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1 Deterministic Chaos

So far we have seen that the oscillatory behavior of El Nino Southern Oscillation (ENSO)
mechanism was related to the saturation of a unstable mode above the threshold of a Hopf
bifurcation, corresponding to a given critical coupling strength between the atmosphere
and the ocean. An interesting point in the record of the ENSO signal is the signature of
some mean seasonal cycle. For the western tropical Pacific ocean, negative anomalies in
the records of zonal winds occur around April, whereas positive anomalies occur around
December. Furthermore, sea surface temperature (SST) anomalies are observed at the same
periods: positive SST anomalies are associated with negative zonal wind anomalies, and
negative SST anomalies are associated with positive zonal wind anomalies. It is important
to note that ENSO events and the seasonal cycle are sensitive to the same environmental
factors such as wind forcing and the ocean circulation. ENSO’s non-linear interaction with
the seasonal cycle is characterized by a tendency to synchrony in periodic, subharmonic
oscillation. At this point we saw an interesting movie: illustration of the 5 unsynchronized
oscillators metronoms. Once they are coupled together through a moving plate, their oscil-
lation period tend to synchronize. Once the plate is removed (the coupling is broken), the
periods desynchronize again.

In order to illustrate the tendency for phase-locking of anomalous events, we pick up a
constant driving frequency Ω and a starting point x0, then iteratively compute xn+1 from
xn through the non-linear relationship:

xn+1 = xn + Ω− k

2π
sin
(
2 ∗ πx(mod1)

)
(1)

The map of the interaction between anomalies and the driving cycle is obtained by displaying
all the computed x in the (Ω, x) plane, for all the described Ω. As we increase the parameter
k in the non-linear forcing, an increasing number of “windows” are opening and widening in
the (Ω, x) space. These “windows” are the orbital periods of limit circles encountered in the
iterative process, and correspond to rational multiples of the driving frequency Ω onto which
the system is locking. The frequency ratio of the model to the driving frequency describe
a ”devil’s staircase” as the number and width of frequency-locked steps (corresponding to
the windows) increases infinitely.

The Zebiak-Cane model is the first coupled atmosphere-ocean model taking into account
the interaction between the seasonal cycle and the Hopf bifurcation oscillatory frequency



by relating the seasonal frequency Ω to the atmospheric/oceanic coupling strength param-
eter µ and the upwelling feedback parameter δ through a “Devil’s terrace” (we recover a
Devil’s staircase with two non-linear forcing terms, equivalent of a k1 and a k2 in previous
description). As the coupling strength is increased, both the amplitude and the time scale
of the oscillations are enhanced. By tuning the parameters µ and δ, Zebiak-Cane model
predicts 3 ENSO events over 10 years, which is in good agreement with observational data.

This ends the deterministic part of the discussion. Stochasticity will be now included
by adding some noise into ENSO models.

2 Effect of Noise on the Hopf Bifurcation

Unresolved fast and short scales can be integrated into ENSO models by adding noise. As
an example, the westerly wind bursts (WWB) events are characterized by velocities above
7 m s−1, with a typical duration of a few days. These unresolved processes are known to
trigger the propagation of perturbations in the form of equatorial Kelvin and Rossby waves.
The correlation between this events can be verified in using a singular value decomposition
analysis of the SST-Wind covariance matrix.

If we assume that the effect of WWB is a noise in the system, then what is the response
of the model ?

The response of Zebiak-Cane model to white versus red noise is represented in the
subcritical and supercritical regimes. A remarkable result is that red noise can trigger a
response even before the critical point for the Hopf bifurcation is reached, that is, while
still in the subcritical regime. Adding red noise in the model can thus result in lowering
the bifurcation threshold.

We consider the following normal form:

Ẋ = λX − ωY −X(X2 + Y 2), (2)

Ẏ = λY + ωX − Y (X2 + Y 2). (3)

In our model, X would be the temperature anomaly on the East Pacific coast (at some
fixed longitude, say 30E) and Y the thermocline depth on the West coast. We derive the
stochastic extension of this normal form by adding some noise in the equation (where dW1

and dW2 are independent, Gaussian noises).

dX = (λX − ωY −X(X2 + Y 2))dt+ σdW1, (4)

dY = (λY + ωX − Y (X2 + Y 2))dt+ σdW2. (5)

In polar coordinates (r =
√
X2 + Y 2 and θ = arctan X

Y ), the system reads (using Ito’s
formula for change of variables):
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We now make the following transformation

dX = σdW1,

dY = σdW2.

dR = (λr − r3 +
σ2

2r
)dt+ σ(cos θdW1 + sin θdW2), (6)
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The stationary probability density function is

ρS(r) = N exp
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)
, (8)

To prove (8) we first derive a system of coupled Fokker-Planck equations associated with
the stochastic system above. We obtain:
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The diffusion operator Dij is then
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)
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We look for a stationary density function ρS(r), that is, ∂tρS(r) = 0). Thus
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3 Stochastic Optimals

What forcing pattern is maximizing the variability of the system under subcritical condi-
tions? In order to address this question, we introduce white noise (delta-correlated noise in
time) with a spatial correlation given by the covariance matrix C:

dΨ

dt
= A(t)Ψ + f(t) (13)

Ψn = Ψn−1 +An−1Ψn−1dt+
√
dtζn−1︸ ︷︷ ︸
forcing

(14)

E(ζi) = 0, (15)

E(ζiζj) = δijC (16)

Now rewrite:
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By recurrence, we find:
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where we have introduced the ”propagator” Rn−1,n such that

Ψn = (1 +An−1dt)Ψn−1 = Rn−1,nΨn−1 (18)

Hence the mean variance is given by

E(Ψn) = E(R0,nΨ0) + 0 (19)
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Now let
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so that the total covariance is
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where C is the covariance matrix. The first eigenvector ofB is called the stochastic optimum.
The use of this eigenvector as a forcing pattern triggers the maximum response from the
model.


