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1 Introduction

In this lecture we will try to understand local or Lagrangian theories involved in mixing
of passive scalars. This involves solving the advection-diffusion (AD) equation along fluid
trajectories. The origins of these local theories can be traced to Batchelor’s idea of describing
the flow via spatially-constant strain-rate matrices with prescribed time dependence [2].
Kraichnan addressed the problem next by considering the velocity field in the AD equation
to be a stochastic Gaussian field with a time correlation that decays infinitely rapidly (or
is white in time) and a spatial correlation that has a power-law structure [6]. This led
to solving a stochastic differential equation. Zeldovich encountered the problem in the
context of heat diffusion and the magnetic dynamo and adopted a random matrix theory
approach [13–15]. More recently, tools from large deviation theory and path integration
have aided in obtaining a complete solution of the problem, as will be discussed in this
lecture.

Let us revisit the AD equation,

∂tθ + u · ∇θ = κ∇2θ, Ω = R2 or R3. (1)

As mentioned before θ(x, t) denotes a passive scalar field (say concentration of dye) and u(x, t)
is the ambient velocity field which stirs the scalar as it diffuses with a diffusivity κ.

Previously (Lecture 1) we have examined how a “patch” of dye evolves in an extensional
flow, u = (λx,−λy). We will now address the evolution of a passive scalar when acted upon
by an arbitrary linear flow. By definition, for a linear flow the velocity field depends linearly
on the position. Rigid body rotation, extensional flow, and simple shear are some classic
examples of linear flow. In general,

u(x, t) = U(t) + x ·A(t), Tr(A) = 0, (2)

where A(t) is the velocity gradient tensor. The requirement for it to be traceless is a conse-
quence of incompressibility of the flow field (∇·u = 0). For turbulent or Lagrangian-chaotic
flows, A(t) is a random matrix, having a finite correlation time, which is the Lagrangian
correlation time of the velocity. Here U(t) is a uniform flow. The advantage of using linear
flows lies in making the problem analytically tractable and most importantly it serves as a
nice prototype for more complicated flows. We will simplify things further by considering
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(a) (b)

Figure 1: Advection of a concentration field by a simple shear flow, u = (Ux, Uy) = (γ̇y, 0)
(neglecting diffusion, γ̇ assumed constant). An intially isotropic concentration field (a) gets
both stretched and rotated by the background flow (b).

the limit of high Schmidt number, which is a dimensionless quantity defined as

Sc := ν/κ

where ν is the kinematic viscosity of the fluid and κ as already mentioned is the diffusivity
of the scalar. (If the scalar is heat, then the Schmidt number becomes the Prandtl number.)
Momentum diffuses significantly faster than the passive scalar for flows with large Sc. This is
the desired limit for chaotic advection: Sc� 1 ensures that the velocity field appears much
smoother than the passive scalar concentration, allowing the linear local approximation (2).
This is the regime that was studied by Batchelor and leads to the celebrated Batchelor
spectrum. For Sc ≤ 1 we have the Kolmogorov-Obukhov-Corrsin regime, where the scalar
gets advected by the turbulent inertial range, unlike the Batchelor regime. (We will not be
discussing the KOC regime in this lecture.)

2 ‘Inertia tensor’ of a patch of passive scalar

It is of great interest to understand the response of a passive scalar to a flow with chaotic
Lagrangian trajectories. As already discussed, a decent approximation to such a velocity
field can be made by superposing random linear flows (in the limit Sc � 1). In order
to get a statistical description of the passive scalar field subjected to such an ensemble of
linear flows, we need to understand the behaviour of the moments of θ(x, t). We use angle
brackets to denote the volume-integrated value of a quantity (similar to an average),

〈f〉 =

∫
Ω
f dV .

We have already seen (Lecture 1) that when the domain is either periodic or is bounded by
insulating walls then

∂t〈θ〉 = 0, (3)
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that is, the mean value of θ is conserved. This is a consequence of the no-net-flux boundary
condition imposed on the system. To track the evolution of ‘a blob of dye,’ one can define
the ‘center of mass’ of θ as

ci =
〈xiθ〉
〈θ〉

. (4)

To obtain an evolution equation for c we consider the first moment of the AD equation,
and integrate by parts a few times:

∂t〈xiθ〉+ 〈xi∇ · ((U + x ·A)θ)〉 = κ〈xi∇2θ〉,
⇒ ∂t〈xiθ〉 − 〈(Uj + x`A`j)θ∂jxi〉 = 0,

⇒ ∂t〈xiθ〉 − Ui〈θ〉 −A`i〈θ〉c` = 0, (∂jxi = δij)

which leads to
ċ = U + c ·A . (5)

Here the overdot represents a derivative with respect to time. In the calculation the contri-
bution due to the dissipative term disappeared due to the no-net-flux boundary conditions.
Thus the center of mass of the patch gets advected by the background flow.

Proceeding to the calculation for the next moment we define the ‘inertia tensor’ of the
patch as

Mij =
〈xixjθ〉
〈θ〉

− cicj .

The additional −cicj term makes M translationally invariant. By construction M is also
a symmetric matrix. We proceed in similar fashion as above to obtain the corresponding
evolution equation for M :

∂t〈xixjθ〉+ 〈xixj∇ · ((U + x ·A)θ)〉 = κ〈xixj∇2θ〉
⇒ ∂t〈xixjθ〉 − Uj〈xiθ〉 − Ui〈xjθ〉 −Apj〈xixpθ〉 −Api〈xjxpθ〉 = 2κδij〈θ〉
⇒ ∂t (Mij + cicj)− Ujci − Uicj −Apj (Mip + cicp)−Api (Mjp + cjcp) = 2κδij

⇒ ∂tMij + ci (∂tcj − Uj − cpApj) + cj (∂tci − Ui − cpApi) = MipApj +ApiMjp + 2κδij

so that finally
Ṁ = M ·A + A† ·M + 2κI . (6)

Thus we have obtained an evolution equation for the ‘inertia tensor’ of the patch. Here A†

denotes the transpose of the velocity gradient tensor.
The solution for c(t) and M(t) can be explicitly written as

c(t) = c(0) · e
∫ t
0 A(τ1)dτ1 +

∫ t

0
U(τ) · e

∫ t
τ A(τ1)dτ1dτ , (7)

M(t) = e
∫ t
0 A†(τ1)dτ1 ·M(0) · e

∫ t
0 A(τ1)dτ1 + 2κ

∫ t

0
e
∫ t
τ A†(τ1)dτ1 · e

∫ t
τ A(τ1)dτ1dτ . (8)

Here the quantity eB is a matrix exponential, defined by the usual power series

eB = I + B + 1
2B ·B + . . . .
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It should be noted that in the expression (8) for M(t) the two matrix exponentials cannot

be combined and written as e
∫ t
τ (A

†+A)(τ1)dτ1 . For matrix exponentials, eB1+B2 = eB1 · eB2

only if the matrices B1 and B2 commute. The velocity gradient matrix, A, is typically a
non-normal matrix (AA† 6= A†A).

For a simple shear flow, we have u = (γ̇y, 0) and

A =

(
0 0
γ̇ 0

)
.

Since A is nilpotent (A2 = 0), the matrix exponential has only two terms in its power series
representation, so that

eAt = I + At =

(
1 0
γ̇ t 1

)
.

3 Computation of Lyapunov exponents

Since M is a symmetric matrix the eigendecomposition takes the simple form

M = RDR† (9)

where R is an orthogonal matrix (the columns of which are eigenvectors of M), and D is
real and diagonal (having the eigenvalues of M on the diagonal). When the eigenvalues are
sufficiently distinct, the radial and angular degrees of freedom decouple from each other, as
we will now show. (Our derivation parallels that of [1].) Let us substitute the expression
(9) in the evolution equation (8):

ṘDR† + RDṘ† + RḊR† = RDR†A + A†RDR† + 2κI,

R†ṘD + DṘ†R + Ḋ = DR†AR + R†A†RD + 2κI. (10)

Since
d

dt
(R†R) = Ṙ†R + R†Ṙ = 0

both Ṙ†R and R†Ṙ are antisymmetric matrices. Thus in equation (10) the first two terms
on the left do not have any diagonal elements. Denoting Ã = R†AR as the rotated velocity
gradient matrix we have the following equation for the diagonal elements,

Ḋii = 2ÃiiDii + 2κ ,

where repeated indices do not indicate summation. If we assume Dii = e2ρi (ρi > 0 denotes
extension whereas ρi < 0 represents compression) then one has

ρ̇i = Ãii + κe−2ρi . (11)

Without loss of generality, we arrange the eigenvalues e2ρ1 , e2ρ2 , . . . , e2ρd in non-increasing
order:

ρ1 ≥ ρ2 · · · ≥ ρd (12)

where d is the dimension of space.
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Figure 2: The diffusive term (κe−2ρi) in the equation for ρi would be negligible along the
extensional axis compared to the compressional direction.

Having worked with the diagonal matrix, D, let us focus on the eigenvector matrix, R.
Considering the off-diagonal terms of equation (10),

[R†ṘD]ij = [R†Ṙ]i`D`j = [R†Ṙ]ijDjj

[DṘ†R]ij = Di`[Ṙ
†R]`j = −[R†Ṙ]ijDii

where repeated indices do not indicate summation. Let us define R†Ṙ = Ω, an antisym-
metric matrix. Thus we have,

(Djj −Dii)Ωij = DiiÃij + ÃjiDjj

Ωij =
e2ρiÃij + e2ρj Ãji

e2ρj − e2ρi
, i 6= j (13)

Let us assume there exists scale separation in ρ’s (ρ1 � ρ2 � · · · � ρd).
1 Thus if ρi � ρj ,

the t� 1 solution is

Ωij ≈
{
−Ãij , i < j

Ãji, i > j
(14)

Thus Ã is independent of the eigenvalues and we can solve equation (11) directly,

ρi(t) = ρi(0) +Ai(t) + 1
2 log

[
1 + 2κe−2ρi(0)

∫ t

0
e−2Ai(t′)dt′

]
(15)

where Ai(t) =

∫ t

0
Ãii(τ)dτ .

When diffusion vanishes (κ = 0), this reduces to

ρi(t) = ρi(0) +

∫ t

0
Ãii(τ)dτ . (16)

1This is almost always true for long times, but it may fail locally or due to a symmetry in the problem.
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The κ = 0 case can be used to compute Lyapunov exponents2 from the eigenvalues of M :

λi = lim
t→∞

log(eρi(t))

t
= lim

t→∞

ρi(t)

t
(17)

The convergence of the above limit is assured by Oseledec’s multiplicative ergodic theo-
rem [7].

A blob of initial size L will become an ellipsoid with the length of its main axis changing
as exp(λit) along directions corresponding to positive and negative Lyapunov exponents.
The rate of decrease of the smallest dimension is determined by λd. Because of diffu-
sion, the contraction terminates after a time, tκ ≈ |λd|−1 log(L2|λd|/κ), when the diffusive
lengthscale, rκ =

√
κ/|λd| is attained.

4 Large-deviation form of the central limit theorem3

To form a probabilistic theory of mixing, we make A, and therefore ρ1 and ρ2 (we restrict
to d = 2 dimensions from now), into random variables and deduce the approximate long-
time moments of concentration. To do so, we require a central limit theorem (CLT) which
is also valid for large deviations.

Let xi be i.i.d. (independent and identically distributed) random variables with finite
mean x̄ and variance σ2. Let x be the mean of n such xi. Roughly speaking, the classical
CLT asserts that

P (x, n) ∼ 1√
2πnσ2

exp

(
− n(x− x̄)2

2σ2

)
when n� 1 and x− x̄ < σ√

n
.

The theorem applies to large n, but the condition that x−x̄ < σ√
n

means that as n gets large,

the region around the mean to which the theorem applies grows increasingly narrow. If one
is concerned about the tails of the distribution, the theorem is not powerful enough. This
is not surprising since it contains only second-moment information about the xi variables,
and higher moments may be critical at the tails. In the theory of mixing, the tails of the
ρ PDF’s are indeed significant, so we must use the large deviation form of the CLT, which
is stronger and uses information from all moments of the xi variables. The significance of
the tails will be evident a posteriori from the analysis using the large deviation CLT. The
large deviation CLT asserts that

P (x, n) ∼ exp (−nS(x− x̄)) ,

where S is the Cramér function (or rate function, or entropy function) determined by the
PDF p(xi). (In these notes we typically neglect algebraic prefactors in asymptotic relations,
such as the one above.) Whatever the form of p(xi), S is convex, and S(0) and S′(0) vanish.
Taylor expanding S about 0 in the large deviation CLT, the first nonzero term is quadratic

2Lyapunov exponents describe the rate at which infinitesimally close trajectories in a dynamical system
diverge from each other. A chaotic system is usually indicated by a positive infinite-time Lyapunov exponent.

3The ‘facts’ invoked in this section come from theorems which for the most part give bounds, not equali-
ties. We are leaving out many details that are necessary to make the theory rigorous. See for example [3,8,11]
for more details.
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in x− x̄. Truncating after this term recovers the classical form of the CLT, so the classical
form simply approximates the large deviation form to the first nontrivial order. The explicit
expression for the Cramér function in terms of p(xi) involves forward and inverse Fourier
transforms, which generally cannot be explicitly evaluated. Rather than prove the large-
deviation CLT or derive the general expression for the Cramér function (see e.g. [3,8,10,11]),
we shall merely derive the Cramér function explicitly in the simple case where the xi have
a Bernoulli distribution, though the general formula for S may be derived by an analogous
procedure.

5 Large deviation CLT for the Bernoulli distribution

Let xi have the PDF of a fair coin,

p(xi) = 1
2δ(xi + 1) + 1

2δ(xi − 1).

The characteristic function of a random variable is the Fourier transform of its PDF, gen-
erally written in the form e−s(k). We wish to derive p(x, n), the PDF of the mean x of n
random variables xi. We are given p(xi), not p(x, n), but we can express the latter in terms
of the former. Because the xi are independent, the joint distribution of x1, ..., xn is simply
the product of their individual PDF’s, so

p(x, n) =

∫
p(x1, ..., xn)δ

(
x− 1

n

n∑
i=1

xi

)
dx1 · · · dxn

=

∫
p(x1) · · · p(xn)δ

(
x− 1

n

n∑
i=1

xi − x
)
dx1 · · · dxn.

It is hard to compute the PDF directly from the PDF of xi by the above formula. Rather,
we shall compute the generating function of x, and then its PDF. This is easier because
integrating out x-dependence allows us to then integrate out the xi variables. The generating
function of x is

e−S(k) =

∫
p(x, n)e−ikxdx

=

∫
p(x1) · · · p(xn)δ

(
x− 1

n

n∑
i=1

xi

)
e−ikxdx1 · · · dxndx

=

∫
p(x1) · · · p(xn) exp

(
− ik

n

n∑
i=1

x
)
dx1 · · · dxn

=

n∏
i=1

∫
p(xi)e

− ikxi
n dxi

=
(∫

p(x1)e−
ikx1
n dx1

)n
=
(

1
2

∫ (
δ(x1 + 1) + δ(x1 − 1)

)
e−

ikx1
n dx1

)n
= cosn

(
k
n

)
.
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We recover the PDF of x by taking the inverse Fourier transform of its generating function:

p(x, n) = 1
2π

∫
cosn

(
k
n

)
eikxdk

= 1
2π

∫
exp

(
n ln

[
cos
(
k
x

)]
+ ikx

)
dk

= n
2π

∫
exp

(
n[ln(cosK) + iKx]

)
dK,

where K ≡ k
n . The last form of the above integral suggests the stationary phase approx-

imation, since the frequency of the oscillatory part of the integrand goes to infinity as n
does. Omitting the details, the stationary phase approximation yields

S(x) ∼ −1
2(x+ 1) ln

(
1−x
x+1

)
+ ln(1− x).

The classical form the the CLT would give only

p(x, n) ∼ exp
(
− N

2 S
′′(0)(x− x̄)2

)
∼ exp

(
− (x−x̄)2

2/N

)
.

In this example, the classical CLT overestimates the weight of the tails of p(x, n), though
typically the opposite is the case. In any case, the large deviation form is needed for accuracy
at the tails.

6 Large deviation CLT applied to mixing

Recall that ρ2 has generally become quite small at long times. However, in a fluid with
diffusion, the ρ2 dimension eventually becomes small enough that further contraction by
stretching is balanced by diffusion. This is the Batchelor width,

√
κ/λ1, beyond which the

scalar blob will contract no further. As such late times we can assume that the PDF of ρ2

is stationary in time, so as t→∞,

P (ρ1, ρ2, t) ∼ exp
(
− tS

(ρ1
t − λ1

))
Pstat(ρ2).

The exact stationary distribution of ρ2 is irrelevant to the heuristics of this theory. Suppose
that the concentration at each point in a blob of scalar is inversely proportional to the
blob’s total volume, so

θ(x, t) ∼ (detM)1/2 = e−(ρ1+ρ2).

This is an accurate assumption for a Gaussian blob, for instance. We now combine the
above approximations to estimate the expectation of θα.

〈θα〉(t) ∼ C(t)

∫
e−α(ρ1+ρ2) exp

(
− tS

(ρ1
t − λ1

))
Pstat(ρ2)dρ1dρ2

∼
∫
e−αρ1 exp

(
− tS

(ρ1
t − λ1

))
dρ1,
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Figure 3: Generic S(x) and S(h − λ1). When α > αc, there is no positive h∗ such that
S′(h∗ − λ) = −α, so we must choose h∗ = 0 for the saddle-point approximation.

where C(t) is a normalization that is algebraic in t and is therefore asymptotically dominated
by the integral, so we have ignored it along with whatever constant emerges from integrating
over ρ2. Letting h ≡ ρ1

t ,

〈θα〉(t) ∼
∫
e−t
(
αh+S(h−λ1)

)
dh =

∫
e−tH(h)dh,

where H(h) ≡ αh + S(h − λ). This integral may be approximated by the saddle-point
method for large t.

The saddle-point method typically asserts that

〈θα〉(t) ∼ e−H(h∗)t,

where h∗ is such that H ′(h∗) = 0, i.e. such that S′(h∗−λ1) = −α. In the present case, it is
not always possible to choose such an h∗ because h must be nonnegative. This is clear from
the generic S and S′(h − λ) curves plotted in Figure 6. Whatever the exact form of the
Cramér function, S′(h) begins at the origin and increases monotonically in h, so S′(h− λ)
begins at some negative point (0,−αc) and increases monotonically in h. When α < αc,
H ′(h∗) = 0 is possible, but when α > αc, the best we can do is to choose h∗ = 0. That is,

〈θα〉(t) ∼ e−t
(
αh∗+S′(h∗−λ1)

)
,

where h∗ = max
{

0, λ+ (S′)−1(−α)
}

. Neglecting large deviations, the classical CLT would
have given a decay rate of −αλ, which is an upper bound on the decay rate we derived. In
fact, the tails of the PDF of ρ1 act significantly to slow the decay of concentration. Above
αc, 〈θα〉(t) is constant in α. We may understand this plateauing as high concentration
blobs dominating the expectation for large α. These are the blobs that have experienced no
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stretching, so α > αc moments are determined solely by realizations of θ without stretching.
Note that the plateauing of moments also means that the Lα norm of θ vanishes as α→∞,
which is characteristic of intermittency.
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