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1 Introduction

The sun heats the land faster than it heats the ocean, causing the air to be warmer over
land than over the sea during the day. Convection over land keeps these air masses apart.
However, as convection weakens in the afternoon and evening, a pressure gradient causes the
cold dense air over the ocean to flow under the warm air on the land in a “sea breeze.” In
areas where sea breezes occur, they cool the region of land adjacent to the ocean and bring
in moisture. In the Santa Barbara region, where valleys penetrate into coastal mountain
ranges, sea breezes propagate to high inland plateaus, enabling grapes to be grown; in the
absence of sea breezes, the climate would otherwise be too hot and dry. In general, it is
of interest to study the flow of dense fluids into valleys and up hills. The results presented
here may be applicable not only to coastal agriculture, but also to tidal flows in submarine
canyons and estuaries.

Sea breezes are a type of gravity current, and gravity currents are often studied by
performing lock-release experiments. This is the approach we take here. A dense fluid is
held at one end of the tank by a gate, and the rest of the tank is filled with a lighter fluid.
When the gate is removed, the dense fluid, driven by the pressure gradient, flows under the
lighter fluid as a gravity current.

The experiments, numerics, and theory in this manuscript explore full-depth lock-release
at high Reynolds numbers in the parameter range available when a tank is tilted in the x
and y directions, as shown in Figure 1. The aim is to look at the behaviour of gravity
currents up slopes and in symmetric and asymmetric V -shaped valleys, and in particular to
measure the speed, the time-dependence, and the shape of the currents we observe. We wish
to understand what factors control these parameters in order to make general predictions
for the initial speed and time dependence of a gravity current in a valley. The timescale of
sea breezes is much shorter than one day, and so we do not expect the rotation of the Earth
to be important.

In Section 2 of this manuscript we describe previous work on gravity currents, particu-
larly those in valleys and up slopes. In Section 3, we extend Benjamin’s analysis to predict
the speed and height of a gravity current in a V -shaped valley. A prediction for the speed
of upslope flow as a function of slope is also made based on local water depth at the front.
In Section 4, we perform laboratory experiments to explore the speed and time dependence
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of a gravity current when the tank is tilted in the x and y directions. In Section 5, numer-
ical experiments using the HYbrid Coordinate Ocean Model (HYCOM) are used to shed
more light on the experimental results. All of the results are summarised and discussed in
Section 6.

2 Background

Lock-release gravity currents with a flat bottom in a rectangular domain are well under-
stood. The initial speed of an energy conserving gravity current, U , is predicted fairly well
by Benjamin’s analysis, which conserves mass, momentum and energy across the front of
the gravity current [1]. It is found that

U =

√
g′H0

2
, (1)

where H0 is the height of the fluid at the lock and g′ is the reduced gravity for the two
fluids. For a flat bottom gravity current, it is understood that there are three phases: the
constant speed phase, where the speed of the front is constant, the self-similar phase, where
the position of the front X depends on time t as X(t) ∼ t

2
3 and the viscous phase where

X ∼ tαwhere α < 1 and depends on the geometry and set-up [7].
The important parameter for studying the speed of a gravity current is the Froude

number, which can be defined in two different ways: one based on the local tank height, H0

and the other based on h, the height of the gravity current far away from the front:

FrH =
U√
g′H0

, (2a)

Frh =
U√
g′h

. (2b)

Benjamin’s analysis predicts that FrH = 1
2 and Frh =

√
2 for full-depth, flat bottom lock-

release.
Downslope gravity currents in rectangular channels are also well understood, both for

constant flux down the slope [4] and for a lock release [2]. In both cases, downslope flows
have a quasi-constant speed that is a function of slope angle. Experiments show that the
nondimensional velocity is maximum at an angle of around 40◦. Birman et al. [2] find that
for a downslope lock release, FrH fits the parabolic curve

FrH(θ < 0) = −0.1924θ2 + 0.2781θ + 0.4871 , (3)

where θ is expressed in radians. This means that for small θ, FrH(θ) depends approximately
linearly on θ. Britter and Linden [4] find that for angles less than 0.5◦, downslope flow is
no longer quasi-steady, but rather decelerates after the initial constant velocity phase.

Except for a recent study by Ottolenghi et al. [11], upslope gravity currents have received
far less attention than downslope gravity currents. Ottolenghi et al. use both experiments
and numerics to show that a current decelerates more as the upslope angle increases. They
also find that for upslope flow the initial speed of the current does not depend on the slope.
Ottolenghi et al. are constrained by the length of their tank, and are only able to achieve
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end view side view

Figure 1: θ and φ are the angles that define the orientation of the tank.

slope angles of up to 1.8◦ in their experiments, and of up to 5◦ in their numerics. We extend
this range to about 8◦ in both our experiments and our numerics. We also consider upslope
flow in V -shaped valleys.

Lock-release flows in symmetric V -shaped valleys have been studied theoretically and
experimentally by Monaghan et al. [10] and Marino and Thomas [9]. Monaghan et al. [10]
observe that these sorts of currents have a self-similar, parabolic shape and therefore they
take a similarity solution approach, assuming a constant value for Frh. They predict that the
front position X is dependent on time t as X(t) ∼ t

4
5 , and they find that their experiments

agree with this prediction. Zemach and Ungarish [14] also study flow in a V -shaped valley
using shallow water theory, and compare their results to the similarity solution described
above. They find good agreement and are able to extend their model to asymmetric basins.

The inital speed of a gravity current in a V -shaped valley has not been predicted an-
alytically in previous work, so we extend Benjamin’s analysis for this purpose. We also
investigate the effects of tilting a V -shaped valley in the x-z plane, so that the current is
flowing up slope. To the best of our knowledge, this experiment has never been done before.

3 Theory

Henceforth, variation in θ is called rise, and the variation in φ is called tilt. These angles are
illustrated in Figure 1. They are measured in degrees in the remainder of this manuscript.

3.1 Extension of Benjamin’s analysis for φ = 45◦

Following Benjamin (1968) [1], we apply conservation of mass, conservation of momentum,
and the Bernoulli equation along the free surface and bottom boundary, to find the height
and speed of the gravity current. The set-up is shown in Figure 2, in which the frame of
reference has been changed so that the front and the dense fluid behind it are stationary.
The dense fluid has density ρl and the light fluid has density ρu. We define the reduced
gravity for the two fluids to be

g′ =
g(ρl − ρu)

ρu
. (4)
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There are a number of assumptions associated with this approach. It is assumed that gravity
waves on the free surface are too fast to affect the speed of the gravity current. It is also
assumed that the speed of each layer is relatively uniform, which means that we neglect the
effects of viscous boundary layers. Applying Bernoulli along the top and bottom boundaries
assumes that there is a streamline along the bottom corner of the tank (at y = 0, z = 0)
and along the free surface (at y = H, z = 0). This is justified by symmetry considerations
in the φ = 45◦ case. It is also assumed that energy is conserved along these lines, which is
not strictly true, but a good approximation.

a) b)

Figure 2: Schematic of the φ = 450, θ = 00 setup. a) shows a cross section view at BE and
b) shows a section along the tank at y = 0.

The mass flowing through the cross section at BE must equal the mass flowing through the
cross section at DC, so

H2U =
(
H2 − h2

)
uu . (5)

Then applying Bernoulli along BC and ED gives

pB = pC +
ρuU

2

2
, (6a)

pE +
ρuu

2
u

2
= pD +

ρuU
2

2
. (6b)

Integrating the hydrostatic equation, dp
dz = −ρg, we find that the pressure in the cross-

section at BE is

p =

{
pB − ρlgz if z < h;
pB − ρlgh− ρug (z − h) if z > h.

(7)

and the pressure in the cross-section at CD is

p = pC − ρugz. (8)

Now we conserve the flux of momentum through the tank. The flux of momentum through
the cross section at BE must be equal to the flux of momentum through the cross section
at CD. We consider only the positive half of the domain, because symmetry dictates that
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flow in the negative half behaves identically. Conserving momentum,∫ h

0

∫ h

y
pB − ρlgz dzdy +

∫ h

0

∫ H

h
pB − ρlgh− ρug (z − h) + ρuu

2
u dzdy+∫ H

h

∫ H

y
pB − ρlgh− ρug (z − h) + ρuu

2
u dzdy =

∫ H

0

∫ H

y
pC − ρugz + ρuU

2dzdy .

(9)
Integrating with respect to z yields∫ h

0
pB (h− y)− ρlg

(
h2

2
− y2

2

)
dy

+

∫ h

0

(
pB − ρlgh+ ρugh+ ρuu

2
u

)
(H − h)− ρug

(
H2

2
− h2

2

)
dy

+

∫ H

h

(
pB − ρlgh+ ρugh+ ρuu

2
u

)
(H − y)− ρug

(
H2

2
− y2

2

)
dy

=

∫ H

0
pC (H − y)− ρug

(
H2

2
− y2

2

)
+ ρuU

2 (H − y) dy .

(10)
Rearranging, and then integrating with respect to y gives

(
pB − ρlgh+ ρugh+ ρuu

2
u

)(H2

2
− h2

2

)
+ pB

(
h2 − h2

2

)
− ρlg

(
h3

2
− h3

6

)
+
ρug

2

(
h3 −H3

)
+ ρug

(
H3

6
− h3

6

)
= pC

(
H2 − H2

2

)
− ρug

(
H3

2
− H3

6

)
+ ρuU

2

(
H2 − H2

2

)
.

(11)

Then substituting in for pC using equation Eq. (6a), and expressing g(ρl − ρu)/ρu as g′,

g′
h3

6
− g′hH

2

2
+ U2H

2

4
+ u2u

(
H2

2
− h2

2

)
= U2H

2

2
. (12)

into which we can substitute for uu using Eq. (5), giving

g′
h3

6
− g′hH

2

2
=
U2H2

2

(
1

2
− H2

(H2 − h2)

)
. (13)

Again using the hydrostatic equation, the pressures at B, C, D and E are related by

pE =pB − ρlgh− ρug (H − h) (14a)

pD =pC − ρugH . (14b)

Using the above expression and Eq. (6a), Eq. (6b) can be rewritten as

u2u
2

= g′h . (15)
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Applying mass conservation (Eq. (5)),(
H2 − h2

)2
g′h

H2
=
H2U2

2
, (16)

which relates the speed of the current U to its height h. We can substitute Eq. (16) into
Eq. (13) to give an expression for the height of the current h in terms of the total height of
the tank H,

h2 =
H2

3
. (17)

This means that in a symmetric V -shaped valley, the height of the gravity current is H/
√

3,
which is taller than H/2, the height of a gravity current in a rectangular channel. We can
obtain the speed of the current by substituting Eq. (17) back into Eq. (16) and rearranging,
giving

U2 = 2g′
(

2

3

)2
√

1

3
H . (18)

Therefore the predicted Froude number for a V -shaped valley with φ = 45◦ is

FrH(φ = 45◦) =
U√
g′H

=

√
8

9
√

3

≈ 0.72 .

(19)

This is significantly larger than the prediction FrH(φ = 0◦) = 1
2 for a gravity current

in a rectangular channel. Qualitatively, this result can be explained using conservation of
mass. Because the tank is wider at the top in the valley case, the gravity current can be
taller than H/2 without restricting the return flow, which has a speed uu − U . A taller
gravity current is usually associated with a faster front speed, because it leads to a higher
difference in pressure at the front. Even though the front is taller in the φ = 45◦ case, the
return flow is still slower than the gravity current.

3.2 Extension of Benjamin’s analysis for general φ

Here we extend the Benjamin’s analysis above for general φ. A schematic of the set-up is
shown in Fig. 3. Again, conservation of mass gives

H2U =
(
H2 − h2

)
uu . (20)

We then apply Bernoulli along BC and ED. It is important to note that applying Bernoulli
at the corner of the tank is a very strong assumption. A streamline along the bottom corner
of the tank may not exist, because the valley is no longer symmetric. Bernoulli yields

pB = pC +
ρuU

2

2
, (21a)

pE +
ρuu

2
u

2
= pD +

ρuU
2

2
. (21b)
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a) b)

Figure 3: Schematic of the θ = 0 setup for general φ. a) shows a cross section view at BE
and b) shows a section along the tank at y = 0.

Integrating the hydrostatic equation, dp
dz = −ρg, we find that the pressure in the cross-

section at BE is

p =

{
pB − ρlgz if z < h;
pB − ρlgh− ρug (z − h) if z > h.

(22)

and the pressure in the cross-section at DC is

p = pC − ρugz. (23)

Now we conserve momentum flux, which can be expressed as a sum of the flux of momentum
in the positive section of the domain and the flux of momentum in the negative section of
the domain,∑
i=1,2

(∫ µih

0

∫ h

y/µi

pB − ρlgz dzdy +

∫ µih

0

∫ H

h
pB − ρlgh− ρug (z − h) + ρuu

2
u dzdy+

∫ µiH

µih

∫ H

y/µi

pB − ρlgh− ρug (z − h) + ρuu
2
u dzdy =

∫ µiH

0

∫ H

y/µi

pC − ρugz + ρuU
2dzdy

)
,

(24)
where µ1 = tanφ and µ2 = 1/ tanφ. In what follows, the summation is implied by the
subscript i. We integrate with respect to z first to give∫ µih

0
pB

(
h− y

µi

)
−ρlg

(
h2

2
− y2

2µ2i

)
dy

+

∫ µih

0

(
pB − ρlgh+ ρugh+ ρuu

2
u

)
(H − h)− ρug

(
H2

2
− h2

2

)
dy

+

∫ µiH

µih

(
pB − ρlgh+ ρugh+ ρuu

2
u

)(
H − y

µi

)
− ρug

(
H2

2
− y2

2µ2i

)
dy

=

∫ µiH

0
pC

(
H − y

µi

)
− ρug

(
H2

2
− y2

2µ2i

)
+ ρuU

2

(
H − y

µi

)
dy .

(25)
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We then integrate with respect to y to give

pB

(
µih

2 − µih
2

2

)
− ρlg

(
µih

3

2
− µih

3

6

)
+ µih

(
pB − ρlgh+ ρugh+ ρuu

2
u

)
(H − h)

− µihρug
(
H2

2
− h2

2

)
+
(
pB − ρlgh+ ρugh+ ρuu

2
u

)(
µiH

2 − µihH −
µiH

2

2
+
µih

2

2

)
− ρug

(
µiH

3

2
− µiH

2h

2
− µiH

3

6
+
µih

3

6

)
= pC

(
µiH

2 − µiH
2

2

)
− ρug

(
µiH

3

2
− µiH

3

6

)
+ ρuU

2

(
µiH

2 − µiH
2

2

)
.

(26)
At this point, we can divide through by µi to give Eq. 11, meaning that the predictions of
Benjamin’s theory in an asymmetric valley are the same as those in a symmetric valley, i.e.

h2 =
H2

3
. (27)

and

FrH(φ) =
U√
g′H

=

√
8

9
√

3

≈ 0.72 .

(28)

Surprisingly, the results are independent of φ. It seems likely that this does not reflect the
effects of changing φ in the real world, and is instead a consequence of the strong assumption
that there is a streamline along the bottom corner of the tank. In the symmetric (φ = 45◦)
case, the streamline must follow the bottom corner of the tank, because the flow must be
symmetric (this assertion will be validated by the laboratory experiments). However, in the
asymmetric case, it is unlikely that a streamline exists along the bottom corner, because
flow down the walls will occur at different speeds. It is possible that a streamline exists
somewher on the wall, and this may be something we investigate in future. That FrH(φ)
does not approach 1

2 as φ → 0◦ may reflect the importance of having both left and right
boundaries in a channel flow.

3.3 Prediction of deceleration in the upslope, no tilt case.

One way to predict the deceleration of upslope flow on a flat bottom is to assume a constant
Froude number, FrH , and therefore assume that the speed of the current is only dependent
on local water depth at the front. First we express the speed of the current U in terms of
the Froude number, reduced gravity and local water depth, which is a function of distance
along the tank.

U = Fr
√
g′H(x) . (29)

If s = tan θ is the slope and H0 is the height of the water at the lock, U can be expressed
in terms of the distance of the front from the lock x to give

U = Fr
√
g′H0

√
1− sx

H0
. (30)
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Defining U0 = Fr
√
g′H0 yields the differential equation

dx

dt
= U0

√
1− sx

H0
. (31)

When we solve this differential equation, we get

X = x0 + U0t−
U2
0 t

2s

4H0
. (32)

This result was separately derived in the study of shoaling surface gravity currents passing
over an underlying slope [8]. For large values of H0 or small values of s, we expect that
the effect of the local water depth will no longer dominate, and other effects like energy
conservation will become important. However, for the shallow water in our experiments,
the effect of water depth may dominate over these other effects.

4 Laboratory experiments

We first explore the validity of the extended Benjamin results and the predictions for upslope
flow by comparing them to the results of laboratory experiments. The experiments explore
the parameter range shown in Table 1, where θ and φ are defined as in Figure 1.

The tank is 148cm long, 19.8cm wide and 28.7cm tall, and the lock is 36.7cm long,
occupying approximately a quarter of the total volume of the tank. The short length of the
tank allows us to explore a larger range of θ than in previous studies [11]. For the majority
of experiments the tilt is either φ = 0◦ or φ = 45◦, although φ = 15◦ and φ = 30◦ cases are
also considered.

The density of the fluid in the lock is increased by adding salt, and colored food dye is
also added in order to make the current visible. The reduced gravity g′ for each experiment
is around 6 cm/s2, although it varies slightly due to inaccuracies in measuring the volume
of the tank and the amount of salt added. This should not affect the results, which are
nondimensionalized using the particular value of g′ for each experiment.

The experiments are recorded in black and white so that the shape and location of the
front can be tracked. The camera position varies with experiment (see Figure 4), and a
mirror is placed at 45◦ to the side of the tank in order to give another view of the current.
In the φ = 0◦ case the mirror shows the shape of the front, and the top view shows the
amount of three-dimensionality in the current. In the φ 6= 0◦ cases, the mirror allows us
to see how symmetric the current is and to check that the top edge of the tank does not
obstruct too much of the current.

In the case where φ = 0◦ the current is approximately two-dimensional, but a small
amount of three-dimensionality occurs due to instabilities and asymmetry in the removal of
the gate. In order to quantify the error due to three-dimensional instabilies, three time series
of the current are taken at five centimeter intervals across the tank (shown in Figure 5).

One of these time series with θ = 6.2◦ is shown in Figure 6. A threshold brightness is
chosen to define the front, and a series of points is generated giving the position of the front
in each frame. Points are not taken in the first few seconds after the gate is pulled, because
there is a short period of readjustment when the gate is removed and the location of the
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φ(◦) θ(◦) g′ (m/s2)

0 0 6.6
0 1 6.6
0 1.9 6.4
0 2.9 6.1
0 3.9 6.7
0 4.8 6.8
0 6.2 6.2
0 7.0 6.7
0 8.1 7.4
45 0 5.9
45 0.9 6.0
45 1.9 5.3
45 2.9 6.6
45 3.8 6.2
45 5.2 6.1
45 6.2 6.2
45 6.6 6.3
45 8.0 6.7
15 0 6.7
15 6.2 6.1
30 0 6.2
30 6.2 6.5

Table 1: The parameter range of the experiments.

Mirror

15.5cm

19.8cm

Mirror
10cm

a) b)

Figure 4: The location of the camera with respect to the tank when a) φ = 0◦, and b)
φ = 45◦.
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Figure 5: When φ = 0◦, three time series are taken at 5cm intervals across the tank.

Figure 6: Time series taken when θ = 6.2◦ (black and white image) and points showing the
loaction of the front away from the initial readjustment.
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Figure 7: When φ = 45◦, ten time series are taken at 1 pixel intervals starting at the tank
edge and moving upward.
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Experiments q=0°

Experiments q=45°

Flat bottom computer runs
Valley bottom computer runs
Experiments q=30°

Experiments q=15°

Figure 8: Initial gravity current speed a for the experimental data and numerical simula-
tions, when front position is fitted with the line X(t) = x0+at+bt2. The grey lines indicate
the theoretical results.

12



−2 0 2 4 6 8 10
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

 

 

Experiments q=0°
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Flat bottom computer runs
Valley bottom computer runs
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Figure 9: Relative double-acceleration, b for the experimental data and numerical simula-
tions, normalized using U0 = FrH

√
g′H0, where FrH from the θ = 0◦ case is taken as a

prediction of FrH for all θ when front position is fitted with the line X(t) = x0 + at+ bt2.
The grey line indicates the theoretical result.

front is unclear because of the turbulence generated. However, the time at which the gate

is pulled is recorded as t = 0. Because the theory predicts that x = x0 + U0t −
U2
0 t

2s
4H0

, a

quadratic of the form X(t) = x0 + at+ bt2 is fitted to the points for each of the three time
series, and then the mean values of a and b are taken. Error bars are generated based on
the spread of the three values.

In the case where φ 6= 0◦, the current is three-dimensional, and the main source of error
is that the time series is not taken in the fastest part of the current (which is at the corner
of the tank). In order to mitigate for this, ten time series are taken, starting at the edge
of the tank and moving upwards by one pixel for each new time series (see Figure 7). The
clearest three to five are used. This is necessary because some of the lines chosen overlap
with the edge of the tank, while others are too far from the center line and therefore do not
exhibit a well-defined front due to turbulence.

The results of the laboratory experiments are shown in Figures 8, 9 and 10. In all cases
X(t) = x0 + at+ bt2 is a good fit to the data. It is likely that the error bars on a and b for
φ = 45◦ are too small, probably because the lines chosen for time series are not completely
parallel to the centerline of the current. If a time series is taken at an angle to the centerline
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of the current, both the initial speed a and the relative double-acceleration b are likely to
be too small.

In the φ = 0◦ case, FrH(t = 0) = a√
g′H0

is 10 to 20% less than the predicted value of

0.5. This is typical for the results of lock exchange experiment [13], and is probably because
energy conservation is an approximation. While the Benjamin result strictly only applies
in the θ = 0◦ case, there is no reason why the initial speed should change when θ 6= 0◦, and
the results show that a remains relatively constant with changing θ. This is consistent with
the results of Ottolenghi et al. [11], who also found that the initial speed does not change
with rise for a gravity current in a rectangular channel.

In the φ = 45◦ case, the inital speed a decreases with increasing rise θ. This is a surprise,
and is not yet understood. We hypothesize that the initial velocity of the front in the upslope
case is slowed by turbulent momentum transport from the sides of the valley. The flow at
the sides of the valley is slower than the flow in the middle, and so any momentum transport
from there would cause a slowing of the gravity current.

The normalized deceleration b
FrHg′s

is plotted in Figure 9. Given that we expect that

X(t) = x0 + U0t −
U2
0 t

2s
4H0

, if a were independent of rise and U0 = FrH
√
g′H0 where FrH is

predicted by the theory for the zero slope case, then

b

Fr2Hg
′s

=
1

4
. (33)

The data does not fit Eq. (33) very well because a does not fit the theoretical result very
well. If we do not assume that Benjamin theory and its extension holds, we expect that

bH0

a2s
=

1

4
. (34)

The data fits Eq. (34) except at small angles, where s is small, causing errors to be magnified
(see Figure 10). It is also possible that for small rise, other effects are important for
decelerating the flow, for example, energy conservation or viscosity. In fact, it is surprising
that our predictions hold so well for the majority of the angles studied.

For the asymmetric valley cases, the results do not agree well with Benjamin’s analysis.
This is probably because the assumption of a streamline along the bottom of the domain
is incorrect. In particular, the case θ = 6.2◦, φ = 15◦ is very far from the expected value
for FrH(φ = 15◦) = a√

g′H
of 0.72. However, in these cases b still fits well with Eq. 34,

suggesting that the dependence of deceleration on changing water depth still holds. More
experiments are needed in order to say anything further about the effects of asymmetry.

5 Numerical experiments

The HYbrid Coordinate Ocean Model (HYCOM) [3], [5], [6] is a hydrostatic model that
solves the shallow water equations. We use a two layer set up in the same geometry as
the experiments, and with a grid spacing of 0.5cm. g′ is approximately the same as the
experiments, but the computational Reynolds number is 1200, lower than the experimen-
tal Reynolds number of 7000. Varying viscosity does not produce major changes in the
model output, so the difference in Reynolds number is not likely to affect the results very
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Parameter Descripton Value

visco2 deformation-dependent Laplacian viscosity factor 0.05
visco4 deformation-dependent biharmonic viscosity factor 0
veldf2 diffusion velocity (m/s) for Laplacian momentum dissipation 0.01
veldf4 diffusion velocity (m/s) for biharmonic momentum dissipation 0.01
thkdf2 diffusion velocity (m/s) for Laplacian thickness diffusion 0.001
thkdf4 diffusion velocity (m/s) for biharmonic thickness diffusion 0

Table 2: Parameters for diffusion of momentum in the HYCOM model. These parameters
aim to compensate for the lack of turbulence in the model. However, our results are fairly
robust and small changes to these parameters do not affect the speed and time dependence
of the current (though they do change the shape of the front).

much. Further parameters used in HYCOM are shown in Table 2. These parameters were
tuned until the shape of the front resembled the laboratory experiments. Changes in these
parameters do not affect a and b noticably.

In the numerical model, the front is defined as the first location at which the bottom
layer is thicker than 0.5cm. As in the laboratory, X(t) = x0 + at + bt2 is fitted to a time
series of front position.

Figure 11 shows a comparison between the shape of the gravity current in the model
and in the laboratory. Away from the front, the height of the current is similar in both
cases, but shape of the head of the current in the model is very different from the shape of
the head of the current in the experiment. This difference is probably because the model is
hydrostatic and the processes at the front are non-hydrostatic. Benjamin analysis requires
the assumption that the height of the current tends to a constant value far away from the
front. We can see from Figure 11 that this is a valid assumption.

In the numerical simulation, there are a lot more waves at the interface in the valley
case than in zero tilt case. The experiments are also a little more irregular, consistent with
observations by Monaghan et al. [10]. This might perhaps be due to the two speeds involved
in the valley case: the speed of the current along the tank (in the x-direction) and the speed
at which the fluid collapses into the middle of the tank (in the y-direction). The irregularity
may be more pronounced in the model because it does not allow turbulence so the waves
cannot dissipate their energy so easily.

HYCOM allows us to look at the cross-section of the current, something that is difficult
to do in the laboratory experiment. In cross-section it is observed that far away from the
front, the interface is flat, as one would expect, but near to the front the height of the
interface varies in the y-direction, and the center of the current is higher than the edges.

Figures 8, 9 and 10 show the results of both the numerical simulations and laboratory
experiments. In the numerical experiments, FrH(t = 0) = a√

g′H0
is higher than the predic-

tions of Benjamin’s analysis and its extension. This is unsurprising because in the model,
Bernoulli does not necessarily apply along the top and bottom boundaries and because
the model is hydrostatic, it does not conserve momentum exactly. Faster speeds are often
available when this sort of condition is relaxed [12].

In the HYCOM model, the initial speed a is independent of θ. It is hypothesized
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Figure 10: Relative double-acceleration b for the experimental data and numerical simula-
tions, normalized using the measured initial speed a when front position is fitted with the
line X(t) = x0 + at+ bt2. The grey line indicates the theoretical results.
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Figure 11: Comparison of head shape between the numerical model (yellow line) and the
experiments for the case a) φ = 0◦, θ = 0◦ and b) φ = 45◦, θ = 0◦.
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that turbulent momentum transport from the sides of the valley is responsible for the
slower current in the laboratory. This fits well with the numerical results because turbulent
momentum transport does not occur in the HYCOM model, so it is expected that a should
be independent of θ in the model.

6 Summary and Discussion

Theory, experiments and numerics agree that a gravity current in a valley is faster than a
gravity current in a rectangular channel, and specifically that FrH = 0.72 for a symmetric
valley where φ = 45◦. While theory, experiments and numerics differ slightly, this is not
unexpected, because the theory makes assumptions about conservation of energy that are
not necessarily followed in the experiments or numerics.

Laboratory experiments show that, unlike in the φ = 0◦ case, the initial speed of the
gravity current in the φ = 45◦ case decreases as θ increases and it is unclear what causes this.
However, we hypothesize that lateral turbulent momentum transport moves momentum
away from the fast moving center of the current into the slower moving edges where the
depth is much shallower.

To first order, the upslope flow speed seems to be controlled by the local depth of the
fluid in the parameter range explored here. Gravitational acceleration, bottom drag, and
viscosity are secondary effects, and the role of these need further investigation, since in
currents with bigger H0, smaller s or smaller g′, the role of these effects will probably be
larger. This is likely to be the case in real-world applications like sea breezes up valleys,
where H0 is not clearly defined. For small slopes, the predictions based on local fluid depth
do not fit the data well, and this is likely to be because some of these other effects are
important.

In an attempt to compare our results with Monaghan et al. [10]’s prediction for the
time dependence of front position, a fit to a log-log plot of the front position in the zero
slope cases of both the laboratory and numerical experiments was taken. However, in both
cases it was found that front position X ∼ t rather than X ∼ t

4
5 . It may be that the time

series taken in our experiments and numerics was not long enough. Monaghan et al. used
a tank that was more than fifteen lock lengths long, whereas our tank was only about four
lock lengths long. It is also possible that the assumption of self-similarity in Monaghan et
al.’s theory is invalid in our flow, but this seems unlikely since the current has the same
self-similar shape as Monaghan et al. describe.

More investigation is needed into why the initial speed predicted by the model differs
from the initial speed measured in the laboratory. This could be done by simulating the
flow in a Direct Numerical Simulation that includes lateral momentum transfer via turbu-
lence. Alternatively, an experiment in which the viscosity of the flow was increased (so
that turbulence was surpressed) could be performed, though this would introduce viscous
boundary layer effects.

There are still many questions to be answered in understanding how topography steers
gravity currents. It would be interesting to look at the effect of changing the angle inside
the valley, since the sides of most valleys in the real world slope less than those in my
experiment. We would also like to look at the transfer between kinetic and potential energy
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in the numerical model, because it is surprising that this does not appear to play a role in
the upslope speed of a gravity current.
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