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1 Norms

In this section we define a measure of mixing that does not necessarily require diffusion to
measure the amount of homogenization that occurs during the mixing process. Recall the
advection-diffusion equation

∂θ

∂t
+ u ·∇θ = κ∇2θ, (1)

where θ is a concentration field in a finite domain Ω, with no-net-flux boundary conditions.
We assume without loss of generality that∫

Ω
θ dΩ = 0, (2)

and define the L2-norm, or variance, as

‖θ‖22 =

∫
Ω
θ2 dΩ. (3)

Recall from Lecture 1 that the variance evolves according to

d

dt
‖θ‖22 = −2κ‖∇θ‖22, (4)

and decays in time as the system mixes. The variance indicates the extent to which the
concentration has homogenized and is thus a good measure of the amount of mixing that
has occurred. However, the variance requires knowledge of small scales in θ, which we are
not necessarily interested in. A measure of how well-mixed the concentration is does not
necessarily require knowledge of how much homogenization has occurred due to diffusion at
small scales. This is more in keeping with the definition of mixing in the sense of ergodic
theory [2]. In this regard, we proceed to consider the pure advection equation

∂θ

∂t
+ u ·∇θ = 0. (5)

Note that in this case equation (4) predicts that the variance satisfies

d

dt
‖θ‖22 = 0, (6)
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and cannot therefore be used as a measure of mixing.
The advection equation (5) takes us closer to the ergodic sense of mixing in which we

think of the advection due to the velocity field as a time-dependent operator St : Ω → Ω
that moves an initial patch of dye according to

θ0(x) 7→ θ(x, t) = Stθ0(x). (7)

If we consider a region A of uniform concentration defined by

θ0(x) =

{
1 if x ∈ A,
0 otherwise,

(8)

then the volume of the patch
Vol[θ(x, t)] = Vol(A), (9)

remains constant in time by incompressibility. We can associate the volume of the patch
with the Lebesgue measure and, because of the result (9) above, St is measure-preserving.

We define mixing in the sense of ergodic theory by

lim
t→∞

Vol[A ∩ St(B)] = Vol(A)Vol(B), (10)

for all patches A,B ∈ Ω. This definition follows our intuition for what good mixing is.
Referring to figure 1, when the system is well-mixed the intersection of A and StB is
proportional to both Vol(A) and Vol(B). Thus, if the condition (10) holds then St must
spread any initial patch throughout the domain. This condition is referred to as strong
mixing and can be shown to imply ergodicity.

The intersection of the advected patch B with the reference patch A is analogous to
projection onto L2 functions. This motivates the following weak convergence condition

lim
t→∞
〈θ(x, t), g〉 = 0, (11)

StB

A

Figure 1: An advected patch StB that has undergone strong mixing. At late times the
patch covers an arbitrary reference patch A.
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for all functions g ∈ L2(Ω), where the inner product is defined by

〈f, g〉 =

∫
Ω
f(x)g(x) dΩ, (12)

and f ∈ L2(Ω) if
∫

Ω |f |
2 dΩ < ∞. Weak convergence is equivalent to mixing as a conse-

quence of the Riemann–Lebesgue lemma. The equivalent conditions (10) and (11) require
computing over all patches A or functions g, respectively. Thus, neither of these conditions
is useful in practice. However, we proceed to describe a theorem that shows there is a
simpler way to determine whether or not weak convergence is satisfied.

Mathew, Mezic and Petzold [5] introduced the mix-norm, which for mean-zero functions
is equivalent to

‖θ‖Ḣ−1/2 := ‖∇−1/2θ‖2 . (13)

Doering and Thiffeault [1] and Lin, Thiffeault and Doering [3] generalized the mix-norm to

‖θ‖Ḣq := ‖∇qθ‖2, q < 0, (14)

which is a negative homogeneous Sobolev norm. This norm can be interpreted for negative
q via eigenfunctions of the Laplacian operator. For example, in a periodic domain, we have

‖θ‖2
Ḣq =

∑
k

|k|2q|θ̂k|2, (15)

from which we see that, for q < 0, ‖θ‖q
Ḣ

smooths θ before taking the L2 norm. The theorem

lim
t→∞
‖θ‖Ḣq = 0, q < 0 ⇐⇒ θ converges weakly to 0, (16)

Figure 2: Comparison of the mix-norms for a flow optimized using the separate methods of
optimal control and optimal instantaneous decay. Figure from Lin et al. [3].
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Figure 3: Evolution of the concentration field for the flow optimized in the case q = −1 as
computed by Lin et al. [3].

due to Mathew, Mezic and Petzold [5] and Doering, Lin and Thiffeault [3] shows that we
can track any mix-norm to determine whether a system is mixing (in the weak sense).
The existence of this quadratic norm makes optimization of the velocity field for good
mixing considerably easier. Mathew, Mezic, Grivopoulos, Vaidya and Petzold [4] have
used optimal control to optimize the decay of the q = −1/2 mix-norm. Lin, Doering and
Thiffeault [3] have optimized the instantaneous decay rate of the q = −1 norm using the
method of steepest descent, which is easier to compute numerically but yields suboptimal,
but nevertheless very effective, stirring velocity fields. A comparison of the methods for
optimized mixing is shown in figure 2. The solid line decays faster, but this is merely
because the Ḣ−1 cannot be compared directly with Ḣ−1/2. The corresponding evolution of
the concentration field for the case q = −1 from Lin et al. [3] is shown in figure 3.
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2 Sources and Sinks

Now let us consider the situation with a sources-sink term s(x, t),

∂tθ + u · ∇θ = κ∇2θ + s (x, t) , (17)

∇ · u = 0.

For simplicity, assume that
∫

Ω s(x, t)dΩ = 0. Otherwise, we can subtract the mean of θ. It
is convenient to think of sources and sinks as hot and cold regions.

Let us also assume that our sources and sinks are time-independent. Then, the system
eventually achieves a steady state θ(x) that satisfies

u · ∇θ = κ∇2θ + s. (18)

We define the operator
L ≡ y · ∇ − κ∇2 (19)

so that (18) can be written
Lθ = s. (20)

The steady solution is then
θ = L−1s (21)

where the mean-zero condition on θ makes this unique. Note that κ 6= 0 is needed to
achieve a steady state. So, assuming the system has reached a steady-state, we have to
determine how we measure the quality of mixing. One of the possible ways is to look at
the norms ‖θ‖Ḣq , where q = 0 represents standard derivation. But we have to decide what
we will compare to. One possibility is ‖θ‖Ḣq/‖s‖Ḣq . This ratio is a reasonable choice, but
has units of inverse time. It is preferable to use a dimensionless quantity for measuring the
quality of mixing. In this spirit, we define mixing enhancement factors:

εq =
‖θ̃‖Ḣq

‖θ‖Ḣq

, (22)

where θ̃ is the purely-diffusive solution which satisfies

L̃θ̃ = s.

Here, L̃ = −κ∇2 is the pure diffusive operator, so θ̃ can be interpreted as the solution in the
absence of stirring. Since ‖θ‖Ḣq is usually decreased by stirring, εq measures the enhance-
ment over the pure-diffusion state. Several properties are given in Doering and Thiffeault [1],
Shaw, Thiffeault and Doering [7], and Thiffeault and Pavliotis [8]. We interpret a large εq
as ‘good stirring,’ since it in that case the norm is decreased by stirring.

A natural question is whether εq can ever be less than unity, that is, if stirring can ever
be worse than not stirring. Let’s consider

ε1 =
‖∇θ̃‖2
‖∇θ‖2
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Here,

θ̃ = L̃−1s =
(
−κ∇2

)−1
s = −κ−1∇−2s⇒ ∇θ̃ = −κ−1∇−1s

Also, from Lθ = s, we can multiply θ on both sides and take spatial average and then get

〈θLθ〉 = 〈sθ〉 ,

where 〈·〉 =
∫

Ω · dΩ. We expand the left-hand side:

〈θLθ〉 = 〈θu · ∇θ〉 − κ
〈
θ∇2θ

〉
=
〈
∇ ·
(
uθ2/2

)〉
− κ

〈
θ∇2θ

〉
= −κ

〈
θ∇2θ

〉
= κ

〈
|∇θ|2

〉
.

As for the right-hand side,it can be written as

〈θs〉 =
〈
θ∇ · ∇−1s

〉
= −

〈
∇θ · ∇−1s

〉
= κ

〈
∇θ · ∇θ̃

〉
,

where we used

θ̃ = L̃−1s =
(
−κ∇2

)−1
s = −κ−1∇−2s

⇐⇒ ∇θ̃ = −κ−1∇−1s .

Recall that
〈
|∇θ|2

〉
= ‖θ‖2

Ḣ1 . Therefore,

‖θ‖2
Ḣ1 =

〈
∇θ · ∇θ̃

〉
≤ ‖∇θ‖2‖∇θ̃‖2 = ‖θ‖Ḣ1‖θ̃‖Ḣ1 .

We conclude that
‖θ‖Ḣ1 ≤ ‖θ̃‖Ḣ1 ⇐⇒ ε1 ≤ 1 . (23)

This is somewhat counter-intuitive because gradients are usually increased by stirring. How-
ever, the gradients in a steady-state have been affected by diffusion.

What about εq for values of q other than 1? We tried and failed to prove εq ≤ 1, simply
because it is not true. Following a challenge by Charlie Doering at a workshop at the IMA
in 2010, Jeff Weiss came up with something like:

u = (2 sinx cos 2y ,− cosx sin 2y) , (24a)

s =
(
cosx− 1

2

)
sin y . (24b)

This velocity field manages to concentrate the source and sink distribution more than dif-
fusion alone. Streamlines of u and level sets of s are shown in figure 4. In this example, we
could get ε0 ' 0.978 and ε−1 ' 0.945, which are slightly less than 1. It is an open problem
to characterize such ‘unmixing’ flows.
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Figure 4: The pattern of velocity field and source for the ‘unmixing’ flow and source distri-
bution (24).

3 Optimization

We defined the mixing enhancement factors based on Sobolev norms. Large mixing en-
hancement factor indicates good mixing for a given source and sink pattern. One of the
relevant questions in this step is what kinds of flow give the largest εq given source and sink
distribution s(x).

Here is a simple but surprising example. The source and sink distribution is given
by s(x) = sinx with periodic boundary conditions on θ. The optimal solution for this
source and sink distribution is u = Ux̂, which is constant flow from the hot region to the
cold region [6–8] (figure 5). This example demonstrates that, with body sources, the best
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Figure 5: The optimal velocity field (solid arrows) for the source distribution s(x) = sinx.
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Figure 6: Optimal stirring velocity field (solid lines) for the source s(x) = sinx sin y (colored
background), for q = 0 (left) and q = −1 (right). The optimal velocity is the same in
both cases because the source is an eigenfunction of the Laplacian. (Matlab programs
example(1) and example(2) in the Appendix.)

stirring often has more to do with transport than with creation of small scales.
More generally, we have to solve the optimization problem numerically. Figure 6 shows

contours of the streamfunction for the optimal stirring velocity (lines) for a source s(x) =
sinx sin y, for q = 0 and q = −1. The optimal velocity fields are identical for the two values
of q, because the source is an eigenfunction of the Laplacian.

Contrast this to the optimal solutions in figure 7, for the source distribution s(x) =
cosx cos y + cos 3y + (1/4) sin 3y. This source is not an eigenfunction of the Laplacian, and
we expect optimal solutions to depend on q. Comparing the left (q = 0) and right (q = −1)
figures, we see this is indeed the case, though the difference in this case is fairly small.

Finally, given an optimization code, it is simple to turn it around to anti-optimize, that
is, find the worst stirring velocity for a given source distribution. Figure 8 shows this for
the source (24b) and q = 0. Note how the velocity field seems to work to concentrate the
source sink, thereby increasing the variance. The efficiency for this anti-optimal solution
is ε0 = 0.9736, which is not much lower than Jeff Weiss’s unoptimized flow (24a), which
had ε0 ' 0.978.

To reproduce the 5 figures in this section run the program example(n) in the Appendix,
where n is a number from 1 to 5.

Appendix: Matlab code

1 Program file example.m

function example(ex)

% util folder contains Diffmat2.m, fourdif.m, refine.m, refine2.m, refinek.m

% Contact author to obtain these functions.

addpath util

if nargin < 1, ex = 1; end
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Figure 7: Optimal stirring velocity field (solid lines) for the source cosx cos y + cos 3y +
(1/4) sin 3y (colored background), for q = 0 (left) and q = −1 (right). The optimal velocities
are different since the source is not an eigenfunction of the Laplacian. (Matlab programs
example(3) and example(4) in the Appendix.)
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Figure 8: Optimal ‘unmixing’ solution for the source
(
cosx− 1

2

)
sin y, with mixing effi-

ciency ε0 = 0.9736. (Matlab program example(5) in the Appendix.)
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N = 11; % Number of gridpoints

L = 1; k1 = 2*pi/L; % Physical size of domain

x = L*(0:N-1)/N; y = x’; [xx,yy] = meshgrid(x,y);

switch ex

% Examples 1 and 2 use the same cellular source, for q=0 and q=-1.

% Since the source is an eigenfuntion of the Laplacian, the optimal

% flow is the same for q=-1.

case {1,2}

src = cos(k1*xx).*cos(k1*yy) * 2/L;

psi0 = sin(k1*xx).*sin(k1*yy) * 1/sqrt(2)/pi;

kappa = .1; q = 1-ex;

% Examples 3 and 4 use the same two-mode source, for q=0 and q=-1.

% Since the source is not an eigenfuntion of the Laplacian, so the optimal

% flow is different for q=-1.

case {3,4}

src = (cos(k1*xx).*cos(k1*yy)+cos(3*k1*yy)+.25*sin(3*k1*yy)) * 4*sqrt(2)/5/L;

psi0 = sin(k1*xx).*sin(k1*yy) * 1/sqrt(2)/pi;

kappa = .1; q = 3-ex;

case 5

% Unmixing solution

src = (cos(k1*xx) - .5).*sin(k1*yy) * 2*sqrt(2/3)/L;

psi0 = sin(k1*xx).*sin(2*k1*yy) * 1/sqrt(5)/pi;

scalefac = -N^2; % Set scale factor negative to minimize instead

kappa = 1/4; q = 0;

end

if ~exist(’scalefac’), scalefac = N^2; end

[psi,Effq] = velopt(psi0,src,kappa,q,L,scalefac);

fprintf(1,’Eff_%d=%f\n’,q,Effq)

figure(1)

Nplot = 64; % Interpolate solution for plotting

psir = refine2(psi,Nplot); srcr = refine2(src,Nplot);

xplot = L*(0:Nplot-1)/Nplot; yplot = xplot’;

imagesc(xplot,yplot,srcr), colorbar, hold on

contour(xplot,yplot,psir,10,’EdgeColor’,’k’), hold off

2 Program file velopt.m

function [psi,Effq] = velopt(psi0,src,kappa,q,L,scalefac)

% Problem parameters for Matlab’s optimizer fmincon.

psi0 = psi0(:); problem.x0 = psi0(2:end);

problem.objective = @(x) normHq2(x,src,kappa,q,L,scalefac);

problem.nonlcon = @(x) nonlcon(x,src,kappa,q,L,scalefac);

problem.solver = ’fmincon’;

problem.options = optimset(’Display’,’iter’,’TolFun’,1e-10,...

’GradObj’,’on’,’GradConstr’,’on’,...

’algorithm’,’interior-point’);

[psi,Hq2] = fmincon(problem);

% Mixing efficiency: call normHq2 with no flow to get pure-conduction solution.

Effq = sqrt(normHq2(zeros(size(psi)),src,kappa,q,L,scalefac) / Hq2);

psi = reshape([0;psi],size(src)); % Convert psi back into a square grid

%=======================================================================

function [varargout] = normHq2(psi,src,kappa,q,L,scalefac)

N = size(src,1); src = src(:);
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% 2D Differentiation matrices and negative-Laplacian

[Dx,Dy,Dxx,Dyy] = Diffmat2(N,L); mlap = -(Dxx+Dyy);

if q ~= 0 && q ~= -1, error(’This code only supports q = 0 or -1.’); end

psi = [0;psi]; ux = Dy*psi; uy = -Dx*psi;

ugradop = diag(sparse(ux))*Dx + diag(sparse(uy))*Dy;

if q == 0

Aop2 = (-ugradop + kappa*mlap);

elseif q == -1

Aop2 = mlap*(-ugradop + kappa*mlap);

end

Aop1 = (ugradop + kappa*mlap)*Aop2;

% Solve for chi, dropping corner point to fix normalisation.

chi = [0; Aop1(2:end,2:end) \ src(2:end)];

theta = Aop2*chi;

% The squared H^q norm of theta.

varargout{1} = L^2*sum(theta.^2)/N^2 * scalefac;

if nargout > 1

% Gradient of squared-norm Hq2.

gradHq2 = 2*((Dx*theta).*(Dy*chi) - (Dy*theta).*(Dx*chi));

varargout{2} = gradHq2(2:end) / N^2 * scalefac;

end

%=======================================================================

function [c,ceq,gc,gceq] = nonlcon(psi,src,kappa,q,L,scalefac)

psi = [0;psi]; N = size(src,1);

c = []; gc = [];

[Dx,Dy,Dxx,Dyy] = Diffmat2(N,L); % 2D Differentiation matrices

U2 = L^2*(sum((Dx*psi).^2 + (Dy*psi).^2)/N^2);

ceq(1) = (U2-1) * scalefac;

if nargout > 2

% Gradient of constraints

mlappsi = -(Dxx+Dyy)*psi;

gceq(:,1) = 2*mlappsi(2:end) / N^2 * scalefac;

end
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