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1 Introduction

An upper bound on the energy dissipation rate in turbulent shear ßows can be found either us-
ing Howard-Busse�s mean-ßuctuation method [1] or Doering-Constantin�s background method[2].
Howard-Busse�s method grew out of ideas put forward by Malkus [3], whereas the Doering-Constantin
approach is based upon a mathematical device invented by Hopf [4]. Although the methods have
very different origins and look unrelated, we show in this lecture that they are in fact intimately
connected. They both seek to make stationary the same functional. However, the Howard-Busse
method seeks to estimate this stationary (saddle) point from below as a maximization problem,
whereas the Doering-Constantin method estimates this part from above as part of a minimization
problem. We show this explicitly for the canonical problem of plane Couette ßow.

2 Couette Shear Flow

We consider a homogeneous incompressible ßuid with viscosity χ between two parallel, inÞnite plates
at z = ± 1

2d, which are sliding across each other with relative velocity V0 in the
�i direction. �i is the

unit vector. The non-dimensionalized governing equations are:

∂V

∂t
+ V ·∇V +∇p = ∇2V (1)

∇ · V = 0

with the boundary condition V = ∓ 1
2Re

�i at z = ±1
2 , where Reynolds number Re =

V0d
χ
. We will

seek upper bounds on the momentum transport which equals the viscous dissipation rate
!
|∇V |2

"
.

Where!
|∇V |2

"
:= limL→∞ 1

4L2

# L
−L dx

# L
−L dy

# 1
2

− 1
2

dz |∇V |2.

2.1 Howard-Busse Method

The Howard-Busse variational formulation is based on a mean-ßuctuation decomposition of the
velocity Þeld V (x, t) = U (z)�i+ υ (x, t), and consists of solving the variational problem:

min(Re) =

!
|∇υ|2

"
#υ1υ3$ +

µ
!
(υ1υ3 − #υ1υ3$)2

"
#υ1υ3$2
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under the constraints∇·υ = 0, υ(x, y,± 1
2 ) = 0, #υ1υ3$ = 1. where (�) := limL→∞ 1

4L2

# L
−L dx

# L
−L dy (�).

This problem can be eqivalently formulated as the following. Substitute V (x, t) into equation (1)
and subtract the horizontal average, we obtain the power balance:

D −Re2 =
!
|∇υ|2

"
+
!
(υ1υ3 − #υ1υ3$)2

"
= Re #υ1υ3$ (2)

where D is the statistically averaged viscous dissipation. We maximize Re #υ1υ3$ under the con-
straints of (2), the continuity equation, and the boundary conditions by considering the Lagrangian

L = Re #υ1υ3$+ Λ
$!
|∇υ|2

"
+
!
(υ1υ3 − #υ1υ3$)2

"
−Re #υ1υ3$

%
− #2p (x)∇ · υ$

where Λ and p (x) are Lagrange multipliers. The Euler-Lagrange equation for the velocity Þeld is

&
(υ1υ3 − #υ1υ3$) +Re

'
1− Λ
2Λ

() υ3
0
υ1

+∇p = ∇2υ (3)

Eliminating Λ by using #υ · (3)$ and the constraint of equation (2), gives the optimization problem:

&
(υ1υ3 − #υ1υ3$)− 1

2Re− 1
2

#(υ1υ3−$υ1υ3%)2$
$υ1υ3%

) υ3
0
υ1

+∇p = ∇2υ
∇ · υ = 0, υ .x, y,±1

2

/
= 0

from which the upper bound D = Re #υ1υ3$+Re2 follows.

2.2 Doering-Constantin Method

The Doering-Constantin method decomposes the velocity into �background� and �ßuctuation�
Þelds V (x, t) = φ (z)�i + ν (x, t). The background ßow φ (z) satisÞes the boundary condition
φ
.± 1

2

/
= ∓1

2Re so that the ßuctuation Þeld satisÞes homogeneous boundary conditions.

Putting V (x, t) = φ (z)�i+ ν (x, t) into ∂V!∂t+ V ·∇V +∇p = ∇2V , we obtain

∂ν

∂t
+ ν ·∇ν + φ!ν3�i+ φ∂ν

∂x
+∇p = ∇2ν + φ!!�i

where φ
!
:= dφ!dz and φ

!!
:= d2φ!dz2. Performing #ν · (4)$, we obtain

∂

∂t

0
1

2
ν2
1
=
!
φ
!!
ν1

"
−
!
|∇ν|2

"
−
!
φ
!
ν1ν3

"
· (4)

We also have the identity

!
|∇V |2

"
=
!
φ
!
2
"
− 2

!
φ
!!
ν1

"
+
!
|∇ν|2

"
(5)

Performing a · (5) + (6) where a is some scalar gives
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!
|∇V |2

"
+ a

∂

∂t

0
1

2
ν2
1
=
!
φ
!2
"
−G (φ, ν; a)

where G (φ, ν; a) =
!
(a− 1) |∇ν|2 + aφ!ν1ν3 − (a− 2)φ!!ν1

"
.

Taking long time averages leads to

D = lim
T→∞

1

T

2 T

0

!
|∇V |2

"
dt =

!
φ
!2
"
− lim
T→∞

1

T

2 T

0

G (φ, ν;a) dt

If φ and a are such that infν G (φ, ν; a) > −∞ then there exists the bound

D !
!
φ
!2
"
− inf

ν
G (φ, ν; a) .

The Doering-Constantin problem is to minimize the background dissipation
!
φ
!
2
"
subject to the

spectral constraint infG > −∞ over all possible ßuctuation Þelds ν (x). Solving the Euler-Lagrange
equation gives the stationary value of

G (φ, ν∗; a) = − (a− 2)
2

4(a− 1)
3!
φ
!2
"
−Re2

4
.

This will be an inÞmum if and only if the dominant quadratic terms are positive deÞnite, i.e.

H (φ, ν, a) := (a− 1)
!
|∇ν|2

"
+ a

!
φ
!
ν1ν3

"
≥ 0

for all allowable ν. This is called the spectral constraint.
The optimization problem is then to minimize the bound

lim
T→∞

1

T

2 T

0

!
|∇ν|2

"
dt ≤ D :=

!
φ
!2
"
− inf

ν
G =

a2

4 (a− 1)
05
φ
!
+Re

621
+Re2

subject to the spectral constraint.

3 UniÞcation

The Howard-Busse and Doering-Constantin methods can be uniÞed by deÞning the following func-
tional

D(V , ν, a) := lim
T→∞

1

T

2 T

0

!
|∇V |2

"
−
0
aν ·

'
∂V

∂t
+ V ·∇V +∇p−∇2V

(1
dt

where V = φ (z)�i + ν (x, t) = [φ (z) + ν1 (z)]�i + υ(x, t). Substitute V = φ (z)�i + ν (x, t) into D, we
obtain
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D (V ,φ, a) = limT→∞ 1
T

# T
0

!
|∇V |2

"
−
!
a
5
V − φ (z)�i

6
·
5
∂V
∂t
+ V ·∇V +∇p−∇2V

6"
dt

= limT→∞ 1
T

# T
0

!
|∇V |2

"
− a

!
V ·

5
∂V
∂t
+ V ·∇V +∇p−∇2V

6"
+a
!
φ (z)�i ·

5
∂V
∂t + V ·∇V +∇p−∇2V

6"
dt

This makes it clear that a is acting as a Lagrange multiplier which imposes the total power balance
and that aφ (z) is the Lagrange multiplier which imposes the mean momentum balance. Also

D (ν,φ, a) =
!
φ
!2"− lim

T→∞
1

T

2 T

0

!
(a− 1) |∇ν|2 + aν1ν3φ! − (a− 2)φ!!ν1

"
dt

and Þnally

D (υ, ν1,φ, a) =
!
φ
!2"− lim

T→∞
1

T

2 T

0

!
(a− 1) |∇υ|2 + aυ1υ3φ! + (a− 1)ν̄!

2

1 − (a− 2)φ
!!
ν1

"
dt.

The full variational problem is to solve the Euler-Lagrange equations δDδφ = 0;
δD
δυ = 0;

δD
δν̄1

= 0; δDδa =

0. The Howard-Busse and Doering-Constantin methods consider complementary subsets of these
equations.

3.1 Howard-Busse Problem

The Howard-Busse method solves δD
δφ = 0 ,

δD
δν̄1

= 0 and δD
δa = 0 leaving a maximization problem in

v.

δD
δφ = 0 ⇒ −2φ!! + aυ1υ3! + (a− 2) ν̄!!1 = 0

⇒ φ
!
+Re = 1

2a (υ1υ3 − #υ1υ3$) + 1
2 (a− 2) ν

!
1

δD

δν1
= 0⇒ 2 (a− 1) ν!!1 + (a− 2)φ

!!
= 0⇒ ν1 = − (a− 2)

2 (a− 1) (φ+Rez)

Substituting these results into D (υ, ν̄1,φ, a), we obtain

D (υ, a) = Re2 +Re #υ1υ3$+ (a− 1)
$
Re #υ1υ3$ −

!
|∇υ|2

"
−
!
(υ1υ3 − #υ1υ3$)2

"%
This is equivalent to the problem of Þnding the maximum of

.
Re2 +Re #υ1υ3$

/
subject to the power

constraint Re #uw$ =
!
|∇υ|2

"
+
!
(υ1υ3 − #υ1υ3$)2

"
with (a− 1) being the Lagrange multiplier and

∇ · υ = 0.

3.2 Doering-Constantin problem

The Doering-Constantin method solves δD
δυ = 0 and δD

δν̄1
= 0 leaving a minimization problem for

φ, a.
δD
δν1

= 0⇒ ν1 = − (a−2)
2(a−1) (φ+Rez) as before. Now
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δD

δυ
= 0⇒ 2(a− 1)∇2υ − aφ!

 υ3
0
υ1

+∇p = 0
Taking #υ · ()$ of this expression gwes0

υ · δD
δυ

1
= 0 =

!
(a− 1) |∇υ|2 + aφ!υ1υ3

"
So, D (υ,φ, a) = a2

4(a−1)

05
φ
!
+Re

621
+Re2 −

!
(a− 1) |∇υ|2 + aφ!υ1υ3

"
is equivalent to

D(φ, a) =
a2

4(a− 1)
05
φ
!
+Re

621
+Re2

provided φ and a satisfy the spectral constraint which ensures overestimation of the highest saddle
point of D. This highest saddle point bounds the energy dissipation (see [5] for details).

4 Discussion

In this lecture, we have made a direct link between the Howard-Busse and Doering-Constantin
variational methods for upper bounding turbulent transport in plane Couette shear ßow. Similar
arguments can be applied to turbulent heat transport for convection as well [6]. Both methods
revolve around the same underlying functional. The Howard-Busse method seeks to Þnd the highest
saddle point of this functional by maximizing from below, while the Doering-Constantin method
seeks to minimize from above. The consequence is that the ideal upper bounds derived from each
method should coincide at the highest saddle point. Historically, this is seen in the results obtained
in each approach. The original bound produced by Doering and Constantin [6] in 1992 was 1

8
√
2
≈ 1
11.3

as opposed to Busse�s estimate [1] of + 1
99.7 . Nicodemus et al. [8] improved the Doering-Constantin

result down to ∼ 1
92.0 in 1998. Recently Plasting & Kerswell [9] have solved the full problem to Þnd

the asymptotic result that D ≤ 0.008553 in units of V 3
0

d as Re→∞.
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