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Abstract

This project investigates the behaviour of a treadmilling microorganism in a two-
dimensional unbounded domain with a half-infinite non-slip wall. The governing evo-
lution equations for such a treadmilling organism are derived in an analytical form
and trajectories of a microorganism for several different initial positions and heading
directions are numerically calculated. Then we define and numerically calculate the es-
caping probability PE , the probability that the treadmilling organism can escape from
its image on the wall. This PE does not take 0 or 1 value for any physically reasonable
initial point. This suggests that the treadmilling organism feels the presence of its image
on the wall even when it is placed at a position far from the wall at the initial time,
and that, if the initial heading direction is appropriately chosen, it is possible for the
microorganism to escape from the wall.

1 Introduction

The locomotion of microorganisms has received much attraction in fluid dynamics and
Biology recently [1, 2]. As their motion possesses very small length scales and speeds, the
dynamics is governed by low Reynolds number hydrodynamics,1 where inertial forces are
negligible in comparison to the viscous effects of the fluid.

Many studies have been undertaken on such dynamics in unbounded low Reynolds num-
ber flows [3, 4, 5]. In reality, however, most organisms are in the vicinity of other bodies
or boundaries, where their hydrodynamic interactions with these have a significant effect
on their motion. The importance of the existence of boundaries has also been suggested
by many experimental observations. For example, some experimental observations [6, 7, 8]
found a qualitative feature of microorganism near a solid wall to be attracted to no-slip
boundaries. Berke etal . [9] measured the steady-state distribution of smooth-swimming
Escherichia Coli (E. Coli) between two glass plates and found a strong increase of the cell
concentration at the boundaries. They also theoretically demonstrated that hydrodynamic
interactions of swimming cells with solid surfaces lead to their reorientation in the direc-
tion parallel to the surfaces, as well as their attraction to the closest wall. Lauga etal. [10]
showed that circular trajectories are natural consequences of their force-free and torque-free
swimming and hydrodynamic interactions with the boundary. This leads to a hydrodynamic

1For example, the Reynolds number associated with the motion of Escherichia coli (E. Coli) is O(10−4)
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trapping of the cells close to the surface. Drescher etal . [11] found that when two nearby
Volvox colonies swim close to a solid surface, they attract one another and can form stable
bound states in which they waltz or minuet around each other. These observations suggest
that, in order to obtain a comprehensive understanding of low Reynolds number locomo-
tions, it is necessary to study hydrodynamic interactions between microorganism and the
boundaries.

Some of the phenomena stated above have already been verified by numerical simulations
[12, 13]. However, not many physical explanations have been given to the locomotion of
microorganism near boundaries. Berke etal . [9] studied the swimming microorganisms’
attraction to boundaries by modeling the swimmer as a force dipole singularity. This simple
model captures the attraction of the microorganisms to boundaries. However, contrary to
the experimental findings, the microorganism in this model crashes into the boundary in
finite time. Moreover, their analysis did not investigate the dynamics of microorganism
near the boundary. Or and Murray [14] studied the dynamics of low Reynolds number
swimming organism near a plane wall. They analysed the motion of a swimmer consisting
of two rotating spheres connected by a thin rod, as a simple theoretical model of swimming
organisms. They found that when the spheres are rotated in unequal velocities, the swimmer
has a solution of steady translation parallel to the wall, and that under small perturbation,
the swimmer exhibits wave-like motions along the wall. These results have recently been
verified experimentally on a macroscale robotic prototype swimming in a highly viscous fluid
[15]. Furthermore, Crowdy and Or [16] have proposed a singularity model for swimming
microorganisms placed near an infinite no-slip boundary. Their model was based on a
circular treadmilling organism which has no means of self-propulsion. They proposed the
appropriate Stokes singularities that represented the flow field created by this treadmilling
organism in the global fluid. By studying the interaction between these singularities and the
no-slip wall, they formulated the nonlinear dynamics of the treadmilling organism explicitly,
and fully characterised its motion near the wall. The trajectories parallel to the wall and
periodic bouncing motion along the wall found in Crowdy and Or [16] had remarkable
similarities to the trajectories shown in Or and Murray [14]. Crowdy and Samson [17],
utilising the singularity model, investigated the dynamics of treadmilling organism near an
infinite no-slip boundary with a gap of a fixed size. They employed a conformal mapping
technique to avoid the difficulty in treating the image of the treadmilling organism on the
wall. In their model, the treadmilling organism was found to make several qualitatively
different trajectories; jumping over the gap, rebounding from the gap, trapping near the
gap, and escaping the gap region even when the organism has the initial point in the
gap. They also performed a bifurcation analysis as the size of the organism varies, and
demonstrated a presence of stable equilibrium points in the gap region as well as Hopf
bifurcations to periodic bound states. This reduced model system also exhibited a global
gluing bifurcation in which two symmetric periodic orbits merge at a saddle point into
symmetric bound states having more complex spatio-temporal structure.

The present project examines the dynamics of a treadmilling organism near a half-
infinite no-slip wall (a corner whose angle is π). This is an important preliminary step to
clarifying the dynamics of a treadmilling organism near a no-slip corner with an arbitrary
angle, which will shed light on the cases with more complicated realistic geometries.
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2 Two-dimensional Stokes flow problem and Goursat func-
tions

2.1 General Solution for Stokes equation

In many of existing three-dimensional theoretical models of low Reynolds number locomo-
tions, swimming microorganisms possess symmetry about their sagittal plane [14, 18] or even
about their longitudinal axis [4, 5, 19]. This suggests that even in a fully three-dimensional
flow, the motions of microorganisms are confined to a two-dimensional plane. Consequently,
here we consider the two-dimensional model for a microorganism in a (x, y)-plane, in which
we shall be free to treat the flow in a complex plane (z-space), where z ≡ x+ iy. While the
complex function method is one of the classical methods applied to ideal flows, a similar
analytical method may also be applied to two-dimensional Stokes flows [20, 21]. Here, the
complex method for Stokes flows is introduced to show that the two-dimensional Stokes
flow is expressed through a couple of complex functions. This helps us to understand the
flow clearly.

Stokes equations which describe the motion of an incompressible viscous fluid are

∇p = η∆u,

∇ · u = 0,
(1)

where ∆ is a Laplace operator, u = (ux, uy) is the fluid velocity, p and η are the pressure
distribution and dynamic viscosity, respectively. As we are considering a two-dimensional
flow, we can introduce the stream function ψ, such that the velocity is given by

ux = ∂ψ/∂y, uy = −∂ψ/∂x, (2)

then the Stokes equations (1) reduce to biharmonic equation

∆2ψ = 0. (3)

Now we define complex velocity W as

ux + iuy =
∂ψ

∂y
− i

∂ψ

∂y

= −2i
∂ψ

∂z
.

The vorticity ω = −∇2ψ is then given by

ω = −∇2ψ = 2i
∂W

∂z
. (4)

By substituting (2) and (4) into the Stokes equations (1), we obtain

∂p

∂x
= −η∂ω

∂y
,

∂p

∂y
= η

∂ω

∂x
. (5)

The equations in (5) are the Cauchy-Riemann equations on the pair p and −ηω. It follows
that p− iηω is an analytic function of z, and so that it can be written as

p− iηω = 4ηf ′(z), (6)
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Figure 1: Schematic description of a (a): Stokes dipole (b): stresslet (b): rotlet.

where f ′(z) is an arbitrary analytic function of z. Taking the imaginary part of (6), it is
obvious that, by means of the function f(z), ω can be written as

ω = −4Im
[
f ′(z)

]
. (7)

Substituting (7) into (4) and integrating it with respect to z, we obtain

W = ux + iuy = f(z) + zf ′(z) + g′(z), (8)

where g′(z) is an arbitrary analytic function of z. Again, substituting (8) into (4) and
integrating it with respect to z, we finally obtain the general solution for ψ in (3) as

Im[zf(z) + g(z)]. (9)

The fictions f(z) and g(z), which are called Goursat functions, are analytic everywhere in
the considered domain, except when isolated singularities are introduced in order to model
various flows of interest. The functions zf(z) and g(z) in (9) correspond to the viscous and
potential part of the flow, respectively. Note that g(z) does not appear (7), since potential
flow has zero vorticity.

2.2 Singular solutions of Stokes flow

The Goursat functions f(z) and g(z) which determine the stream function of the flow are
analytic almost everywhere in a considered domain except at isolated singular points. It is
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necessary to choose appropriate singularities for the Goursat functions in order to describe
the flow of interest. What kind of singularities should we use in order to model the flow
generated by a treadmilling organism near a no-slip half-infinite wall? This is one of the
main problem we should cope with for the formulation of the governing evolution functions
of the treadmilling organism, and this will be discussed later in §3.1. Here in this section,
the basic singularities of the Stokes flow are discussed. The flow generated by a treadmilling
organism may be modeled with some of these singularities.

First of all, let us consider f(z) of the form

f(z) = µ log(z − zd), (10)

where µ ∈ C is the strength of the singularity. Then we insist that the complex velocity,
given by (8),

ux + iuy = −µ log(z − zd) +
µz

z − zd
+ g′(z)

= −µ log(z − zd) +
z(z − zd)

z − zd
+

µzd
z − zd

+ g′(z)

(11)

should be both single-valued and, at least, logarithmically singular at zd. From these
constraints, g(z) should be chosen to have the form which satisfies

g′(z, t) = − µzd
z − zd

− µ log(z − zd). (12)

Hence, if the Goursat functions f(z) and g(z) are

f(z) = µ log(z − zd) + analytic function,

g′(z) = − µzd
z − zd

− µ log(z − zd) + analytic function,
(13)

the flow described by these Goursat functions (13) is the one generated by Stokeslet at zd.
The complex velocity (11) takes the form

ux + iuy ∼ −µ log |z − zd|

and grows logarithmically as z → ∞. This is the heart of the Stokes Paradox. In order to
avoid the Stokes paradox, we must restrict our attention to Stokes flow problems which do
not contain any Stokeslet. Note that imposing certain singularities to f(z) forces g some
concomitant singularities. Stokes dipole is obtained by superposing two Stokeslet, drawing
infinitesimally close together, and with equal and opposite strengths tending to infinity at
a rate inversely proportional to their separation. This is schematically shown in Fig.1 (a).

Next, if we allow f(z) to have a simple pole at zd,

f(z) =
µ

z − zd
, (14)

where µ ∈ C, and insist that the complex velocity, given by (8), should be singular like
1/|z − zd|, not line 1/|z − zd|2. Then, again, the singularity in f(z) forces g(z) to have
singularities, and we find that g(z) should be chosen to have the form which satisfies

g′(z) =
µzd

(z − zd)2
. (15)
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This g(z) corresponds to an irrotational dipole contribution of strength −µzd. If

f(z)
µ

z − zd
+ analytic function,

g′(z) =
µzd

(z − zd)2
+ analytic function,

(16)

we say that there is a stresslet of strength µ at zd. This is given by the addition of two
Stokes dipoles oriented at 90o with respect to each other as schematically shown in Fig.1
(b).

When f(z) has singularities, as already stated above, g(z) should have concomitant
singularities to those in f(z), but not conversely; g(z) can have singularities which is in-
dependent of those of f(z). These are kinematically identical to the singularities of the
complex potential flow in two-dimensional incompressible and irrotational flow. Let us
allow g(z) to admit, for instance, a logarithmic singularity, which means simple pole in
g′(z),

g(z) = c log(z − zd), (17)

where c ∈ R or ∈ C. If c ∈ R zd is a source/sink, whilst if c ∈ C zd is a rotlet(or couplet).
A rotlet is given by the difference between two Stokes dipoles oriented at 90o with respect
to each other as schematically shown in Fig.1 (c), and this is kinematically identical to a
point vortex [22]. Similarly, a double pole of g′(z) corresponds to an irrotational dipole
singularity, a triple pole corresponds to an irrotational quadrupole and so on.

With regard to modelling a swimming micro-organism, we are free to choose any com-
bination of such Stokes flow singularities which seems to be appropriate for the problem at
hand. However, each of these singularities will be a function of the swimmers size, shape,
its swimming protocol and its local effect on the fluid around it. The attention is therefore
focused on what specific combination of singularities can be used to accurately model a
physical microorganism.

3 The model for a treadmilling tiny swimming organism

3.1 Basic settings and boundary conditions

Here we describe our simple model for a treadmilling organism. Any swimming organism
in a Stokes flow locally generates a flow that can be modelled by some combination of
Stokes flow singularities described in §2.2 placed on its position or its boundary. This
singularity distribution is generally a complicated function of the swimming organism’s
basic properties such as size, shape, and configuration of cilia. The treadmilling organism
does not have any self-propulsion in itself, but moves around in the considered domain
when there is a boundary near it [6, 7, 10, 9, 11, 12, 13, 9, 14, 15, 16, 17]2. It suggests
that if a treadmilling organism is influenced by its surroundings such as other swimming
organisms or a solid boundary, and behaves in a different way from when it is in isolation.

2Strictly, “treadmilling” and “swimming” describe different behaviours of the organism, and here in this
project, we are only considering treadmilling organisms. However, as a treadmilling organism can move in
the flow when there is a no-slip wall around it, we occasionally use the description ”swimming organism”
when we focus upon the organism’s moving behaviour in the flow.
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Figure 2: Simple model for a treadmilling organism. zd, ε, and θ are position of the organism,
radius of the circular body of the organism, and the angle of the head of the organism from
the real axis, respectively.

This means that, strictly speaking, the singularities in the Goursat functions referred above
should be replaced by effective singularities, which will be complicated functions, according
to the treadmilling organism’s surroundings. However, as a first approximation model
of a treadmilling organism’s hydrodynamic interaction effects with a wall, it seems to be
reasonable to consider the treadmilling organism as passive. It follows that the treadmilling
organism always keeps its characteristics irrelevant to its surroundings.

In a simple theoretical model, we assume that the treadmilling organism has a circle
body of radius ε, with a moving centre zd(t) = xd(t) + iyd(t) in the fluid. We also assume
that, with respect to the angle of the head of the treadmilling organism from the real axis,
θ(t) , surface actuators of the treadmilling organism induce a tangential velocity profile
given by

U(φ, t) = 2V sin (2(φ− θ))

= c(t) exp(2iφ) + c(t) exp(−2iφ), c(t) ≡ −iV exp(−2i θ(t)). (18)

Here V is a constant whose magnitude sets the time scale for the treadmilling action, φ is
the angle measured from the positive x direction and φ = θ is the direction of the head of
the treadmilling organism (Fig.2). Note that when the treadmilling organism produces a
time-dependent tangential velocity profile, the Stokes equations imply that the fluid reacts
to it instantaneously. Also note that in unbounded fluid, this velocity profile does not result
in any self-propulsion of the organism due to its symmetry about real and imaginary axes.

The two Goursat functions f(z, t) and g(z, t), which give the stream function of the
flow, should satisfy two boundary conditions: boundary conditions on the no-slip wall and
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on the surface of the treadmilling organism. The boundary condition on the no-slip wall is,
from (8),

u+ iv = −f(z, t) + zf ′(z, t) + g′(z, t) = 0 on the wall. (19)

Next, suppose that the centre of the treadmilling organism zd moves in a translational
velocity ẋd(t) + iẏd(t), and the organism rotates with an angular velocity ω(t). Then the
boundary condition of the velocity field around the treadmilling organism can be written
as

ux+iuy = −f(z, t)+zf ′(z, t)+g′(z, t) = ẋd(t)+iẏd(t)+[εΩ+ U(φ, θ(t))]
dz

ds
, at {z| |z−zd| = ε},

(20)
where dz/ds is the complex unit tangent to the boundary. Here, the relations

z − zd =
ε2

z − zd
,

dz

ds
= i

(z − zd)

ε
,

have been used.

3.2 Singularities of f(z, t), g(z, t) and governing evolution equations of a
treadmilling organism near a half-infinite wall

As it was mentioned in §2, the flow generated by a treadmilling organism in a Stokes
flow can be locally modelled by some combination of Stokes flow singularities. However,
it is not obvious what singularities should be chosen for each considered situation. A low
Reynolds number treadmilling organisms exert no net force or torque upon the flow around
it. Consequently, here we introduce a mathematical representation of the treadmilling
organism as a two-dimensional stresslet, which is accompanied by additional singularities
to those for the stresslet in its Goursat functions. Note that neither a Stokeslet nor a rotlet
should be used for modelling the treadmilling organism, since the treadmilling organism
should be force-free and torque-free. The type of the singularities in Goursat functions
should be chosen such that the Goursat functions satisfy two boundary conditions (19)
and (20). For this, we employ “image system method” [23, 16]. It is done by introducing
additional singularities at z = zd, physically understood as the image of the treadmilling
organism, to the Goursat functions.

The determination of the Goursat functions is basically performed by trial and error.
Here we seek solutions for these Goursat functions having the form

f(z, t) =
µ

z − zd(t)
+ f0 + f1(z − zd(t)) + · · · ,

g′(z, t) =
b

(z − zd(t))3
+

a

(z − zd(t))2
+ · · · .

(21)

f(z, t) having no Stokeslet and g(z, t) having no rotlet imply that the treadmilling organism
is force-free and torque-free. Now we use the boundary condition (20) to find relations
between the coefficients in (21) and the velocity of the treadmilling organism. On the
surface of the treadmilling organism, where |z − zd| = ε,

z − zd =
ε2

z − zd
,

dz

ds
= i

z − zd
ε

, (22)
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hold. Substituting (18) and (22) into (20) then equating coefficients of different powers of
z − zd, we obtain

ẋd + iẏd = −f0 + f1zd + g0,

iΩ = −
(
f1 − f1

)
,

µ = −iεc,
a = µzd,

b = µε− icε3 = 2µε2.

(23)

Thus the Goursat functions f(z, t) and g′(z, t) have the form

f(z, t) =
µ(t)

z − zd(t)
+ f0(t) + f1(t)(z − zd(t)) +O

(
(z − zd(t))

2
)
,

g′(z, t) =
2µ(t)ε2

(z − zd(t))3)
+

µ(t)zd(t)

(z − zd(t))2)
+ g0(t) +O ((z − zd(t))) ,

(24)

around zd. This means that the treadmilling organism has an equivalent point singularity
description with a stresslet of strength µ, corresponds to the terms µ/(z − zd) in f(z) and
(µzd)/(z− zd)2 in g′(z), and the quadrupole of strength 2ε2µ at zd, corresponds to the term
(2ε2µ)/(z − zd)

3 in g′(z). Note that the existence of the quadrupole enables this model to
describe a treadmilling organism with a finite size; for the pure point treadmilling organism,
ε = 0, the quadrupole vanishes. We also set the time scale of the motion by letting V = ε−1

so that
µ(t) = exp (2iθ(t)) . (25)

Since the treadmilling organism is considered as a passive scalar here, the temporal
change of its position follows the velocity of the fluid around it. Here, however, we should
be aware that the velocity components which originates from the position of the treadmilling
organism cannot affect the treadmilling organism itself by definition of “treadmilling”. With
these consideration, ż = ẋd + iẏd is given by the analytic part of the flow velocity (8) at
z = zd, and can be exactly written as

dzd
dt

= −f0 + zdf1 + g0. (26)

Similarly, the temporal change of the heading angle of the treadmilling organism is given
from the half of the analytic part of the vorticity of the flow (7) at z = zd:

dθ

dt
= −2Im[f1]. (27)

Hence, from (26) and (27), if we know f0, f1, and g0 of f(z) and g(z) that satisfy the
conditions (19) and (20), we obtain the governing dynamical system of the treadmilling
organism in an explicit form and know its trajectory.
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Figure 3: Considered domain in z-space and ζ-space. The points A and B in both spaces
are mapped to each other by the conformal mapping ζ = iz1/2 and its inverse mapping
z = z(ζ) = −ζ2, then the infinite wall in ζ-space corresponds to the half-infinite wall in
z-space.

3.3 Conformal mapping

The Goursat functions in (24) are the solution for the stream function for the flow generated
in the vicinity of the treadmilling organism without accounting for the effect of the wall.
To know the Goursat functions that have the form (24) near zd and that also satisfy a
boundary condition ux + iuy = 0 on the wall, we have to find the coefficients f0, f1 and
g0 such that the velocity satisfies the boundary condition on the wall. It, however, is not
straightforward to determine such coefficients in a region near a half-infinite wall of an
infinitesimal width in z-space, since where to place the image of the swimmer is not clear as
we are now considering a half-infinite wall of infinitesimal width. To treat this complicated
situation, here we employ conformal mapping techniques. Although the boundary value
problem we have here is not conformally invariant, these techniques still work, since we
always come and go to the two spaces.

let us consider a mapping
ζ = iz1/2. (28)

This maps the domain {z ∈ C} to {ζ | Im(ζ) ≥ 0}, especially, the domain {z | Im(z) =
0,Re(z) ≤ 0}. The half-infinite wall we are considering in z-space are mapped to the domain
{ζ |Im(ζ) = 0}, the infinite wall in ζ-space(Fig.3). The inverse of this conformal mapping
(28) can be explicitly written as

z = z(ζ) = −ζ2. (29)

When written as a function of z, the function ζ(z) has the same type of point singularity
with the one required for f(z) and g(z). It follows that ζ can serve as a uniformisation
variable for the problem, and that if we define the composed functions

F (ζ) ≡ f(z(ζ)),

G(ζ) ≡ g′(z(ζ)),
(30)

F (ζ) and G(ζ) can be written as single-valued functions of the variable ζ and are analytic
except at the position of the isolated singularities we impose to these functions to describe
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the treadmilling organism and its image. In other words, by utilising this uniformising ζ
(ζ-space), we can write two analytic functions which determine the flow as single-valued
functions with no branch point singularities.

From Crowdy and Or [16] and Crowdy and Samson [17], we propose the function F (ζ)
to have the form

F (ζ) =
A

ζ − ζd
+

B(
ζ − ζd

)3 +
C(

ζ − ζd
)2 +

D(
ζ − ζd

) + E, (31)

where we can set E to be zero without loss of generality because of an additive degree of
freedom in the definition of f(z). ζd corresponds to the image of the swimmer on the wall,
and in the ζ-space, this is simply a complex conjugate of ζd. Utilising this and the inverse
mapping (29), we define the image of the swimmer in z-space as

zd ≡ z(ζd) ≡ z(ζd).

Recalling the non-slip boundary condition on the wall in z-space (19), G(ζ) should satisfy

G(ζ) = f(z)− zf ′(z)

= F (ζ)− z
dζ

dz
F ′(ζ)

= F (ζ)− (−iζ)2 1
2
ζ(−iζ)−2F ′(ζ)

= F (ζ)− 1

2
ζ(−iζ)2(−iζ)−2F ′(ζ),

where, we have utilised the fact that ζ = ζ on the wall in ζ-space. Now, as ζ = |ζ| exp(iφ), φ =
0 or π on the wall,

(−iζ)2(−iζ)−2 = [|ζ| exp(i(−π/2 + φ))]2 [|ζ| exp(i(−π/2 + φ))]−2

= [exp(i(π − 2φ))]2 = 1

holds, so that

G(ζ) = F (ζ)− 1

2
ζF ′(ζ). (32)

By substituting (31) into (32), we obtain

G(ζ) =
A

ζ − ζd
+

B

(ζ − ζd)
3 +

C

(ζ − ζd)
2 +

D

(ζ − ζd)

− 1

2
ζ

[
−A

(ζ − ζd)2
+

−3B(
ζ − ζd

)4 +
−2C(
ζ − ζd

)3 +
−D(

ζ − ζd
)2

]
. (33)

As ζd is outside the considered domain in ζ-space, i.e. in the wall, G(ζ) only has
singularity at ζ = ζd. Then it follows that g(z) has singularities at z = zd and Moffatt type
singularity[24] at z = 0.
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Now we have to determine the unknown coefficients A−D ∈ C. For A, we use the fact
that f(z(ζ)) has to have the singularity near zd as shown in (24). Performing the Laurent
expansion of 1/ (ζ − ζd) in terms of z around zd and comparing (24) and (31), we obtain

A = i
µ

2z
1/2
d

. (34)

To determine the rest of the unknown coefficients, B−D, we insist that g′ has the required
singularity structure in (24) at z = zd. If we rewrite G(ζ) as a function of z and perform
Laurent expansion in terms of z around zd and compare it with g′(z) in (24), we obtain

B = i
ε2 µ

4zd
3/2

, (35)

C =
µ
(
3ε2 − 4zdzd + 4zd

2
)

8zd
2 , (36)

D = i −
µ
(
3ε2 − 4zdzd − 4zd

2
)

8zd
5/2

, (37)

and g0 in (24),

g0 =− 3µzd
16z2d

+
10ε2µ

32z3d
+

3ε2µ

8
(
z
1/2
d + zd

1/2
)4
zd

− zd − zd

4
(
z
1/2
d + zd

1/2
)3
z
1/2
d

−
(
−2zdzd + 6zd

2 + 3ε2
)
µ

16
(
z
1/2
d + zd

1/2
)2
zd

2

−
(
−2zdzd + 6zd

2 + 3ε2
)
µ

16
(
z
1/2
d + zd

1/2
)
zd

5/2

(38)

Similarly, rewriting F (ζ) as a function of z and perform Laurent expansion in terms of z
around zd and compare with f(z) in (24), and utilising (34) and (35)-(37), we obtain f0
and f1,

f0 =
µ

4zd
− ε2µ

4
(
z
1/2
d + zd

1/2
)3
zd

3/2
+

(
2zdzd − 2zd

2 − 3ε2
)
µ

8
(
z
1/2
d + zd

1/2
)2
zd

2

−
(
−2zdzd − 2zd

2 + 3ε2
)
µ

8
(
z
1/2
d + zd

1/2
)
zd

5/2
, (39)

f1 =
1

12z2d

−3µ
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Figure 4: Examples of trajectories from the initial points (xd0, yd0) marked with red circles,
each with 200 different initial heading directions θ0. (xd0, yd0) is (a):(10, 2), (b):(0, 2),
(c):(−1, 2), and (d):(−15, 2).

4 Results of numerical simulations

Results of numerical simulations using the governing evolution equations for a treadmilling
organism (26) and (27) are shown in this section. The time integration for all the simulations
here were performed by Matlab ode45 solver with the absolute error tolerance 10−6 and
relative error tolerance 10−3. The radius of the circular body of the treadmilling organism
ε is set to be unity, giving the reference length scale to the system. For initial conditions
(xd0, yd0, θ0), we took 3237 different (xd0, yd0) ∈ [−20, 1] × [1, 10] ⊕ (1, 20] × [0, 20] every
0.5 in both x and y direction, and 200 different θ0 ∈ [0, 2π) every π/100.
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Figure 5: Examples of trajectories from the initial points (xd0, yd0) marked with red circles
each, with a certain initial heading direction θ0. Treadmilling organism can escape from
the wall, (a) and (d), be above the wall (b), be underneath the wall (d), or crush into the
wall (e).

294



4.1 Various trajectories

By solving the governing equations of the swimming organism (26) and (27) utilising (38)-
(40), we obtain many different trajectories depending upon different initial conditions. Fig-
ure 5 shows examples of such trajectories. At sufficiently large time, the treadmilling
organism is possible to in any quadrant if we choose appropriate initial conditions, as we
can see in Fig.5 (a)-(d). There also is a case that the treadmilling organism crushes into
the wall in finite time as reported in [9]. An example of this unphysical trajectory is shown
in Fig.5 (e), and will be discussed in §4.4. Both experimental observations and preceding
theoretical studies suggest that, when there is a no-slip wall near a treadmilling organism,
the organism tends to be attracted to its own image on the wall and move towards the wall
[6, 7, 10, 9, 12, 13, 9, 16, 17]. This behaviour is clearly seen in all the trajectories shown
in Fig.5 at an early stage of time integration. Nevertheless, in the cases shown in Fig.5 (a)
and (d), the treadmilling organism moves away from the wall after it has come close to the
edge of the wall once . Apparently, there are several cases that the treadmilling organism
hangs around/above/underneath the wall as shown in Fig.5 (b) and (c). This is consistent
with the results in several preceding study with a no-slip wall[6, 7, 10, 9, 12, 13, 9, 16, 17].
In these case, the treadmilling organism shows the trajectories bouncing along the wall as
those in the case with an infinite no-slip wall[16], but the bouncing pattern is, unlike the
case with the infinite no-slip wall, irregular and sometimes not periodic even after suffi-
ciently large time has passed. This is also qualitatively consistent with the results of the
study with a no-slip infinite wall with a gap [17]. Note that the treadmilling organism make
changes its heading direction and the quality of its trajectory significantly when it arrived
in the vicinity of the edge of the wall, where the image of the organism cannot move to
the positive x-direction any more. Note also that, at a single glance, the initial heading
direction θ0 cannot be judged from the trajectory even approximately. This is a both nat-
ural and striking difference from the case with an infinite wall [16]. The strong asymmetry
due to the absence of the wall in the region x > 0 gives a great influence to the trajecto-
ries, and even the trajectory for θ0 doesn’t make a straight vertical line. This feature can
be clearly seen in Fig.4 in which 200 different trajectories for 200 different θ0 for several
combination of (xd0, yd0) are shown. In the cases with the initial point of the organism is
close to or above the wall (Fig.4 (b)-(d)), it is somewhat possible to predict the direction
that the treadmilling organism heads for at an early stage, but when the initial point is far
from the wall (Fig.4 (a)), the heading direction is unpredictable from the knowledge of the
trajectories for the cases with an infinite wall in [16]. However, we see a remarkable line on
which many of the trajectories with different θ0 seem to converge in all the cases in Fig.4,
especially clearly in Fig.4 (a). This line may give us some kind of criterion in speculating
the trajectory. As such lines seem to fall upon the lines which connect the edge of the wall
x = y = 0 and the initial points of the treadmilling organism (xd0, yd0) which is marked by
red circles in Fig.4, here, we introduce a critical linear line `c,

`c(x) ≡
yd0
xd0

x. (41)

Whether or not `c acts as a critical line in considering the direction of trajectory in the long
run will be checked in §4.2. Another noticeable feature we can see from Fig.fig:AllThetas
is the complexity of the trajectories for initial point with a large negative x-coordinate.
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Figure 6: (a): Five regions. The thick black line corresponds to the wall. (b): An example
of a pie chart. The different colours indicate in what region shown in the panel (a) the
treadmilling organism from a certain initial point is at sufficiently large time. Dotted line
corresponds to the slope of the critical line `c for the considered initial point.

As already seen in 5 and mentioned above, the treadmilling organism changes its heading
direction and the quality of its trajectory greatly when it comes to the vicinity of the edge
of the wall, x = y = 0. The behaviour of the organism after reaching such area significantly
depends upon (xd, yd, θ) of the trajectory at the time. This makes the trajectories from large
negative xd0 unpredictable and complicated. For such cases, even a very small difference in
initial condition can result in a huge difference to the trajectory of the treadmilling organism,
and this tendency is expected to become more distinct when the initial x-coordinate xd0
has larger negative value. We will come back this point in §4.2 again.

4.2 Escaping probability

Now, we classify a wide variety of trajectories in terms of the regions in which the tread-
milling organism is at sufficiently large time. For this purpose, we first introduce five regions
shown in Fig.6 (a). Region 1 is {(x, y) ∈ (0.2ε,∞) × [0, 0.2ε] ⊕ (0,∞) × (0.2ε,∞)}, and is
coloured red in Fig.6 (a). This is the region in which the treadmilling organism that escapes
from the wall to y ≥ 0 direction is. Region 2 is {(x, y) ∈ (−∞, 0]×(0.2ε,∞)}, and is coloured
blue in Fig.6 (a). This is the region in which the treadmilling organism that goes back to
above the wall is. Region 3 is {(x, y) ∈ (−∞, 0]× (−∞,−0.2ε)}, and is coloured orange in
Fig.6 (a). This is the region in which the treadmilling organism that escapes from the wall
to y < 0 direction is. Region 4 is {(x, y) ∈ (0.2ε,∞)× [−0.2ε, 0)⊕ (0,∞)× (−∞, 0.2ε)}, and
is coloured green in Fig.6 (a). This is the region in which the treadmilling organism that
goes back to underneath the wall is. Then Region 5 is {(x, y) ∈ (−∞, 0.2ε]× [−0.2ε, 0.2ε]},
and is coloured pink in Fig.6 (a). This is to describe the case that the treadmilling organism
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Figure 7: Pie charts at t = 1500 for several initial points. x and y coordinates of the point
on which each pie chart is placed and correspond to the initial point for the pie chart. Thick
black line represents the wall.

crushes into the wall.
Utilising these five regions, we make a pie chart for each considering initial point. The

pie chart shows in what region the treadmilling organism will be at a large time, here
t = 1500, if it is given a certain initial heading direction θ0. An example of such pie chart is
given in Fig.6 (b). Each colour appear in this pie chart corresponds to the colour given for
each region in Fig.6 (a). The circular sector where the angle measured from the solid black
arrow is in [θ0 − π/200, θ0 + π/200] corresponds to the initial heading direction θ0 of the
treadmilling organism, and the colour there indicate the region in which the treadmilling
organism is at sufficiently large time. For instance, the pie chart in Fig.6 (b) shows that
the treadmilling organism initially placed at the point (xd0, yd0) = (2, 2) and given the
heading direction θ0 = 3/4π will be in the Region 1 at time t = 1500. The dotted black
line in Fig.6 (b) corresponds to the slope of the critical line `c (41) for the considered initial
point (xd0, yd0) = (2, 2). This is to see whether or not, or to what degree, `c can act as
a critical line in predicting the asymptotic position of the treadmilling organism. For the
initial position (xd0, yd0) = (2, 2), we can see that, from Fig.6 (b), the dotted line fall near
on the boundary between the blue(Region 2) and the green(Region 4) regions.

Figure 7 shows pie charts for several initial points (xd0, yd0). The most impressive feature
is the complex city of the pie charts for the initial points with large negative x-coordinates.
This reflects the fact, which has been discussed in §4.1, that the treadmilling organism
changes its heading direction and the quality of its trajectory significantly when it has
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come to the vicinity of the edge of the wall, x = y = 0 depending upon its (xd, yd, θ) at the
time, and so even a very small difference in initial condition can result in a huge difference to
its trajectory when the initial x-coordinate xd0 has large negative value. Note that, however,
Pie charts tend to become rather simpler for larger yd0 for any fixed xd0. One more thing we
can easily notice is that there is some limitation for the region that the treadmilling organism
is in at t = 1500 depending upon its initial position. Broadly, the treadmilling organism
is in regions 1, 2, or 5 when its (xd0, yd0) ∈ [−20, 0] × [1, 10]; regions 1, 2, 4, or 5 when its
(xd0, yd0) ∈ (0, 20] × [1, 10]; regions 1, 2, and 4 when xd0 ∈ (0, 20], yd0 = 0. The possibility
of going the region 3 where is underneath the wall that the cases the initial y position yd0
is zero is natural because of the symmetry about y = 0 the they have. When we compare
the pie charts at a certain x-coordinate, it is apparent that the pie charts become simpler
for larger yd0. This is because of the effect of asymmetry that the wall gives to the system.
Also, although all the pie charts almost have 2-fold rotational symmetry, desymmetrised
part becomes obvious when the initial point is near the wall, where the asymmetric effect
of the system becomes strong. From the pie charts in Fig.7, it is apparent that `c does not
act as a critical line as we expected in §4.1 in any way in considering the position of the
treadmilling organism at sufficiently large time, at least at t = 1500. However, ellc still
falls near one of the boundaries of two different regions in the cases with positive initial
x-coordinate xd0 > 0 and in the cases whose initial positions are far from the wall.

Now let us consider the escaping probability PE , the probability that the treadmilling
organism can escape from the wall, or its own image on the wall. Although, ideally, this
is to be defined by means of the positions of the treadmilling organism at t → ∞, here we
define this PE as the probability of the treadmilling organism’s being in the region 1 or 4
at sufficiently large time t = tl, i .e.,

PE ≡ {#θ0 | zd ∈ regions 1 or 4 at t = tl}
#θ0

. (42)

The escaping probability PE for tl = 1500 for different initial conditions are shown in
Fig.8, where each (x, y) coordinate corresponds to each considered initial position of the
treadmilling organism. PE takes the value 0 < PE < 1 for almost all the initial positions in
Fig8; PE is zero for only several points with (xd0 < 0, yd0 = 0), which is the case that the
treadmilling organism touches the wall at the initial time and rather meaningless in this
context, and there is no point where PE is unity. This suggests that treadmilling organism
has the possibility of both escaping from the wall and being above/underneath the wall for
any initial position. Even when the treadmilling organism is initially placed at a position far
from the wall, it feels the presence of its own image on the wall and move towards the wall
if its initial heading direction θ0 is properly chosen. Similarly, even when the treadmilling
organism is initially placed at a point with large negative x-coordinate, above the wall and
far from the edge of the wall, for some θ0, it finally moves away from its own image on the
wall. The distribution and the monotonic change of the value of PE in the region where
x > 0 seems to be reasonable. However, in the region where x < 0, there are couple of lines
which has larger PE value than naive expectation. This might be the result of the complex
pie charts in these region, but the reason why we see such fairly larger PE value on the
points on certain lines is not clear and needs further investigations.
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Figure 8: Escaping probability at t = 1500 for different initial points. Each (x, y) coordinate
and the thick black line corresponds to the considered initial position of the treadmilling
organism and the wall, respectively.
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Figure 9: Trajectory of the temporal change of the speed of the treadmilling organism
for the case initial condition (xd0, yd0, θ0) = (−10, 10, 3π/4). (a): the trajectory (b): the
temporal variation of the y-coordinate of the organism zd (blue solid line) and the temporal
variation of the speed of the organism (green solid line).

4.3 Temporal change of the speed of the treadmilling organism in region
1 and 4

For the definition of the escaping probability PE in §4.2, we have considered the probability
of the treadmilling organism’s being in the region 1 or 4 at large time t = tl. Then the
following questions may always exit: has the treadmilling organism surely escaped from the
wall when it is in these region at large time?, does it stop if it reaches a point sufficiently
far from the wall? An example of the temporal variation of the speed of the treadmilling
organism

√
ẋd

2 + ẏd
2 is shown in Fig.9. When the treadmilling organism comes in the

vicinity of the edge of the wall and changes its heading direction, the speed of the organism
shows a steep increase. After that the treadmilling organism moves away from the wall.
Then, as the distance from the wall increase, the moving speed of the organism decreases.
The speed is ∼ 10−2 at t ∼ 103 and keep decreasing. This is because that the farther away
from the wall the treadmilling organism goes, the effect of its image on the wall becomes
weaker since the image cannot follow the organism any further than the edge of the wall.
Nevertheless, we cannot be perfectly sure whether or not the speed of the treadmilling
organism approaches zero as t → ∞, and whether or not the treadmilling organism has
really escaped from the wall in this case, only from Fig.9. To confirm these points, we need
a longer time integration with much higher accuracy; this should be a further work.

4.4 Velocity field

Fig.10 shows the velocity field calculated from the two Goursat functions when the tread-
milling organism is placed at the point (x, y) = (2, 2). It can be confirmed from Fig.10(a)
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Figure 10: Velocity field when the treadmilling organism is at the point (x, y) = (2, 2).
(a) and (b)(a): x-velocity ux(x, y) (b) : y-velocity uy(x, y) (c): x-velocity at y = 2
ux(x, y = 2) (d): y-velocity at x = 2 uy(x = 2, y). The darkness of colour represents the
value of the velocity, the thin and the thick solid line are contour of the velocity and the
no-slip wall, respectively.

301



and (b) that the boundary condition on the no-slip wall is satisfied, and the velocity di-
verges at the point (x, y) = (2, 2) where the singularity, which represents the treadmilling
organism, is placed. The boundary condition on the surface of the treadmilling organism,
on the contrary, is not satisfied; the contours of the both x- and y- velocity are not circles
around the treadmilling organism. This is because the model used in this project is very
simple and has failed to capture all the features of the treadmilling organism we need to
consider. This may affect the behaviour of the treadmilling organism, especially when it
is near the wall. This may be one of the reasons why we had unphysical trajectories such
as the treadmilling organism crushes into the wall. Nevertheless, at least for the case that
the treadmilling organism bounces back on the wall, we have confirmed that the qualita-
tive behaviour of the organism does not change even when the model which shows better
boundary condition. This suggests that it may probably be possible to consider that the
trajectories, apart from those that the treadmilling organism crushes into the wall, we have
found in this report are reasonable.

5 Discussion and conclusions

The governing evolution equations for a treadmilling organism when there is a half-infinite
non-slip wall in the considered unbounded domain have been derived, by means of an
image system method, in §3. The treadmilling organism was assumed to have a circle
body of radius ε and a moving centre zd(t) = xd(t) + iyd(t) in such a domain. It has been
modelled as an equivalent point singularity description with stresslet of strength µ and the
quadrupole of strength 2ε2µ at zd in Stokes flow. The existence of the wall of an infinitesimal
thickness causes a critical problem when an image system method is employed; it is not
straightforward to determine where to place the image of the treadmilling organism on the
wall. To avoid this problem, a conformal mapping ζ − iz1/2 was employed, which maps
{z ∈ C} to {ζ | Im(ζ) ≥ 0}, especially, the half-infinite wall in z-space to the infinite wall in
ζ-space. Then zd and its image were defined through ζd, the image of ζd on the infinite wall
in ζ-space overlineζd, and the conformal mapping. By imposing two boundary conditions,
one on the body of the organism and the other on the no-slip wall, the coefficients of two
Goursat functions f(z, t) and g(z, t), which gives the stream function of the flow, were
determined. The governing evolution equations of the position and the heading direction of
the treadmilling organism, zd and θd, were obtained by taking the analytic part of the flow
velocity and the half of the analytic part of the vorticity of the flow, respectively.

The trajectories of the treadmilling organism were numerically calculated in §4. The
different trajectories of the treadmilling organism depending upon different initial conditions
were discussed in §4.1. The treadmilling organism was attracted to its image on the wall,
as suggested in previous experimental and theoretical studies [6, 7, 10, 9, 12, 13, 9, 16, 17],
at an early stage of the time integration. Nevertheless, in some cases, the treadmilling
organism moved away from the wall after it had come to the vicinity of the edge of the wall
once. To investigate this behaviour further, in the first part of §4.2, we have divided R2

domain into five regions and made pie charts which show in what region the treadmilling
organism is at sufficiently large time. The pie charts for different initial positions provided
in §4.2, demonstrated that those for the initial points with larger negative x-coordinates
have more complex structures compared to those with smaller negative x-coordinates. This
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reflects the fact that the treadmilling organism changes in its heading direction and the
quality of its trajectory significantly when it comes to the vicinity of the edge of the wall,
x = y = 0 depending upon its (xd, yd, θ) at the time, and that even a very small difference
in initial condition can make a huge difference to its trajectory when the initial x-coordinate
xd0 has larger negative value as seen in §4.1. We further defined and numerically calculated
the escaping probability PE , the probability that the treadmilling organism can escape from
the wall, or its image on the wall in the latter part of §4.1. This PE did not take 0 or 1
value for any physically reasonable initial point. This suggests that treadmilling organism
has the possibility of both escaping from the wall and being above/underneath the wall for
any initial position. Even when the treadmilling organism is initially placed at a position
far from the wall, it feels the presence of its image on the wall and move towards the wall
if its own initial heading direction θ0 is appropriately chosen. Similarly, even when the
treadmilling organism is initially placed at a point with large negative x-coordinate, above
the wall and far from the edge of the wall, for some θ0, it can finally move away from its own
image on the wall. When the treadmilling organism moves away from the wall, its speed
decreases as the distance from the wall increases as discussed in §4.3. This is because that
the treadmilling organism feels less effect of its own image on the wall as it moves farther
from the wall, since the image cannot follow the organism any further than the edge of the
wall.

The results in this project seem reasonable in some respects. However, the obtained
PE does not take 0 or 1 for any physically reasonable initial point, even with large posi-
tive/negative x-coordinate. This may suggest that the combination of the singularities used
required some modifications when the treadmilling organism was far from the edge of the
wall. The situation with a half-infinite no-slip wall in an unbounded domain corresponds
to the case in which the no-slip wall has a gap as studied in [17] but of an infinite width.
Checking whether or not the results gained in this report and those for the case with no-
slip wall with a gap in the limit of width of the gap → ∞ may help us gain some further
understanding of this problem. The behaviour of a treadmilling organism near a 90o no-slip
corner or even a no-slip corner with arbitrary angle in an unbounded domain will be our
next problem to investigate. These will be an important step to clarifying how a tread-
milling organism behaves and the effect of its mixing when it is in a bounded domain with
no-slip boundaries of complicated forms.
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