
The Stability of Boundary Layer Flows

Summer Fellow: J.D. Zika

Advisor: S.A. Thorpe

Produced as part of the 49th Summer Program in Geophysical Fluid Dy-

namics at the Woods Hole Oceanographic Institution, Massachusetts 2007

Abstract

This study aims to answer the question: Are stably strati�ed

boundary layer 
ows marginally unstable? Using the Taylor Gold-

stein equation, we analyse the linear stability of a number of observed

mean 
ows in stably strati�ed boundary layers. We �nd that al though

Kelvin Helmholtz instability may occur the growth rates of u nstable

modes are small compared to the time scales of 
uctuation in the 
ow

and in all cases where unstable or stable modes are found a change in

velocity shear of no more than 20% is required to stabilise ordesta-

bilise the 
ow, respectively. The implications of these results and

potential for further studies are discussed.

1 Introduction

In his book Buoyancy E�ect in Fluids J.S. Turner (1973) makes the follow-

ing conjecture regarding gravity driven 
ows down a uniformslope: `While

turbulence is present the drag on the layers increases and the velocity falls,

but when it is suppressed the 
ow is accelerated again by gravity'. The mean
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ow is consequently self-controlled close to a state at which turbulence sets

in and is one of marginal stability. This study presents evidence in support of

Turner's conjecture that boundary layer 
ows are maintained in a marginal

state of stability, which we shall assume is that in which small disturbances

to the mean 
ow have zero growth rate.

Our method for analysing the stability of such 
ows shall be to use the

Taylor-Goldstein equation
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!

� = 0 (1)

where the perturbation streamfunction is (x̂; ẑ; t̂) = � (ẑ)e[ik (x̂ � C t̂ )] with

wave numberk, phase speedC = Cr + iC i and mean velocityU and the

bouncy frequencyN̂ 2 = � g� z=� (variables with a hat are in their dimensional

form and will later be nondimensionalised). The Taylor-Goldstein equation is

derived from the mass and momentum conservation equations fora strati�ed


uid without rotation and describes the evolution of an initial disturbance to

the steady, inviscid and unidirectional strati�ed 
ow under a velocity shear.

In using (1) we implicitly disregard the stresses and eddy di�usivities asso-

ciated with turbulent motion. The common dimensionless number used to

characterise the 
ow is the Richardson numberRi = N̂ 2=(Uz)2.

The canonical theorem of Miles and Howard (Miles, 1961) (Howard, 1961)

shows, using 1, that steady, inviscid and unidirectional 
ows with Richardson

numbers above a quarter everywhere in the 
ow arestable to small pertur-

bations (Drazin and Reid, 1981). Although it is commonly espoused that


ows are unstable below this critical value it is in fact (theoretically at least)

not the case. For particular 
ows with U and � prescribed, Hazel (1972) has

shown that when the boundary of a strati�ed 
ow is not at in�nity the insta-
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bility can be inhibited and the critical value of minimum Richardson number

(called J ) is reduced. As is shown in �gure (1) as the distance from the

boundary increases the region where growing waves exist and perturbations

can grow decreases. Indeed where the boundaries are within 1.5H (H being

the typical height scale) of the shear the 
ow is stable for Richardson numbers

above 0.125 and almost always for 1.25H. Indeed, even if the strati�cation

is increased (increasingRi ) the stability is not necessarily increased, Thorpe

(1969) and Miles (1963) both show cases where the presence or increase in

strati�cation can reduce the stability of a 
ow. Such examplessuggest that

the stability of a shear 
ow can not accurately be described by the Richard-

son number at an isolated point alone but solutions to the Taylor-Goldstein

equation involving representation ofU and �̂ as functions ofẑ over the entire


ow should be considered.

The body of evidence in support of Turner's conjecture is smalland not

yet convincing. Indeed the original statements are made withreference to

the laboratory studies of Mittendorf (1961) who showed how theKelvin-

Helmholtz mechanism reduces the shear leading to a maintenanceof a gravity

driven 
ow in a state of marginal stability. Thorpe and Hall discussed such

a concept in their study of a wind driven 
ow in Loch Ness, Scotland(1977).

Small perturbations were shown to be likely to grow if the Richardson number

were increased from that observed by only 10% (i.e. an increase in the mean

shear of only 5%). Merrill (1977) examined the linear stability of an air
ow

near the ground and although he did not estimate whether the 
ow was

`marginally' unstable he found that for a boundary 
ow with J = 0:15, the

growth rates of the most unstable modes were small. Nielsen (1991)looked

at instability on a frontal inversion in the Atmosphere and although unstable

modes where not found for the observed pro�les, he was able to extrapolate
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Figure 1: Stability boundaries for `tanh' pro�les at nondimensional distances
marked. The vertical axis J represents the minimum Richardson number
(found at z = 0) and the dimensionless wavenumber� = kH for some
typical length H . (Taken from Hazel (1972)).
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from unstable modes found by reducing the Richardson number ofthe 
ow

and found that the observed pro�les were at or very near a state of marginal

stability. As in this study numerical problem often arise when such stability

analysis is conducted on actual pro�les of velocity and density. A recent

study by Thorpe and Ozen (2007) (hereafter TO07) has asked the question

of whether boundary 
ows are marginally stable. They look at acascading


ow in Lake Geneva and �nd that both a functional �t to the data and the

data itself in a canonical case, are unstable but only marginally so.

Boundary currents and how they in
uence the dynamics of the Ocean and

Atmosphere is currently the subject of great interest in geophysical research.

Two examples of stably strati�ed boundary currents were mixing and tur-

bulence are known to be of great importance in the Ocean are wind driven


ows in the presence of surface heating and gravity driven boundary currents

that feed dense water into the major ocean basins. Correctly describing such


ows and the instabilities that can arise from them is extremely important

for numerical models of the Climate System.

The consequences of boundary 
ows being generally in a state ofmarginal

stability (if that can be shown) is important from the point of view of nu-

merical models. It is customary in many numerical models, to mixand

entrain 
uid in a strati�ed 
ow when the Richardson number drop s below

the canonical 1/4 value or to adopt an empirical entrainmentcoe�cient. As

we have discussed, boundaries may act to stabilise the 
ow despite such a

shear existing. It would preferential to use linear stability analysis, rather

than simply the Ri condition to assess the accuracy, and thus constrain, a

numerical model and test whether numerically predicted 
owsare, like those

observed, close to marginal stability.

The following section of this report, Section (2), establishesthe theoretical
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framework under which we will conduct our stability analysis. Section (3)

discusses the data collected from a cascading 
ow in Lake Geneva and section

(4) describes the results of our linear stability theory. A discussion of the

implications of these results and ongoing research are discussed in section

(5).

2 Nondimensionalisation and Boundary Con-

ditions

We follow the same nondimensionalisation as that of TO07 whereh is de�ned

by the thickness of the current,z = ẑ=h, u = U=Umax , c = Ĉ=Umax , g� is

the reduced gravity (� = ( � (z = 0) � � (z = 1)) =(� (z = 0) + � (z = 1)))

and Umax is the maximum velocity di�erence in the 
ow (see Figure (2)) and

N 2 = g� N̂ 2=h and the Taylor-Goldstein equation (1) becomes

@2�
@z2

+

 
N 2

Fr 2(u � c)2
� � 2 �

@2u
@z2

u � c

!

� = 0: (2)

where the Froude numberF r = Umax =
p

g� h

The data we will use to assess the linear stability of boundary layer 
ows

will, in the majority of cases, be limited to the region of the boundary 
ow

itself. In previous treatments of 
ow using the Taylor-Goldstein equation it

is assumed that there is some point in the 
ow where a solid boundary exists

such that � = 0. In cases where we have only data in the 
ow region it is more

preferable to assign some mean strati�cation and 
ow to the region distant

from the 
ow or interior (i.e. for z > 1). For our purposes we will assume the

interior has the following properties: the mean 
ow (u,v) and density (� ) are

constant in x, y, z and t, the mean 
ow is hydrostatic such that @p
@z= � �g and
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Figure 2: A schematic showing how the scalesUmax , h, the perturbation
streamfunction 	, potential 
ow ' and free surface displacement in the
matching region� are de�ned for a typical 
ow pro�le.
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it is irrotational. In the upper region (z > 1) there exists a potential 
ow ' =

Aek(z� 1)ei� (x � ct) which will be matched to the perturbation streamfunction

close toz = 1 where the free surface displacement is� = aei� (x � ct) . Here A

and a are unknown constants. Assuming the 
ow is two dimensional (for the

time being) we write a linearized equation for� (eliminating u0@�
@x terms) at

the interface between the two regions (^z = 1 + � )

@�
@t

+ u
@�
@x

= w (3)

where w = w0 = @'
@z = � @	

@x and u is at the interface. Substituting our

potential ' into the above equation we geta = '= (c � u) and A = i' .

Below z = 1 + � and we may describe the pressure as having a mean and

wave component such thatp = P(z) + p(z)ei� (x � ct) and we may invoke the

hydrostatic approximation also (P(z) = P0 + g
R1

z �dz ). The momentum

equation for the perturbation in this region is

@u
@t

+ u
@u
@x

+ w
@u
@z

= �
1
�

@p
@x

: (4)

Recalling that @	
@z = u and @	

@x = � w we have

p = �
�
(c � u)

@�
@z

+ �
@u
@z

�
(5)

and therefore the total pressure atz = 1 is

P = P0 +
�

� ga� (h) + �
�
(c � u)

@�
@z

+ �
@u
@z

�
ei� (x � ct)

�
: (6)

Bernoulli's equation for the upper region is

P
�

+
@'
@t

+
1
2

(u + u)2 +
1
2

(w + w)2 + gz = B (7)
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whereB is a constant and thus the pressure atz = 1 (determined from the

upper side) is also

P = �
�

C �
1
2

u2 � gh + [ ik (c � u)A � ga]ei� (x � ct)

�
: (8)

Matching the pressure described by (5) and (8) and assuming the velocity

and density are continuous atz = 1+ � it follows that the boundary condition

at z = 1 is

(c � u)
@�
@z

+
@u
@z

� + � (c � u)� = 0: (9)

3 Boundary Flow Data from Lake Geneva

The data we shall use to investigate the stability of cascading boundary 
ows

comes primarily from Lake Geneva. In winter, during cold nights, shallow

regions of the Lake are cooled and these form cascading gravitycurrents

which 
ow down the boundaries of Lake Geneva (Feret al., 2001). Pro�les

of density (� ), downslope velocity (U) and across slope velocity (V) have

been collected from the bottom to 25m above equating to abouta third of

the overall water column. An example of such a 
ow is shown in Figure (3)

with a density section taken down the slope.

The 
ow displays hallmarks of many forms of instability. The 
ows are

punctuated by pulses of water consistent with roll waves in steepopen channel


ows (Fer et al., 2001). Hydraulic jumps can occur in the 
uid and the

stability of such events is discussed in Thorpe and Ozen's Study. Atime series

of both U and V along with temperature is shown in �gure (4). The 
ow

is clearly unsteady, and probably turbulent, although data are not presently

available to characterise the variability at frequencies less than about 0.01Hz.

The data we shall consider in this study are 2hr averages taken ofboth the
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Figure 3: Cold water spilling down the sloping side of Lake Geneva from
shallow water. Temperature contours at 0.05oC from a CTD section made
on the northern side of Lake Geneva between 1030-1330 hrs local time, 23
December 1998 after a period of nocturnal cooling with positive surface buoy-
ancy 
ux. Station positions are marked by arrows at the top. Circles show
the positions of temperature miniloggers .A and B mark positions of vertical
arrays and C marks a warm front in shallow water. Taken from Feret: al
(2001).
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Figure 4: Contour plots of the recorded temperature and velocity data during
an interval of 5.5, starting from 22 January 2004, 09:00 PM. Panel (a) shows
temperatures, (b) East-West and (c) North-South components of the velocity.
Data for case one is a 2 hour average taken between times markedon panel
(c) (Ozin private communication).
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Figure 5: Density (panel a), down-slope (solid) and along-slope(dashed)
velocity (panel b) and Richardson number (panel c) for case 1.

down slope and along slope components of the velocity. Measurements are

taken on an incline which is typically of similar order to thatshown in �gure

(2) and are chosen speci�cally to be those with steady slopes. The quality of

the data reduces close to 25m from the bottom and the shear becomes weak.

We thus match the data smoothly to constant pro�les of density and velocity

close to this height taken asz = 1.

The two examples we shall consider are characterised as follows:Case

1, shown in �gure (5), the 
ow has a canonical shape in the down-slope

direction, similar to those discussed in TO07 but there exists a signi�cant

mean 
ow in the along-slope direction. The 
ow around Lake Geneva is

often cyclonic, the along-slope 
ow in this case being toward the West (the
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Figure 6: Density (panel a), down-slope (solid) and along-slope(dashed)
velocity (panel b) and Richardson number (panel c) for case 2.

measurements are taken on the northern side of the lake). It is possible that

Ekman e�ects are occurring in the boundary layer driving 
owup the slope

(i.e. to the right of the along slope 
ow) competing with the gravity driven

cascade. We do not consider such e�ects in this study. The 
ow in case 2

(�gure 6) is largely down-slope but displays a curious double hump structure

perhaps due to the 
uid mixing in various layers as it moves down the slope.

The presence of two in
ection points may allow the development of multiple

modes of instability. In both case 1 and case 2 the Richardson number falls

well below the `critical' value of 1/4 and so the Miles-Howard theorem tells

us that instabilities `may' occur and linear stability to the K-H mechanism

is not assured.
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Figure 7: Image showing typical 
ow of cold water down slope (U) along
slope mean 
ow (V) both of order 5cms� 1 and measured over a vertical scale
of 25m
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4 Stability analysis of strati�ed shear 
ow

We wish to solve the Taylor Goldstein equation (2) searching for the Eigen-

value c of the fastest growing modes. As well as the condition on the upper

boundary of the 
ow described in section (2), the solid boundarybeneath

the 
ow allows us to impose a no normal 
ow condition (� (z = 0) = 0 ).

The Howard semicircle theorem states that [Cr � 1=2(Umax + Umin )2] + C2
i �

[1=2(Umax � Umin )]2, whereUmax and Umin are the maximum and minimum

values of the velocity. Initial attempts to solve (2) were made using a shoot-

ing method similar to those of Merrill (1977), and TO07. For themeasured

values ofU and � , coherent solutions to the Eigenvalue problem are not found

and the solution is dominated by modes associated with numerical instabil-

ities. Many techniques are attempted to abate such di�cultiesincluding,

changing the grid resolution, constraining the modes possible and �tting the

data with smoother cubic spline functions but no method yieldscoherent

results for the observed velocity and density pro�les. The scheme(which we

will call M1), despite being checked against `synthetic cases' generated from

the hyperbolic tan pro�les used by Hazel (see �gure 1), is only able to resolve

stability curves for the observed velocity and density pro�lesfor increased

Fr (discussed later) .

In order to avoid stability problems at smallci and to allow more e�cient

search for eigenvalues, a second method (M2) is developed. In M2we write

(2) in the following form

(D 2 + F (c)) = 0 (10)

whereD 2 is the second derivative operator andF (c) is function of the known

mean velocity and density pro�les andc. Eigenvaluesc exist when the de-

15



terminant of D 2 + F (c) is zero. An advanced nonlinear root �nder is used to

�nd the roots of this expression and far more accuracy is found close to the

observed Froude number than M2 but the same results are yielded for the

cases shown in this report.

Our aim is to determine how far from being at the margin between sta-

bility and instability the observed pro�les are or more precisely, how much

would we need to increase or decrease the mean velocity (or change the strat-

i�cation) to have a 
ow regime where in�tesimal disturbances grow. In order

to do this we introduce a factor� by which we shall divide the Froude num-

ber. A value of� = 0 translates to an in�nite mean velocity, no strati�cation

or some combination of the two extremes while� = 1 translates to the ob-

served velocity and density pro�les. By starting at� = 0 and iterating toward

� = 1 we can observe the trend in the maximum growth rates of the most

unstable modes. This technique is similar to that used by Nielsen (1991) and

TO07 increasing the bulk Froude number of the 
ow by the factor1=� and

extrapolating to a value of the Froude number such that the 
owbecomes

marginally stable. Figure (8) shows such curves for case 1 for epsilon=0 to

0.5 in steps of 0.1.

As we have both components of the velocity we may continue this2 dimen-

sional analysis, but as in (Thorpe, 1999) we may orient the 2d disturbance in

each direction� where the velocity in that direction isu� = usin(� ) � vcos(� )

and  (x; z; t) has the same meaning but thex direction is that of � (see �gure

9). We plot the maximum growth rates for each angle� , again for � = 0 to

0:5 in �gure (12). Focusing on angles between � =� 90o and � = 0o rotating

between the along slope and down slope direction we estimate thecritical

values of the bulk Froude number and the critical value of themaximum Ri

of the pro�le. We do this by extrapolating from the approximately linear re-
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Figure 9: A cartoon showing how we may orient disturbances angle � to
the down slope 
ow and use the velocity in that direction to conduct the
stability analysis.

lationship between� and Ci � to a point where the growth rate would change

sign. An example of this linear relationship for the down slope 
ow of case

1 is shown in �gure (10).

The manner in which such extrapolation is conducted is highlysubjective

and such a method is only used to give an estimate of whether the observed


ow is 'close' (i.e. within some range of 10%-20%) to being stable/unstable.

We may follow the same process for case 2. Figure (13) shows the stability

curves, phase speeds and growing modes for di�erent values of� for distur-

bances oriented in the down slope direction. Figure (14) again shows the

result of rotating the 2d analysis over various angles� . We see in �gure (14)
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Figure 12: Case 1: Greatest Growth Rate at each angle (panel a) and for
increasing� � F r . Panel b shows a comparison between the observed bulk
Froude number of the 
ow and the critical value inferred fromextrapolating
with increasing � while panel c shows the same but for the peak Richardson
number in that direction.
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Figure 13: Nonsimensionalised Growth Rate (panel a), Phase Speed(panel
b) and (panel c) for various values of� for case 2.

that a decrease in the mean velocity of case 2 reducing the bulk Froude num-

ber from the observed 0.44 to only 0.38, a reduction in the maximum velocity

of only 10-15%, would be enough to prevent perturbations from growing for

all wavenumbers. The stability analysis of case 1 suggests the 
ow is stable

as the extrapolation predicts a critical Froude number above that of the pro-

�le, however an increase in the maximum velocity di�erence ofonly 10% in

the down stream direction would bring the 
ow into the estimated critical

region.
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Figure 14: Case 2: Panel a shows the greatest growth rate at each angle and
for increasing� � F r . Panel b shows a comparison between the observed bulk
Froude number of the 
ow and the critical value inferred fromextrapolating
with increasing � while panel c shows the same but for the peak Richardson
number in that direction.
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Figure 15: Predicted growth rates (panel a) and phase speeds (b) of most
unstable modes at given orientations� , of the perturbation. For all values
shown the wavenumberk is approximately 0.24m� 1 (� � 4:17m)
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5 Discussion and ongoing work

In this study we have looked at two strati�ed boundary 
ows and �nd them

both to be close to marginally stable to Kelvin-Helmholtz instability. We

de�ne the 
ows as marginal if an increase or decrease of the observed mean

velocity of around 10% would render the 
ow unstable or stable (respectively)

to linear (in�nitesimally small) perturbations.

We observe, in case 2 of the cascading 
ows from Lake Geneva, that

instabilities are likely to occur in an orientation 60o downslope of the along

slope direction and with growth rates of order 10� 4s� 1 (i.e. the perturbations

would grow by a factor ofe = 2:71 over a period of 2.5-3hr) phase speeds of

order 0.02ms� 1, and a wavelength of approximately 4.2m. The velocity and

Richardson number pro�le for this angle� are shown in �gure (16). Case 1

is predicted to be stable to K-H instability but an increase in 
ow velocity

of approximately 10% would be likely, according to our analysis, to allow

waves of lengths of order 6m and phase speeds around 4cms� 1 to grow in a

direction down the slope.

As was discussed in section (1) the presence of a boundary can greatly

inhibit the growth of unstable modes and allow smaller Richardson numbers

(i.e. larger shears) to exist without instabilities occurring.In the observed

mean pro�les, only when the minimum Richardson number is below0:1 for

6-7m of the pro�le is it unstable. This may seem surprising to thosewho take

Ri = 1=4 to be the critical point below which instability occurs but there

exist analytical examples such as those of exponentialu and � against a rigid

boundary, where the 
ow is stable to all Richardson numbers. Reinforcing

the assertion that the entire pro�le should be considered when conducting

such stability analysis.

In the two cases discussed the along slope component of the 
ow had
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a nontrivial in
uence on the stability. Indeed, although in case 2 the along

slope component of the 
ow was much smaller than the down slope, the e�ect

on the Richardson number was signi�cant in both pro�les displaying di�erent

minimum Ris at di�erent depths (�gure (6)) leading to a slightly di�eren t,

and apparently more unstable pro�le at the angle of 30o to the right of the

down slope direction.

Although many cases remain to be explored, this work has presented

evidence in support of Turner's conjecture that the mean stateof stably

strati�ed boundary 
ows is maintained in a state of marginal stability. It

remains to be seen if deep ocean over
ows and wind driven surface 
ows, can

be shown to be stable in a similar way and whether simple techniques can

then be applied to the output of numerical model data to asses its stability

and constrain such a model.
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