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1 Phenomenology of El Niño Southern Oscillation

In its mean state, there is strong zonal asymmetry in the equatorial Pacific. The climato-
logical mean easterly trade winds pile up warm water in the western Pacific, whilst cool
water is upwelled in the east due to Ekman divergence there, as depicted in Figure 1.
Corresponding to this zonal temperature gradient is a sea surface height (SSH) gradient,
with high SSH in the west and low SSH in the east. The SSH gradient is compensated
at depth by a depressed thermocline in the west, and a shallower thermocline in the east.
We have good measurements of the equatorial Pacific from the TAO/TRITON array of
approximately 70 moored ocean buoys, which have been monitoring surface and subsurface
temperatures, wind speed and direction, and precipitation since 1994.

Every four to seven years, the western Pacific warm pool spreads eastward in a phe-
nomenon known as El Niño. This sea surface temperature (SST) anomaly is associated
with the eastward propagation of a subsurface temperature anomaly, which in turn is re-
lated to a shoaling of the western Pacific thermocline and a depression of eastern Pacific
thermocline. These temperature anomalies are coincident with a weakening of the Walker
circulation (the zonal circulation cell over the equatorial Pacific), and a shift of the region
of highest precipitation to follow the maximum SSTs. The opposite of the El Niño state
(i.e. a heightened “normal” state) is referred to as La Niña conditions, and the largescale
temperature, pressure, and precipitation, anomalies associated with transitions between El
Niño and La Niña states are together known as El Niño Southern Oscillation (ENSO). The
El Niño and La Niña phases are shown schematically in Figure 2.

The index used to describe ENSO is an average of the SST anomaly over a region of the
equatorial Pacific. Figure 3 shows a timeseries of the ENSO index for the NINO3 region
of the eastern Pacific, which spans the region 150W to 90W, between 5S and 5N. A power
series decomposition of this timeseries reveals a spectral peak centered about a period of 3
years.

2 The Zebiak & Cane model

To capture the oscillatory behavior of ENSO dynamically, a coupled atmosphere-ocean
model is required, which admits feedbacks between perturbations to the equatorial east-
erlies, the thermocline depth, and equatorial SSTs, and as such allows the spontaneous
growth of anomalies. We shall also see that oceanic wave dynamics are important to the
development and decay of El Niños, and so necessary in a minimal model of ENSO.



Figure 1: The climatological mean SST and wind stress in the tropical Pacific. [Reproduced
from faculty.washington.edu/kessler.]

Figure 2: A schematic of (A) El Niño and (B) La Niña states of the tropical Pacfic. [Re-
produced from www.noaa.gov.]

2.1 Model formulation

Zebiak & Cane (1987), hereon ZC, consider a 11
2 -layer reduced gravity ocean (depicted in

Figure 4) below a constant-depth mixed layer of temperature T , which feels a temperature-



Figure 3: A timeseries of the NINO3 SST anomaly, with El Niño events colored in red and
La Niña events colored in blue. [Reproduced from http://www.seas.harvard.edu/climate.]

dependent wind stress
τx = τxext + µA(T − T0), (1)

for some atmospheric operator A, and coupling parameter µ (with µ = 0 corresponding to
the entirely uncoupled case, and µ = 1 describing “normal” coupling).

The reduced gravity ocean model equations for the horizontal velocities (u, v) and depth
h are

∂u1
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in the upper layer, and zero velocities in the lower layer.
The evolution of the mixed layer temperature T is governed by an advection-diffusion

equation with relaxation back to some atmospheric temperature T0, and relaxation to a
specified subsurface temperature profile Ts(h) in the presence of upwelling w > 0, as follows
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where H is the Heaviside function, along with boundary conditions
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∂T

∂x
= 0, (9)

y → ±∞ : T bounded. (10)



Figure 4: The ocean component of the ZC model. A thermocline of density ρ overlies a
denser stationary layer of density ρ + ∆ρ. The ocean feels atmospheric wind stress and
temperature through constant depth mixed layer of temperature T .

2.2 Wave dynamics in the ZC ocean model

Consider free waves with τx = 0, corresponding to no wind stress input, and no coupling
with the mixed layer temperature field T . Let u = û(y)ei(kx−σt) and define v and h similarly.
Then,

−iσû− β0yv̂ = −ikg′ĥ, (11)

β0yû = −g′ĥ′, (12)

−iσĥ+H(ikû+ v̂′) = 0. (13)

Look first for solutions with v̂ = 0. Then,
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which has a non-zero solution only if
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β0yû =
β0yg

′kĥ
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where λ0 =
√
c0/β0 is the Rossby deformation radius. Note that for ĥ(y) to be bounded as

y → ±∞ we have set σ/k = +c0.
We can solve for the general case v̂ 6= 0 by using the Hermite polynomials Hn, in which
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v̂j(y) = ψj(y), (23)

where
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and the corresponding phase speeds are

cj = − c0

2j + 1
. (25)

2.3 Possible feedbacks in the ZC model

To explore the feedbacks possible in the full model, consider a perturbation (denoted by
hats) to some steady state (denoted by overbars) of the simplified temperature equation

∂T

∂t
= −wT − Ts(h)

H
. (26)

Linearizing about the steady state, this becomes

∂T̂

∂t
= −ŵ T̄ − Ts(h̄)

H
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′
s(h̄)ĥ

H
. (27)

Now it can be seen that if there is a warm anomaly in the mixed layer (i.e. T̂ > 0)
giving rise to a deepening of the thermocline (i.e. ĥ > 0), the second term on the right
of equation 27 will be positive, leading to more warming. This positive feedback is known
as the thermocline feedback. Similarly, from the first term on the right of equation 27,
it can be deduced that a positive temperature anomaly, associated with a reduction in
upwelling (ŵ < 0), will likewise enhance the positive temperature anomaly, acting as a
positive feedback. This is called the upwelling feedback.

An analogous treatment of the zonal advection terms of the temperature equation

∂T

∂t
= −u∂T

∂x
(28)

yields linearized equation
∂T̂

∂t
= −ū∂T̂

∂x
− û∂T̄

∂x
. (29)

Now a positive temperature anomaly will produce a zonal velocity anomaly û that acts to
enhance this anomaly by the advection of the mean temperature field T̄ . This is the zonal
advection feedback.



2.4 ZC model equilibria, stability, and bifurcations

After discretisation, we can reduce the ZC model to the general form

x

dt
= f(x, µ). (30)

Then, equilibria x = x∗ are found by solving

f(x∗, µ) = 0. (31)

Suppose that we know one solution x∗(µ = 0). As µ is varied, we expect x∗(µ) to vary
continuously (at least for a while, generically). Such a branch of solutions traces out a
curve in the x-µ plane. A convenient way to solve such a system is to utilise this continuous
changing of the solutions by viewing the arclength s along this curve as a parameter and
solve instead

f(x∗(s), µ(s)) = 0, (32)

N
(
x∗

ds
,
µ

ds

)
= 0, (33)

where N is a normalisation constraint on the arclength.
Given an equilibria x∗, we are interested in its stability. For this purpose, write x =

x∗ + x′. Then, linearising in x′, the equation becomes

x′

dt
= Jx′, (34)

where Jij = ∂fj/∂xj(x
∗(µ)) is the Jacobian of the dynamical system evaluated at x = x∗(µ).

We can determine the stability of a given solution x∗ by writing x′ = x̂eσt, and then σ
satisfies the eigenvalue problem

J x̂ = σx̂. (35)

We say that x∗ is a stable equilibria if R(σ) < 0 and an unstable equilibria if R(σ) > 0.
As µ is varied, there are a number of possibilities for the behaviour of such equilibria. In

general there will be particular values of µ = µ∗, called bifurcation points, at which a given
solution changes its stability properties, or ceases to exist altogether, as µ is varied through
its bifurcation value µ∗. There a four canonical types of bifurcations found in dynamical
systems, namely

• Saddle–node bifurcation: A saddle–node bifurcation is the bifurcation in which
there are no equilibria for µ < µ∗ and a pair of equilibria with opposite stability
properties for µ > µ∗. Through a change of variables, any one-dimensional system
with a saddle–node bifurcation can be mapped, sufficiently close to its bifurcation
point, onto the form

ẋ = µ− x2. (36)

We see that for µ < 0 there are no equilibria, whilst for µ > 0 there are two equilibria
x∗ = ±√µ. The Jacobian is just −2x, and so the solution x∗ =

√
µ is stable, whilst

the solution x∗ = −√µ is unstable.



• Pitchfork bifurcation: A pitchfork bifurcation is the bifurcation in which there is
a single equilibria (which may or may not be stable) for µ ≶ µ∗ (the case < is called
supercritical, and the case > is called subcritical), and three equilibria for µ ≷ µ∗ in
which the original equilibria point swaps its stability, and the two new equilibria have
the stability of the original solution. The normal form for a pitchfork bifurcation is

ẋ = µx− x3 (supercritical), (37)

ẋ = µx+ x3 (subcritical). (38)

In the first case, the solution x = 0 is stable for µ < 0 and unstable for µ > 0, and
the solutions x = ±√µ only exist for µ > 0, and are stable there. In the second
case, the solution x = 0 is stable for µ < 0 and unstable for µ > 0, and the solutions
x = ±

√
−µ only exist for µ < 0 and are unstable there. The transformation t 7→ −t

reverses the stability of all the solutions, but the systems still retain their original
labels ‘supercritical’ and ‘subcritical’.

• Transcritical bifurcation: A transcritical bifurcation is the bifurcation in which
there are two solutions for each of µ ≶ µ∗, but at µ = µ∗ they coincide, and swap
their stability. The normal form for a transcritical bifurcation is

ẋ = µx− x2. (39)

We see that the equilibria are always x = 0 or µ. However, the Jacobian is µ − 2x,
and so the solution x = 0 is stable for µ < 0 and unstable for µ > 0 whereas the
solution x = µ is unstable for µ < 0 and stable for µ > 0.

• Hopf bifurcation: A Hopf bifurcation is the bifurcation in which there is one equi-
libria for µ ≶ µ∗ (which we again call super/subcritical), and a single equilibria for
µ ≷ µ∗ with the opposite stability, and a periodic orbit that coincides with the equi-
libria when µ = µ∗. The normal form for a Hopf bifurcation is

ẋ = µx− ωy − x(x2 + y2), (40)

ẏ = µy + ωx− y(x2 + y2). (41)

It is clear that (x, y) = (0, 0) is an equilibria for this system. The Jacobian at (0, 0) is

J(0, 0) =

(
µ −ω
ω µ

)
, (42)

which has eigenvalues σ = µ ± iω, and so the equilibria (x, y) = (0, 0) is stable for
µ < 0 and unstable for µ > 0.

To demonstrate that this system has a periodic orbit for µ > 0 it is convenient to use
polar co-ordinates (x, y) = r(cos θ, sin θ), in which case

ṙ = µr − r3, (43)

θ̇ = ω, (44)



and so provided ω 6= 0, there is a stable periodic orbit solution r =
√
µ and θ = ωt+θ0

when µ > 0. Note that in the degenerate case ω = 0, we obtain a circle of fixed points
that are marginally stable in the angular direction, and stable in the radial direction.
Since the equation for r is nearly pitchfork-like (we don’t allow r < 0), changing the
signs of terms in the above equations yields super/subcritical Hopf bifurcations with
the same convention as for the pitchfork case.

A Hopf bifurcation can be viewed physically as feedbacks amplifying to give an oscil-
latory signal.

There are a whole range of other bifurcations which are typically degenerate cases in
which the first order nonlinearity occurs at even higher orders in x. We typically don’t see
these, and indeed typically don’t see pitchfork or transcritical bifurcations. The reason for
this is that, for example, if we have made some error in modeling whatever physical system
we are interested in, then perhaps each of the equations for these bifurcations should have an
extra constant ε added to the right hand side. Then we see that the saddle–node bifurcation
remains a saddle–node bifurcation, the Hopf bifurcation remains a Hopf bifurcation, but
the pitchfork bifurcation separates into an isolated non-bifurcating solution and a saddle–
node bifurcation, and the transcritical bifurcation separates into a pair of saddle–node
bifurcations.

For higher dimensional dynamical systems, we may invoke the centre manifold theorem
(which is quite technical) to see that near a bifurcation point, the dynamics of the dynamical
system collapses onto a low dimensional (often one or two) manifold on which the reduced
dynamics generically take the form of one of the bifurcations discussed above.

2.5 Hopf bifurcation in the ZC model

As the ocean–atmosphere coupling parameter µ in the ZC model is increased from zero,
there has been shown to be a Hopf bifurcation when µ ≈ 0.525, and the period of the
resulting periodic orbit is approximately 4 years. This observation has been used as a first
order explanation of El Niño. Additionally, it is known that µ scales with the square of
ocean basin size, and so, for example, given that the size of the Atlantic ocean basin is
approximately one third of the size of the Pacific ocean basin, we have µAtlantic ≈ µPacific/9,
and so the lack of an El Niño event in the Atlantic could be explained by the fact that
µAtlantic . 0.525 . µPacific, and so there does not exist a periodic orbit solution of the ZC
model.

For the ZC model, the Hopf bifurcation corresponds to an amplifying feedback of geo-
metrically confined Rossby and Kelvin basin modes with SST modes.

3 Physical Mechanisms for ENSO

We have seen from the ZC model that with idealized ocean-atmosphere coupling and oceanic
wave dynamics it is possible to find oscillatory solutions in certain parts of parameter
space that resemble ENSO in amplitude and period. Below we heuristically describe two
mechanisms that might give rise to such oscillatory behavior.



3.1 Wave oscillator

Consider a positive temperature anomaly at the equator in the Pacific ocean, which cor-
responds to a positive SSH anomaly on-equator, with compensatory negative SSH anoma-
lies off-equator to the north and south. We have seen that such a signal may propagate
eastwards as an equatorial Kelvin wave on the equator, which may be interpreted as the
eastward propagating and growth of an El Niño. Meanwhile, the off-equator signal will
propagate westward as a Rossby wave and, on reaching the westerward basin boundary,
may be reflected as an equatorial Kelvin wave. This reflected wave signal has the possibil-
ity of interfering with and killing the original positive temperature anomaly, ending the El
Niño. Whilst this delayed oscillator mechanism of El Niño undoubtedly influences ENSO
dynamics, a consideration of the timescales involved (from the Kelvin and Rossby wave
speeds) does not explain the observed ENSO period of four to seven years.

3.2 Recharge oscillator

Figure 5: A schematic of the stages of the recharge oscillator mechanism for ENSO.

An alternative mechanism that produces longer timescale variability comes from con-
sidering the overall basin adjustment. A positive SST anomaly in the eastern Pacific will
produce a westerly wind stress anomaly. The wind stress acts to change the thermocline
slope, piling up water and so depressing the thermocline in the east, whilst shoaling the
thermocline in the west. Such a perturbation to the thermocline slope will enhance the
SST perturbation, acting as a positive feedback. As the positive temperature anomaly
strengthens, there is a divergent transport of heat off-equator by the ocean, which shoals
the thermocline, suppressing the SST anomaly and so reducing the westerly wind anomaly.
The shoaling of the thermocline eventually carries the system into the opposite phase, with
a negative SST anomaly in the east, and so an easterly wind stress anomaly. This causes
the convergent transport of heat to the equator, resulting in the “recharge” of the ocean



heat content there. As such, this mechanism is known as the recharge oscillator view of
ENSO. This process is shown schematically in Figure 5.


