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1 Dansgaard-Oeschger Events

In previous lectures, we discussed relatively short-term climatic fluctuations in the form of
the El Niño Southern Oscillation (ENSO). It is worth asking whether the global climate
system possesses similar, apparently stochastic oscillations over longer timescales, so long
that no human has lived through an entire cycle and so did not bother to call it an oscillation.
In order to seek such climatic modes we must turn to paleoclimatological data. Here, we
highlight evidence from ice cores. Specifically, one can drill into the ice on Greenland and
extract a core of ice, which has been inexorably laying down layer after layer of annual ice for
millennia, recording its local environment as it does so. Bubbles record the paleoatmosphere
and this has been used to deduce that, as suspected from its thermal absorption properties,
CO2 has gone done when the ice has gone up, consistent with its greenhouse gas properties.
However, it is difficult to use CO2 as an accurate thermometer. A better thermometer exists
in the form of the ratio of “heavy” 18O to “light” 16O isotopes within the water molecules
of the ice.

The standard way to measure isotope ratios is via the δ-notation defined for oxygen as

δ18O =
[18O]/[16O]sample − [18O]/[16O]standard

[18O]/[16O]standard
× 1000 (1)

or, in other words, the measured deviation of the isotope ratio from a given standard mul-
tiplied by a thousand, yielding “units” of permil. The lighter isotope of oxygen evaporates
more easily and so rain clouds are generally depleted in 18O relative to seawater. Further-
more, as these rainclouds move towards the poles, where they deposit ice, they rain out even
more heavy oxygen 1 until, by the time they form ice, they are depleted by 10s of permil
relative to their source water. The degree of water/vapour fractionation is temperature
dependent. Qualitatively, in colder periods, the fractionation is greater, leading to more
negative δ18O values in ice caps. Additionally, in colder climates, the poles tend to have
more ice, which sequesters much of the ocean’s light oxygen, making the ocean heavier in
general and the ice caps lighter. Cumulatively, these processes make for lighter ice caps in
colder periods.

With this theory under our belt, we can look at the measured ice isotope data from
Greenland ice cores (Figure 1). Notice first that the record spans about 120,000 years, just
long enough to resolve a full “glacial cycle”, i.e., the global oscillation from generally higher

1This process is known as “Rayleigh Distillation”.



temperatures to generally low temperatures. Records going back much further have revealed
that glacial cycles follow such a ∼100,000 year periodicity for at least the previous four
cycles. The cause of such a periodicity in glacial cycles is still an active area of research, but
here we focus on shorter-scale features, occurring within glacial periods (periods of light ice
caps and lower temperatures). Specifically, the ice cores record rapid changes in temperature
from cold periods (known as stadiums) to warm periods (interstadials). Between about
70-20 kyr ago, the climate swung abruptly between these states with a periodicity of about
1470 years, with temperature changes up to about 10◦C. These transitions have been named
Dansgaard-Oeschger (DO) Events and possess a peculiar asymmetry in that the warming
phase is very rapid whereas cooling is more gradual.
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Figure 1: Plot of the δ18O data from the NGRIP ice core record. The numbers refer to
the interstadials (warm periods, high δ18O). So-called Heinrich events are marked with the
labels H1 to H6. The red arrow denotes the temporal range within which a strong 1470-year
periodicity is observed in the δ18O signal.

One mysterious feature of DO events is that they don’t appear to correspond to any
known natural frequency in climatic forcing, as opposed to the glacial cycles themselves
which have been linked (with varying degrees of success) to Milankovich Cycles (the Earth’s
spin-axis precession, obliquity cycles and orbital eccentricity oscillations). The literature
exploring the potential sources of DO-events is vast and we do not cover them here. However,
what we present is more of a cautionary tale arising out of stochastic theory, namely, that
stochastic forcing upon a dynamical system may amplify a periodic signal that you might
have otherwise thought negligible, through the process of “Stochastic Resonance”. In order
to arrive at the key result, we first lay down a theory which allows for multiple stable states
within the global overturning and then show how stochastic forcing might cause a system
to shift between these states - analogous to DO-events.

1.1 Ocean irculation

Before attempting a dynamical systems description for DO-events, we provide a very brief
background on the (Atlantic) Meridional Overturning Circulation, or (A)MOC. Looking at



the Atlantic as whole, there are two main sources of “deep water”, meaning water that more
or less descends to the ocean floor by way of negative buoyancy forcing. The first source is
Antarctic Bottom Water (AABW), forming, unsurprisingly, near Antarctica. We shall not
describe this source in much more detail except to note that it forms the deepest water in
the Atlantic by way of extensive cooling in and around the edges of the Antarctic ice sheet.
The second source, North Atlantic Deep Water (NADW), is our primary concern here, and
more often supposed to be important in driving DO events.

NADW forms mostly in the Greenland and Labrador Seas. Its mechanism of formation
is roughly as follows. Strong evaporation at low northern latitudes in the Atlantic increases
the surface salinity of the water which is then carried northward into the regions of deep-
water formation. The high salinity comes with a high density, which “pre-conditions” the
water for convection by eroding its stable stratification. Subsequent cooling in the winter is
usually able to destabilise the stratification, leading to deep convection and the formation
of deep water. Owing to its high salinity, NADW is actually denser than southern-source
AABW at the surface of the ocean. However, an interesting property of seawater is that the
thermal expansion coefficient increases with pressure, making temperature more important
for density at the bottom of the ocean than at the surface. What this amounts to is the
coldness of the AABW leading to it being denser than NADW once both have reached the
bottom of the ocean. The MOC is often described in terms of a zonally (longitudinally)
averaged stream function

ΨMOC(y, z, t) =

∫ 0

z

∫ xe

xw

v(x, y, z′, t) dx dz′, (2)

where we have chosen ΨMOC = 0 at the ocean surface and consider a basin with western
margin situated at longitudinal position xw and eastern margin at xe. The variable y is
meridional (latitudinal) distance along the surface of the Earth. Notice that ΨMOC is a
volume transport and is usually measured in Sverdrups (Sv), where 1 Sv=10 6m3 yr−1. Of
interest is the heat carried by this volume, which depends upon the temperature of the
northern-ward moving surface water. In general, stronger AMOC correlates with greater
heat transport within recent, temporally-limited observations, but it is uncertain to extend
this conclusion to longer timescales.

Direct measurements of the MOC are sparse, with a detailed evaluation of ΨMOC often
drawn from numerical models. However, the MOC is now routinely monitored at 23oN
using the RAPID-MOCHA array. Essentially, what these observations have revealed is an
extremely variable MOC strength, with total transport even appearing to reverse in sign
briefly near the beginning of 2010. Paleoproxy evidence has been used to deduce changes
to the AMOC in past climate regimes. In particular, the ratio of 231Pa to 230Th in Atlantic
sediments has been used to deduce a dramatic and sudden switching off of the AMOC
roughly 18 kyr ago, coinciding with Heinrich Stadial 1 (H1, figure 1). The AMOC appears
to have abruptly switched back on again about 14,700 kyr ago, at the start of a period of
warming known as the Bølling-Allerød interstadial (McManus et al. 2004). We do not have
evidence for such transitions during all DO events, but the knowledge that the AMOC can
change so dramatically warrants further investigation into whether multiple stable states
might be inherent to the system.
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Figure 2: A section along the Atlantic. The top diagram shows the measured salinity and
the lower depicts (potential) temperature. Water sinks to deep levels in the North and the
South, as can be seen in the sections as a salty tongue descending from the north and a cold
tongue from the south. At the ocean floor, the southern-source AABW is denser, by virtue
of its low temperature than the northern-sources NADW, which is warmer. Variability in
the associated heat transport from the northern regions has been implicated in the origin
of DO events.

1.2 The alt dvection eedback

Figure 3: Stommel two-box model of salt-advection feedback.



The simplest picture one can imagine that captures the key aspects of the AMOC can
be traced back to Stommel (1961). It is reasonable to suppose that the degree of mixing
between equatorial and polar water reservoirs depends upon their mutual density difference
Δρ. A physical reason for this is that denser polar water is more pre-conditioned to convect
to the ocean floor, enhancing meridional overturning and presumably pole-equator mixing.
Accordingly, we begin the formulation of our simple model by supposing there to exist two
reservoirs of water, one representing the poles and the other the equator, with temperatures
and salinities Tp, Sp and Te, Se respectively (see figure 3).

We approximate the density of seawater as following a simple linear dependence upon
T and S,

ρ = ρ0 − αT (T − T0) + αs(S − S0), (3)

where the thermal expansivity αT and salinity coefficients αs are assumed constant. We
may then express the density difference between the two reservoirs as

Δρ = −αT (Tp − Te) + αs(Sp − Se), (4)

which in turn governs the mixing rate Q(Δρ).
These two reservoirs not only interact with each other, but are individually forced at

their boundaries. Specifically, we suppose the temperature to relax, over a timescale tr,
to the local atmospheric temperature Ta. In the interest of symmetry, we suppose the
polar box to possess Ta,p = T0 − θ/2 and the equatorial box to relax to Ta,e = T0 + θ/2.
Salinity, too, is forced. However, a crucial aspect of atmosphere-ocean interactions is that,
whereas colder water will have greater tendency to draw in heat than warmer water, salty
water does not stimulate the atmosphere to rain on it! Consequently, salinity forcing is
poorly modelled as a relaxation to some equilibrium value. We adopt a more physical
form for the forcing whereby a prescribed flux Fs/2 of fresh water enters the polar ocean
(in the form of rain, meltwater, etc.), with an equal volume (for simplicity) leaving at the
equator by evaporation. As S0 is the typical value of salinity in the ocean, the result of the
freshwater flux is a decrease in salinity in the polar box with rate proportional to FSS0 and
an equivalent increase in the equatorial box.

We may now write out the equations governing the two-basin system (see Cessi 1994):

Ṫe = − 1

tr
[Te − (T0 +

1
2θ)]−

Q(Δρ)

2
(Te − Tp), Ṡe = +

Fs

2H
S0 − Q(Δρ)

2
(Se − Sp) (5a)

Ṫp = − 1

tr
[Tp − (T0 − 1

2θ)]−
Q(Δρ)

2
(Tp − Te), Ṡp = − Fs

2H
S0 − Q(Δρ)

2
(Sp − Se) (5b)

where H is the ocean depth. We can now see that in the form written above, Q(Δρ) must
be positive. The reason for this is that although Q is physically the advection of water
between two reservoirs, this advection is closed, with as much going in as is coming out
for each reservoir. If you reverse the direction of circulation the quantity of polar water
moving into the equator and vice versa remain unchanged. With this in mind, considering
the simplicity of the model, we are free to choose a functional form for Q that depends only
on the magnitude of Δρ. For definiteness, we choose

Q(Δρ) =
1

td
+

q

ρ20V
(Δρ)2, (6)



where V is the volume of each reservoir, q is a dimensional transport coefficient and td is
the timescale of diffusive mixing between the two reservoirs that would occur in the absence
of a density difference.

We are interested in obtaining the possible steady state solutions to the system of
equations above and so it is convenient to define the temperature and salinity differences

ΔT ≡ Te − Ta, ΔS ≡ Se − Sa (7)

and work in terms of these variables. From equations 5, we obtain the time evolution of
the temperature and salinity differences:

dΔT

dt
= − 1

tr
(ΔT − θ)−Q(Δρ)ΔT, (8a)

dΔS

dt
=

Fs

H
S0 −Q(Δρ)ΔS. (8b)

We now introduce appropriate scales with which to reduce the dynamical variables ΔT
and ΔS, together with time t, to their respective dimensionless forms. Appropriate choices
are as follows

x ≡ ΔT

θ
, y ≡ αsΔS

αT θ
, t′ ≡ t

td
. (9)

Once scaled, the dynamical equations for x(t′) and y(t′) read

ẋ = −α(x− 1)− x
[
1 + μ2(x− y)2

]
, (10a)

ẏ = F − y
[
1 + μ2(x− y)2

]
, (10b)

where

α =
td
tr
, μ2 =

qtd(αtθ)
2

V
, F =

αsS0td
αtθH

Fs. (11)

The parameter α is the ratio of the diffusive timescale to the timescale over which tempera-
ture would exponentially decay to the local atmospheric value. The parameter μ measures
the strength of the buoyancy-driven convection between the two basins relative to the dif-
fusive mixing. The parameter F measures the amount of freshwater forcing.

Parameter Meaning Value Unit

tr temperature relaxation timescale 25 days
H mean ocean depth 4,500 m
td diffusion time scale 180 years
ta advection time scale 29 years
q transport coefficient 1.92× 1012 m3s−1

V ocean volume 300× 4.5× 8, 250 km3

αT thermal expansion coefficient 10−4 K−1

αS haline contraction coefficient 7.6× 10−4 –
S0 reference salinity 35 g kg−1

θ meridional temperature difference 25 K

Table 1: Parameters of the stochastic salt advection model.



We may simplify the equation above by noting that for parameters typical of the real
ocean (see table) α � 1, which means that the reservoirs will equilibrate with their local
forcing temperatures much more rapidly than they are likely to mix each other’s tempera-
tures. Therefore, we may suppose that x remains close to 1 which reduces the problem to
an ODE in y(t) alone (where we drop the primes on t′ for convenience):

dy

dt
= F − y

[
1 + μ2(1− y)2

]
. (12)

If we suppose for now that F = F̄ is independent of time, we can represent the time
evolution of y using a potential function V (y):

dy

dt
= −V ′(y), where V (y) = −F̄ y +

1

2
y2 + μ2

(
1

4
y4 − 2

3
y3 +

1

2
y2
)
, (13)

and its derivative with respect to y is denoted by the prime. We illustrate V (y) using
F̄ = 1.1 and μ2 = 6.2 in Figure 4. As can be seen, V (y) is a double-welled potential with
two stable minima and an unstable maximum. In order to transition from one potential
well to the other, a finite amplitude “kick” in y is required.

Recalling that y is simply the dimensionless salinity difference, we immediately see that
the two reservoirs can remain in a stable state with either a large salinity difference or a
small one. Physically, these correspond to the following. The poles are colder and fresher
than the equator. If we freshen the poles, we increase ΔS, but because temperature drives
the convection, this freshening reduces Δρ and so the MOC weakens. Therefore, the higher
(lower) value of y is usually referred to as the off (on) state of circulation. Another way
to look at it is that in order to balance the freshwater forcing at a large ΔS we need less
mixing between the reservoirs than if we have a smaller ΔS. Ultimately, the conclusion
here is that the meridional overturning circulation can jump between the on and off states
impulsively, given a finite-amplitude forcing, such as a particularly large ice-melt event.

Of course, freshwater forcing F is unlikely to be constant in reality. Next, we consider
F to vary stochastically, perhaps modelling rainstorms, or ice-sheet collapses, which create
a set of random kicks of freshwater flux which we model as white noise with amplitude σ
such that F = F̄ + σξ(t). This leads to the stochastic Itô equation

dYt = −V ′(Yt) dt+ σ dWt. (14)

Note here that the result of adding fluctuations to F is additive noise in the equation for
Y , rather than noise in the potential V (y).

As we have seen in previous lectures, we can write down the forward Fokker-Planck
equation in order to solve for the probability density function p(y, t) that generates a given
trajectory in Yt

∂p

∂t
=

∂

∂y

(
V ′(y)p

)
+

1

2
σ2 ∂

2p

∂y2
. (15)

Now, in the deterministic case before, we sought time-independent solutions for y. Of
course, it makes no sense to look for truly time-independent solutions for the random
variable Yt, but a statistically steady solution may be found by setting ∂p/∂t = 0 and



solving for the function pstat(y) satisfying stationary statistics. The solution is relatively
straightforward and we simply state the result,

pstat(y) = Ce−
2
σ2 V (y), where C =

(∫ ∞

−∞
e−

2
σ2 V (y) dy

)−1

(16)

is the normalization coefficient and we have used the boundary condition that p → 0 as
y → ±∞.

Some numerical results for equations 14 and 15 are shown in figure 4. The histograms
and probability densities are initially peaked at the well near which the system was launched,
indicating that the peak at y = yb is difficult to cross. They do eventually spread out,
though, and attain the steady state given by equation 16. In this state, the system typically
fluctuates around in one of the two wells and randomly transitions between them, while
spending more time overall in the deeper well.
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Figure 4: Motion in the double-well potential V (y) from equation 13 with F̄ = 1.1 and
μ2 = 6.2. Top: Potential V (y). Bottom: Stochastic motion (equation 14) with noise
amplitude σ = 0.2 starting from Y0 = 0 (left) or Y0 = 1 (right). The time evolution of
five realizations are shown, as well as histograms (blue) from 10 000 realizations and the
probability density (red) obtained from numerical solution of the corresponding Fokker–
Planck equation (15). The distribution labelled t = ∞ is the steady-state distribution
pstat(y) from equation 16.



1.3 Escape time

We discussed in a previous lecture the concept of mean escape times. In this context,
suppose we are in the “on”-state y = ya of meridional overturning but subject the system
to given, stochastic freshwater forcing. How long is it likely to take for the system to flip
into the other (“off”) state y = yc?

The expected time T̄ (y) required to escape to yc when starting from y satisfies an
equation related to the backward Kolmogorov equation:

−1 = −V ′T̄ ′ + 1
2σ

2T̄ ′′, with T̄ (yc) = 0, T̄ ′(−∞) = 0, (17)

where the boundary conditions state that it takes no time to reach yc when starting from
yc, and that the escape time varies very little for y far below the potential well at ya since
the restoring deterministic drift is very strong there.

The equation is a linear first-order equation for T̄ ′(y) which we solve by multiplying by
the integrating factor exp(−2V (y)/σ2):

−e−
2
σ2 V = e−

2
σ2 V

(
−V ′T̄ ′ + σ2

2 T̄ ′′
)
= σ2

2

(
e−

2
σ2 V T̄ ′

)′
. (18)

Integration of both sides and using the boundary condition T̄ ′(−∞) = 0 yields

T̄ ′(y) = e
2
σ2 V (y)

∫ y

−∞
− 2

σ2 e
− 2

σ2 V (s) ds = − 2
σ2

∫ y

−∞
e

2
σ2 [V (y)−V (s)] ds. (19a)

A second integration using T̄ (yc) = 0 yields

T̄ (y) = − 2
σ2

∫ y

z=yc

∫ z

s=−∞
e

2
σ2 [V (z)−V (s)] ds dz. (20)

Hence the mean escape time from the “on” state y = ya to the “off” state y = yc is

T̄ (ya) =
2

σ2

∫ yc

z=ya

∫ z

s=−∞
exp

(
2

σ2
[V (z)− V (s)]

)
ds dz. (21)

1.3.1 Asymptotic approximation using Laplace’s method

We can obtain an asymptotic approximation to the above integral in the limit of small
noise, where σ2 is much smaller than the typical variation V (yb) − V (ya) of the potential,
so that we can treat M = 2/σ2 as a large parameter. In this case, the main contribution to
the integral in equation 21 comes from the region where the exponent M [V (z) − V (s)] is
maximal, i.e. z ≈ yb and s ≈ ya. The contributions from any other regions are exponentially
small and can be ignored. We can thus approximate the result as

T̄ (ya) ≈ M

∫ yb+ε

yb−ε
eMV (z) dz

∫ ya+ε

ya−ε
e−MV (s) ds, (22)

where ε > 0 is small.



After a change of variables z = yb+x or s = ya+x, the two integral factors in equation
(22) have the form

I ≡
∫ ε

−ε
eMf(x) dx, (23)

where M � 1 and f(x) = V (yb + x) or f(x) = −V (ya + x) has a maximum at x = 0.
We have argued that almost all of the contribution to the integral I comes from the region
near this maximum, so we may Taylor expand f(x) as f(x) ≈ f(0) + f ′′(0)x2/2, where no
linear term is present and f ′′(0) < 0 since x = 0 is a maximum. After the expansion, we
can extend the limits to infinity, again because the contributions from regions away from
the exponential maximum near x = 0 are negligible, and hence∫ ε

−ε
eMf(x) dx ≈ eMf(0)

∫ ε

−ε
e−

1
2
M |f ′′(0)|x2

dx (24a)

≈ eMf(0)

∫ ∞

−∞
e−

1
2
M |f ′′(0)|x2

dx (24b)

≈ eMf(0)

√
2π

M |f ′′(0)| , (24c)

where we have made use of the standard result
∫∞
−∞ e−αx2

dx =
√
π/α.

The two integral factors in equation 22 are thus

∫ yb+ε

yb−ε
eMV (z) dz ≈

√
2π

M |V ′′(yb)|e
MV (yb), (25a)

∫ ya+ε

ya−ε
e−MV (s) ds ≈

√
2π

M |V ′′(ya)|e
−MV (ya), (25b)

and hence the mean escape time from the “on” state y = ya to the “off” state y = yc is
approximately

T̄ (ya) = 2π

√
1

|V ′′(ya)| |V ′′(yb)| exp
(

2

σ2
[V (yb)− V (ya)]

)
. (26)

From the calculations, we can see that this escape time is the same from any state in the
well near y = ya over the peak y = yb to any state in the well near y = yc. This is in line
with our intuition that, for weak noise, the deterministic drift quickly drives the system to
the bottom of the well y = ya where it fluctuates until eventually a large enough random
perturbation kicks the system over the crest y = yb and it falls into the other well y = yc.

1.4 Periodic forcing

Within the autonomous framework above, the system will jump between on and off states
stochastically, but will not display any periodic behaviour, as is observed for DO events.



We therefore augment the previous model with a periodic modulation to the deterministic
part of the freshwater forcing, so that

F = F̄ + σξ(t) +A sin

(
2π

t

T

)
, (27)

where A is the amplitude of periodic forcing and T is the dimensionless period of forcing
(as we are still working with dimensionless variables). The governing equation is thus
dy/dt = −dV/dy + σξ(t), where the potential V (y, t) can be chosen as

V (y, t) = −F̄ y +
1

2
y2 + μ2

(
1

4
y4 − 2

3
y3 +

1

2
y2
)
−A sin

(
2π

t

T

)
(y − 0.7). (28)

Figure 5: Motion in a time-periodic double-well potential (equation 28 with F̄ = 1.1,
μ2 = 6.2 and A = 0.05). Top: The potential V at t = −T/2, 0, T/2. Bottom: Stochastic
motion with noise amplitude σ = 0.05 (left), σ = 0.15 (middle), σ = 0.25 (right). The time
evolution of one realization is shown (black curve), as well as the probability density (heat
map) obtained from evolving the corresponding Fokker–Planck equation forward until a
time-periodic state is reached. The period T chosen corresponds to 100 000 years.

In Figure 5, we show what happens for a small perturbation (A = 0.05) to the mean
forcing F̄ for various values of the noise amplitude σ. For small noise, the system remains



in the deeper well most of the time as expected. For large noise, the probability density
system frequently transitions between the two wells, almost as if the middle peak at y = yb
did not exist, and the periodicity is quite weak. However, for an intermediate value of
noise strength, we recover periodic behaviour on the timescale T . The response is not a
small perturbation, but a jump between on and off states every cycle. We have ended up
with a system exhibiting so-called “stochastic resonance”, whereby the noise is just large
enough to switch between states almost every time the background forcing oscillates.

It is unclear whether the DO events are in fact generated by such a mechanism (the
addition of a ∼1500 year periodicity in freshwater forcing is ad hoc – we know of no such
forcing in reality), but it nonetheless constitutes a fascinating result that ordered behaviour
may come out of the addition of white noise.




