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1 Introduction

The Earth’s system is very non-linear and complicated. For instance, if a periodic forcing,
as an input signal, is coming into the Earth’s system (e.g. variability in a solar constant),
then very complicated signal is coming out and we want to understand what process can
explain this transformation. The ice core oxygen isotope records, that is usually linked to
the local temperature, (Figure 1) shows various oscillation and variation in temperature of
5◦C. The other example of a noisy signal is El Niño/Southern Oscillation. Temperature
anomaly with respect to the mean in the equatorial Pacific is shown in Figure 2.

Now, we are going to analyze these two cases by choosing the special time and spatial
scale of phenomenon. For example, for El Niño it would be Pacific Basin and few years
(inter-annual) correspondingly. And we try to understand that phenomenon using deter-
ministic type of model and all unresolved processes we consider as a noise. In this sense
stochastic dynamical system is obtained (Figure 3. We start with the simple example where
underlying dynamical system is linear.

2 The Null Hypothesis

Consider stochastic climate model developed by Hasselmann in 1976 (Figure 4). It is a layer
of the ocean (mixed layer) that has the heat flux coming from the atmosphere (Qoa) and
we are interested how mixed layer temperature (T ) evolves in time. Write down the heat
balance

ρCp
∂T

∂t
= λ

∂2T

∂z2

where Cp is the specific heat of seawater, ρ is density, λ is mixing coefficient, t is time, and
z is vertical coordinate. Boundary conditions are

z = 0 : λ
∂T

∂z
= Qoa

z = −h :
∂T

∂z
= 0,



Figure 1: Ice core oxygen isotope record (ratio of 18O to 16O) taken from the NGRIP ice
core at Greenland.

Figure 2: Temperature anomaly with respect to the mean in the equatorial Pacific in the
Nino 3.4 region.

Figure 3: Stochastic dynamical systems approach scheme.



where h is depth of the layer. Now, we define depth averaged temperature

T =
1

h

∫ 0

−h
Tdz

This implies

ρCph
∂T

∂t
= Qoa = α

(
Ta − T

)
,

where Ta is atmospheric temperature.
We eventually get the equation

∂T

∂t
=

α

ρCph

(
Ta − T

)
γ =

α

ρCph

∂T

∂t
= −γT + γTa.

The time scale 1/γ is roughly 100 days. The question is how to represent γTa. We look at
a Fast-Slow systems with fast variable x and slow variable y.

dx

dt
= f(x, y)

dy

dt
= g(x, y).

Looking at data measurements, one finds that variations of atmospheric temperature are
much faster than ocean temperature fluctuations. Let y0 be an initial condition, ∆y = y−y0,
t� τy and take ensemble average. Assuming ergodicity

〈∂y
∂t
〉 =

d

dt
〈y〉 = 〈g(x, y)〉 =

d∆y

dt
〈∆y〉 = 〈g(x, y)〉t

ỹ = ∆y − 〈∆y〉
dỹ

dt
= g(x, y)− 〈g(x, y)〉 = g̃(x, y)

〈g̃(x, y)〉 = 0.

If x is stationary, so is g̃. Then, g̃ looks like white noise and the model is

dỹ

dt
= σξ(t).

In total we have

dT

dt
= −γT + σξ(t),

or

dT t = −γT tdt+ σdWt.



Figure 4: Scheme of Hasselmann’s stochastic climate model. See text for definition of all
parameters.

3 Analysis of the SDE

Let Xt = T t be a stochastic process that satisfies the equation

dXt = −γXtdt+ σdWt

Xt = X0 − γ
∫ t

0
Xsds+

∫ t

0
σdWs.

How do we define a stochastic integral
∫ t

0 σdWs? The Itô stochastic integral definition is∫ T

0
h(t)dWt = lim

N→∞

N−1∑
j=0

h(tj) (W (tj+1)−W (tj))

and the Stratonovich stochastic integral is∫ T

0
h(t) ◦ dWt = lim

N→∞

N−1∑
j=0

h

(
tj + tj+1

2

)
(W (tj+1)−W (tj)) .

Where the limits exist in the L2 norm (mean square) sense. So find 1)
∫ τ

0 dWt = Wτ (apply
definition and the fact that W0 = 0) and 2)

∫ τ
0 WtdWt. Start with Taylor expansion using

(dWt)
2 = dt

h(Wt + dWt)− h(Wt) = h′(Wt)dWt +
1

2
h′′(Wt)(dWt)

2 + ...

= h′(Wt)dWt +
1

2
h′′(Wt)dt+ ...

Integrate both sides

h(WT )− h(W0) =

∫ T

0
h′(Wt)dWt +

∫ T

0

1

2
h′′(Wt)dt.

We obtained the Itô’s lemma.
Now, choosing h(Wt) = W 2

t (consequently h′ = 2Wt and h′′ = 2) we find using the Itô’s
lemma

W 2
T −W 2

0 =

∫ T

0
2WtdWt +

1

2

∫ T

0
2dt.



Again using that W0 = 0 we obtain∫ T

0
WtdWt =

1

2

(
W 2
T − T

)
.

Thus, any linear 1-D stochastic differential equation can be solved analytically via the
Itô lemma.

dXt = Atdt+BtdWt

f = f(x, t), f1(x, t) =
∂f

∂t
, f2(x, t) =

∂f

∂x
, f22(x, t) =

∂2f

∂x2
.

Now, Taylor expand

f(t+ dt, xt + dXt)− f(t,Xt) = f1dt+ f2dXt +
1

2
(f11(dt)2 + 2f12dtdXt + f22(dXt)

2) + ...

Then plug SDE into this and find

f(t,Xt)− f(0, X0) =

∫ t

0

(
f1 + f2As +

1

2
f22B

2
s

)
ds+

∫ t

0
f2BsdWs.

For our SDE model, choose

f(x, t) = eγtx

f1(x, t) = γeγtx

f2(x, t) = eγt

f22(x, t) = 0.

Using this with our stochastic ODE and applying the Itô lemma

eγtXt −X0 =

∫ t

0
(γeγsXs − γeγsXs) ds+ σ

∫ t

0
eγsdWs.

And we have solved the SDE exactly as

Xt = e−γt
[
X0 +

∫ t

0
σeγsdWs

]
.

4 Numerical Solution of SDEs

One often requires a numerical solution of the SDE (interpreted in Itō’s sense)

dXt = f(t,Xt)dt+ g(t,Xt)dWt (1)

over the time interval [0, T ]. A basic approach to this problem is to consider discrete time
instants tn = n∆t, for a given time-step ∆t, and approximate (1) with the Euler-Maruyama
scheme

X̃n+1 = X̃n + f(tn, X̃n)∆t+ g(tn, X̃n)∆Wn+1. (2)



Here, we have denoted X̃n = X̃(tn) the approximate solution of (1) and ∆Wn+1 = Wn+1−
Wn is the jump of a Wiener process over the time interval ∆t. The jumps ∆W are indepen-
dent, Gaussian random variables ∆W ∼ N (0,∆t) and can therefore be generated at each
iteration with an appropriate random number generator (e.g. DW = sqrt(Dt)*randn(1) in
MATLAB). We also remark that Itō’s interpretation of an SDE consists of the continuous-
time limit of the Euler-Maruyama scheme.

Of course, more sophisticated schemes can be derived. An example is the Milstein
scheme, which approximates the solution X(t) of (1) as

X̃n+1 = X̃n + f(tn, X̃n)∆t+ g(tn, X̃n)∆Wn+1 +
1

2

[
(∆Wn+1)2 −∆t

]
. (3)

The main difference between the various numerical schemes regards their convergence
properties in the limit ∆t → 0. In the context of numerical schemes for SDEs, there are
two notions of convergence. The first, known as weak convergence, considers convergence
of the expectations of the approximation error |X(tn)− X̃n|; that is, a numerical scheme is
weakly convergent if

E
(
|X(tn)− X̃n|

)
≤ c∆tη. (4)

Here, c and η are constants (dependent on the type of scheme and the SDE considered); η
is the convergence rate of the scheme.

Similarly, we say that a numerical scheme is strongly convergent if the expectations
E[X(tn)] and E(X̃n) converge, i.e.

|E[X(tn)]− E(X̃n)| ≤ c∆tη. (5)

Example 1 (Ornstein-Uhlenbeck Process). Consider the Ornstein-Uhlenbeck process
dXt = −γXtdt+ σdWt, discretised with the Euler-Maruyama (EM) scheme as

Xn+1 = Xn − γXn∆t+ σ∆W = (1− γ∆t)Xn + σ∆W. (6)

We know that the stationary state solution Xstat(t) is a Gaussian random variable with
zero mean (E[X(t)] = 0). In order to check the strong convergence of the EM scheme, we
can take the expectation of (6), obtaining

E(Xn+1) = (1− γ∆t)E(Xn) = (1− γ∆t)n+1X0 (7)

As n→∞, the expectation E(Xn+1) converges to the analytic stationary result E[X(t)] = 0
only if

|1− γ∆t| ≤ 1⇒ ∆t ≤ 2

γ
, (8)

that is the EM scheme converges strongly if ∆t ≤ 2
γ .

5 Applicability of the Hasselmann’s Model to the SST Anomaly

Hasselmann’s linear model for the SST anomaly, derived in Section 2, resulted in the SDE

dT̄

dt
= −γT̄ + σξ(t) (9)



which is the Ornstein-Uhlenbeck process. Thus, according to Hasselmann’s model, the
transition density ρ of T̄ satisfies the Fokker-Planck equation

∂ρ

∂t
=
∂(γxρ)

∂x
+
σ2

2

∂2ρ

∂x2
, (10)

and there exists a stationary distribution

ρstat(x) =

√
γ

πσ2
e−

γx2

σ2 . (11)

Moreover, we recall that the stationary autocorrelation and the spectrum of the Ornstein-
Uhlenbeck solution are, respectively,

E(XsXt) =
σ2

γ
e−|t−s|, (12)

S(ω) =
σ2

γ2 + ω2
. (13)

The main question to be answered at this point is how this model can be tuned using
experimental observations of the SST anomaly (say, {T̄ ex

0 , T̄ ex
1 , ... , T̄ ex

N }), so that any
predictions based on Hasselmann’s model can be trusted. In fact, we would like the analytic
solution of the continuous time Ornstein-Uhlenbeck process, i.e.

T̄ (t) = e−γtT̄0 + σe−γt
∫ t

0
eγsdWs, (14)

to reproduce the statistics of the time-series of measurements T̄ ex
0 , T̄ ex

1 , ... , T̄ ex
N . To this

purpose, we discretise (14) by looking at the time instants tn and tn+1, i.e. we consider

T̄n+1 = e−γtn+1 T̄0 + σe−γtn+1

∫ tn+1

0
eγsdWs, (15a)

T̄n = e−γtn T̄0 + σe−γtn
∫ tn

0
eγsdWs. (15b)

We can multiply (15b) by e−γ(tn+1−tn) = e−γ∆t and subtract it from (15a) to obtain

T̄n+1 = e−γ∆tT̄n + σe−γtn+1

∫ tn+1

tn

eγsdWs. (16)

When ∆t is small, we can approximate the integral in the last expression by c∆Wn+1,
where c is a suitable constant. So, the last term can be approximated with a Gaussian
random variable Zn with zero mean and variance σ̃2 (chosen appropriately). Then, we
may approximate the solution of the Ornstein-Uhlenbeck process by the discrete stochastic
process

T̄n+1 = αT̄n + Zn+1, (17)

where α = e−γ∆t ∈ (0, 1). This type of discrete process is known as the AR(1) process
(where AR stands for auto-regressive), or as a red noise process. We can now compute



the spectrum of the AR(1) process and compare it to the spectrum obtained from the
experimental data set {T̄ ex

0 , T̄ ex
1 , ... , T̄ ex

N } to compute appropriate values of α and σ̃. To
this purpose, we first note that

T̄k = αT̄k−1 + Zk

= α(αT̄k−2 + Zk−1) + Zk
...

= αkZ0 + αk−1Z1 + ...+ αZk−1 + Zk

(18)

so that

c0
def
= E(T̄ 2

k ) =
[
1 + α2 +

(
α2
)2

+ ...+
(
α2
)k]

σ̃2

k→∞
=

σ̃2

1− α2

(19)

Note that we have used the relation E(ZnZm) = σ̃2δnm and the fact that the geometric series
converges since 0 < α < 1. Thus, recalling that the random variable Zn is independent of
any past realisation T̄m, the correlation of the discrete process becomes

ck
def
= E(T̄iT̄k+i) =

1

N

N∑
i=0

T̄iT̄k+i

=
1

N

N∑
i=0

T̄i
(
αT̄k−1+i + Zk+i

)
=
α

N

N∑
i=0

T̄iT̄k−1+i

= α ck−1

= αk c0

(20)

so as k →∞ (i.e. the discrete time series becomes infinitely long) we obtain

ck =
αk σ̃2

1− α2
=

σ̃2

1− α2
e−γtk , (21)

where we have used α = e−γ∆t (constant for a given ∆t) and that, for uniform time-steps,
k∆t = tk. Taking the continuous-time version c(t) of (21), we can compute the spectrum
of the AR(1) process as

S(ω) =

∫ ∞
−∞

c(t)e−iωtdt

=

∫ ∞
−∞

σ̃2

1− α2
e−γ|t|e−iωtdt

=
2γ

1− α2

σ̃2

γ2 + ω2
(22)



The absolute value was introduced to maintain the negativity of the argument of the expo-
nential term in c(t). Note that, up to a normalisation constant, this spectrum is the same
as for the continuous-time Ornstein-Uhlenbeck process. Thus, one can tune the AR(1) to
fit the measured data in the following way: compute the spectrum of the discrete mea-
surements {T̄ ex

0 , T̄ ex
1 , ... , T̄ ex

N }, then fit appropriate values of α and σ̃ in (22). Then,
the corresponding AR(1) process reproduces the measured statistics, and can be used to
estimate the statistical properties of the SST anomaly according to Hasselman’s model.


