calculation (e.g., double point precision). For this problem, the typical evolution of the
electric field is as follows (see Figure 5). The electric field strength is always oscillatory in
time, but I will discuss the behavior of the envelop of this oscillation. First, linear Landau
damping causes the electric field to decay. If ε > ε∗, then at a time tmin, the electric field
reaches a minimum value Emin, and begins to grow. This sort of instability then saturates,
and the electric field has a local maximum at tmax, with field strength Emax. After this
point, the electric field oscillates near Emax.
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Figure 5: The L2 norm of the electric field as a function of time, using the initial distribution
function (84), for ε = 0.011.

[3] found that as ε approaches ε∗ from above, tmin and tmax go to infinity, and Emin

and Emax go to zero as power-laws in (ε− ε∗). This can be seen in the electric field traces
in Figure 6. The five highest curves (blue, green, red, cyan, and purple) all have ε > ε∗,
and have electric field minima which occur later and at lower electric field strengths as ε
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decreases. The spikes occurring at e.g., t ≈ 1100 and 1400 are numerical artifacts – they
diminish in strength or disappear when the v resolution increases. Note that the electric
field for ε < ε∗ does level off. This corresponds to reaching the numerical precision of the
simulation.
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Figure 6: The L2 norm of the electric field as a function of time, using the initial distribution
function (84), for (from top to bottom) ε equal to 0.011, 0.01, 0.0097, 0.0095, 0.009, 0.0085,
0.008, 0.005, 0.002.

In [3], ε∗ is determined by finding the best fit of the different quantities (e.g., tmin) to
the curve A(ε− ε∗)α. They found that the best fits for all four quantities tmin, tmax, Emin,
and Emax had ε∗ very close to 0.0084, although they each had different power law indices
α. I have reproduced their calculations, and also find that assuming ε∗ = 0.0084, the tmin

and Emin are power-laws in (ε − ε∗). This is compelling evidence that ε∗ = 0.0084 for this
problem.

Now that the threshold amplitude has been established, I can run the optimization
procedure starting from an initial electric field corresponding to ε = 0.008, which is less
than the threshold amplitude. I did this by maximizing the L2 norm of the electric field
at T = 50, in the way described in section 3.1. I also limited the initial electric field to
only consist of the first ten Fourier components. After many iterations of the algorithm, I
find that the electric field in Figure 7 has a large electric field at T = 50. Note that the
electric field remains dominated by the fourth Fourier mode, but also has a non-negligible
component from the first Fourier mode.

In Figure 8, I plot the electric field strength versus time for the initial distribution func-
tion given in (84) for ε = 0.008, as well as for the initial distribution function corresponding
to the electric field plotted in Figure 7. The electric field is much larger at late times for
the electric field derived by the optimization procedure, indicating that the algorithm has
worked. Furthermore, rather than decaying to zero, the electric field seems to have satu-
rated at a relatively high amplitude. I also believe this to be a numerically converged result
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Figure 7: The initial electric field after many iteration of the optimization procedure for
the L2 norm of the electric field at T = 50.

– increasing the x, v, t resolution, as well as increasing vmax, all have no effect on the electric
field. Thus, the algorithm has successfully started from an electric field which decays to
zero, and then find a different electric field of the same size which appears to remain finite
for all time.
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Figure 8: The L2 norm of the electric field for the initial distribution function given in (84)
for ε = 0.008 (green), and for the initial distribution function corresponding to the electric
field plotted in Figure 7 (blue).
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4 Further Work

In this report, I have described the application of nonlinear perturbation theory to two
problems: low dimensional systems of ODEs, and the 1D Vlasov-Poisson equations. In both
cases, I derived an algorithm for updating perturbations to increase a desirable quantity at
late times. And in both cases, the numerical implementation of the algorithms seems to
have been successful.

However, for the Vlasov-Poisson problem, there still remain many open questions. It is
unclear what property of the initial electric field in Figure 7 allows the system to maintain a
strong electric field. The distribution function at late times does not have any characteristics
(e.g., a cat’s eye pattern) that would suggest a mechanism for maintaining the electric field.
Also, it is surprising that even when ε > ε∗ that the electric field can decay by many orders
of magnitude before beginning to grow again and produce a cat’s eye pattern. Both of these
issues are likely amiable to analytic investigation.

These Vlasov-Poisson calculations were possible because I was able to parallelize the
algorithm described above using MPI to efficiently run on about 32 processors. However,
the algorithm uses global x and v interpolation techniques, which requires all-to-all com-
munication calls. If a sufficiently accurate local interpolation scheme was implemented in
the v direction, then the parallelization would be significantly more efficient.
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