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Abstract

This study aims to answer the question: Are stably stratified

boundary layer flows marginally unstable? Using the Taylor Gold-

stein equation, we analyse the linear stability of a number of observed

mean flows in stably stratified boundary layers. We find that although

Kelvin Helmholtz instability may occur the growth rates of unstable

modes are small compared to the time scales of fluctuation in the flow

and in all cases where unstable or stable modes are found a change in

velocity shear of no more than 20% is required to stabilise or desta-

bilise the flow, respectively. The implications of these results and

potential for further studies are discussed.

1 Introduction

In his book Buoyancy Effect in Fluids J.S. Turner (1973) makes the follow-

ing conjecture regarding gravity driven flows down a uniform slope: ‘While

turbulence is present the drag on the layers increases and the velocity falls,

but when it is suppressed the flow is accelerated again by gravity’. The mean
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flow is consequently self-controlled close to a state at which turbulence sets

in and is one of marginal stability. This study presents evidence in support of

Turner’s conjecture that boundary layer flows are maintained in a marginal

state of stability, which we shall assume is that in which small disturbances

to the mean flow have zero growth rate.

Our method for analysing the stability of such flows shall be to use the

Taylor-Goldstein equation

∂2φ

∂ẑ2
+

(

N̂2

(U − C)2
− k2 −

∂2U
∂ẑ2

U − C

)

φ = 0 (1)

where the perturbation streamfunction is ψ(x̂, ẑ, t̂) = φ(ẑ)e[ik(x̂−Ct̂)] with

wave number k, phase speed C = Cr + iCi and mean velocity U and the

bouncy frequency N̂2 = −gρz/ρ (variables with a hat are in their dimensional

form and will later be nondimensionalised). The Taylor-Goldstein equation is

derived from the mass and momentum conservation equations for a stratified

fluid without rotation and describes the evolution of an initial disturbance to

the steady, inviscid and unidirectional stratified flow under a velocity shear.

In using (1) we implicitly disregard the stresses and eddy diffusivities asso-

ciated with turbulent motion. The common dimensionless number used to

characterise the flow is the Richardson number Ri = N̂2/(Uz)
2.

The canonical theorem of Miles and Howard (Miles, 1961) (Howard, 1961)

shows, using 1, that steady, inviscid and unidirectional flows with Richardson

numbers above a quarter everywhere in the flow are stable to small pertur-

bations (Drazin and Reid, 1981). Although it is commonly espoused that

flows are unstable below this critical value it is in fact (theoretically at least)

not the case. For particular flows with U and ρ prescribed, Hazel (1972) has

shown that when the boundary of a stratified flow is not at infinity the insta-
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bility can be inhibited and the critical value of minimum Richardson number

(called J) is reduced. As is shown in figure (1) as the distance from the

boundary increases the region where growing waves exist and perturbations

can grow decreases. Indeed where the boundaries are within 1.5 H (H being

the typical height scale) of the shear the flow is stable for Richardson numbers

above 0.125 and almost always for 1.25H. Indeed, even if the stratification

is increased (increasing Ri) the stability is not necessarily increased, Thorpe

(1969) and Miles (1963) both show cases where the presence or increase in

stratification can reduce the stability of a flow. Such examples suggest that

the stability of a shear flow can not accurately be described by the Richard-

son number at an isolated point alone but solutions to the Taylor-Goldstein

equation involving representation of U and ρ̂ as functions of ẑ over the entire

flow should be considered.

The body of evidence in support of Turner’s conjecture is small and not

yet convincing. Indeed the original statements are made with reference to

the laboratory studies of Mittendorf (1961) who showed how the Kelvin-

Helmholtz mechanism reduces the shear leading to a maintenance of a gravity

driven flow in a state of marginal stability. Thorpe and Hall discussed such

a concept in their study of a wind driven flow in Loch Ness, Scotland (1977).

Small perturbations were shown to be likely to grow if the Richardson number

were increased from that observed by only 10% (i.e. an increase in the mean

shear of only 5%). Merrill (1977) examined the linear stability of an airflow

near the ground and although he did not estimate whether the flow was

‘marginally’ unstable he found that for a boundary flow with J = 0.15, the

growth rates of the most unstable modes were small. Nielsen (1991) looked

at instability on a frontal inversion in the Atmosphere and although unstable

modes where not found for the observed profiles, he was able to extrapolate
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Figure 1: Stability boundaries for ‘tanh’ profiles at nondimensional distances
marked. The vertical axis J represents the minimum Richardson number
(found at z = 0) and the dimensionless wavenumber α = kH for some
typical length H. (Taken from Hazel (1972)).
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from unstable modes found by reducing the Richardson number of the flow

and found that the observed profiles were at or very near a state of marginal

stability. As in this study numerical problem often arise when such stability

analysis is conducted on actual profiles of velocity and density. A recent

study by Thorpe and Ozen (2007) (hereafter TO07) has asked the question

of whether boundary flows are marginally stable. They look at a cascading

flow in Lake Geneva and find that both a functional fit to the data and the

data itself in a canonical case, are unstable but only marginally so.

Boundary currents and how they influence the dynamics of the Ocean and

Atmosphere is currently the subject of great interest in geophysical research.

Two examples of stably stratified boundary currents were mixing and tur-

bulence are known to be of great importance in the Ocean are wind driven

flows in the presence of surface heating and gravity driven boundary currents

that feed dense water into the major ocean basins. Correctly describing such

flows and the instabilities that can arise from them is extremely important

for numerical models of the Climate System.

The consequences of boundary flows being generally in a state of marginal

stability (if that can be shown) is important from the point of view of nu-

merical models. It is customary in many numerical models, to mix and

entrain fluid in a stratified flow when the Richardson number drops below

the canonical 1/4 value or to adopt an empirical entrainment coefficient. As

we have discussed, boundaries may act to stabilise the flow despite such a

shear existing. It would preferential to use linear stability analysis, rather

than simply the Ri condition to assess the accuracy, and thus constrain, a

numerical model and test whether numerically predicted flows are, like those

observed, close to marginal stability.

The following section of this report, Section (2), establishes the theoretical
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framework under which we will conduct our stability analysis. Section (3)

discusses the data collected from a cascading flow in Lake Geneva and section

(4) describes the results of our linear stability theory. A discussion of the

implications of these results and ongoing research are discussed in section

(5).

2 Nondimensionalisation and Boundary Con-

ditions

We follow the same nondimensionalisation as that of TO07 where h is defined

by the thickness of the current, z = ẑ/h, u = U/Umax, c = Ĉ/Umax, g∆ is

the reduced gravity (∆ = (ρ(z = 0) − ρ(z = 1))/(ρ(z = 0) + ρ(z = 1)))

and Umax is the maximum velocity difference in the flow (see Figure (2)) and

N2 = g∆N̂2/h and the Taylor-Goldstein equation (1) becomes

∂2φ

∂z2
+

(

N2

Fr2(u− c)2
− α2 −

∂2u
∂z2

u− c

)

φ = 0. (2)

where the Froude number Fr = Umax/
√
g∆h

The data we will use to assess the linear stability of boundary layer flows

will, in the majority of cases, be limited to the region of the boundary flow

itself. In previous treatments of flow using the Taylor-Goldstein equation it

is assumed that there is some point in the flow where a solid boundary exists

such that φ = 0. In cases where we have only data in the flow region it is more

preferable to assign some mean stratification and flow to the region distant

from the flow or interior (i.e. for z > 1). For our purposes we will assume the

interior has the following properties: the mean flow (u,v) and density (ρ) are

constant in x, y, z and t, the mean flow is hydrostatic such that ∂p

∂z
= −ρg and
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Figure 2: A schematic showing how the scales Umax, h, the perturbation
streamfunction Ψ, potential flow ϕ and free surface displacement in the
matching region η are defined for a typical flow profile.
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it is irrotational. In the upper region (z > 1) there exists a potential flow ϕ =

Aek(z−1)eiα(x−ct) which will be matched to the perturbation streamfunction

close to z = 1 where the free surface displacement is η = aeiα(x−ct). Here A

and a are unknown constants. Assuming the flow is two dimensional (for the

time being) we write a linearized equation for η (eliminating u′ ∂η

∂x
terms) at

the interface between the two regions (ẑ = 1 + η)

∂η

∂t
+ u

∂η

∂x
= w (3)

where w = w′ = ∂ϕ

∂z
= −∂Ψ

∂x
and u is at the interface. Substituting our

potential ϕ into the above equation we get a = ϕ/(c − u) and A = iϕ.

Below z = 1 + η and we may describe the pressure as having a mean and

wave component such that p = P (z) + p(z)eiα(x−ct) and we may invoke the

hydrostatic approximation also (P (z) = P0 + g
∫ 1

z
ρdz). The momentum

equation for the perturbation in this region is

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −

1

ρ

∂p

∂x
. (4)

Recalling that ∂Ψ
∂z

= u and ∂Ψ
∂x

= −w we have

p = ρ

[

(c− u)
∂φ

∂z
+ φ

∂u

∂z

]

(5)

and therefore the total pressure at z = 1 is

P = P0 +

{

−gaρ(h) + ρ

[

(c− u)
∂φ

∂z
+ φ

∂u

∂z

]

eiα(x−ct)

}

. (6)

Bernoulli’s equation for the upper region is

P

ρ
+
∂ϕ

∂t
+

1

2
(u+ u)2 +

1

2
(w + w)2 + gz = B (7)
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where B is a constant and thus the pressure at z = 1 (determined from the

upper side) is also

P = ρ

{

C −
1

2
u2 − gh+ [ik(c− u)A− ga]eiα(x−ct)

}

. (8)

Matching the pressure described by (5) and (8) and assuming the velocity

and density are continuous at z = 1+η it follows that the boundary condition

at z = 1 is

(c− u)
∂φ

∂z
+
∂u

∂z
φ+ α(c− u)φ = 0. (9)

3 Boundary Flow Data from Lake Geneva

The data we shall use to investigate the stability of cascading boundary flows

comes primarily from Lake Geneva. In winter, during cold nights, shallow

regions of the Lake are cooled and these form cascading gravity currents

which flow down the boundaries of Lake Geneva (Fer et al., 2001). Profiles

of density (ρ), downslope velocity (U) and across slope velocity (V ) have

been collected from the bottom to 25m above equating to about a third of

the overall water column. An example of such a flow is shown in Figure (3)

with a density section taken down the slope.

The flow displays hallmarks of many forms of instability. The flows are

punctuated by pulses of water consistent with roll waves in steep open channel

flows (Fer et al., 2001). Hydraulic jumps can occur in the fluid and the

stability of such events is discussed in Thorpe and Ozen’s Study. A time series

of both U and V along with temperature is shown in figure (4). The flow

is clearly unsteady, and probably turbulent, although data are not presently

available to characterise the variability at frequencies less than about 0.01Hz.

The data we shall consider in this study are 2hr averages taken of both the
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Figure 3: Cold water spilling down the sloping side of Lake Geneva from
shallow water. Temperature contours at 0.05oC from a CTD section made
on the northern side of Lake Geneva between 1030-1330 hrs local time, 23
December 1998 after a period of nocturnal cooling with positive surface buoy-
ancy flux. Station positions are marked by arrows at the top. Circles show
the positions of temperature miniloggers .A and B mark positions of vertical
arrays and C marks a warm front in shallow water. Taken from Fer et. al
(2001).
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Figure 4: Contour plots of the recorded temperature and velocity data during
an interval of 5.5, starting from 22 January 2004, 09:00 PM. Panel (a) shows
temperatures, (b) East-West and (c) North-South components of the velocity.
Data for case one is a 2 hour average taken between times marked on panel
(c) (Ozin private communication).
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Figure 5: Density (panel a), down-slope (solid) and along-slope (dashed)
velocity (panel b) and Richardson number (panel c) for case 1.

down slope and along slope components of the velocity. Measurements are

taken on an incline which is typically of similar order to that shown in figure

(2) and are chosen specifically to be those with steady slopes. The quality of

the data reduces close to 25m from the bottom and the shear becomes weak.

We thus match the data smoothly to constant profiles of density and velocity

close to this height taken as z = 1.

The two examples we shall consider are characterised as follows: Case

1, shown in figure (5), the flow has a canonical shape in the down-slope

direction, similar to those discussed in TO07 but there exists a significant

mean flow in the along-slope direction. The flow around Lake Geneva is

often cyclonic, the along-slope flow in this case being toward the West (the
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Figure 6: Density (panel a), down-slope (solid) and along-slope (dashed)
velocity (panel b) and Richardson number (panel c) for case 2.

measurements are taken on the northern side of the lake). It is possible that

Ekman effects are occurring in the boundary layer driving flow up the slope

(i.e. to the right of the along slope flow) competing with the gravity driven

cascade. We do not consider such effects in this study. The flow in case 2

(figure 6) is largely down-slope but displays a curious double hump structure

perhaps due to the fluid mixing in various layers as it moves down the slope.

The presence of two inflection points may allow the development of multiple

modes of instability. In both case 1 and case 2 the Richardson number falls

well below the ‘critical’ value of 1/4 and so the Miles-Howard theorem tells

us that instabilities ‘may’ occur and linear stability to the K-H mechanism

is not assured.
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Figure 7: Image showing typical flow of cold water down slope (U) along
slope mean flow (V ) both of order 5cms−1 and measured over a vertical scale
of 25m
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4 Stability analysis of stratified shear flow

We wish to solve the Taylor Goldstein equation (2) searching for the Eigen-

value c of the fastest growing modes. As well as the condition on the upper

boundary of the flow described in section (2), the solid boundary beneath

the flow allows us to impose a no normal flow condition ( φ(z = 0) = 0 ).

The Howard semicircle theorem states that [Cr − 1/2(Umax +Umin)2] +C2
i ≤

[1/2(Umax − Umin)]2, where Umax and Umin are the maximum and minimum

values of the velocity. Initial attempts to solve (2) were made using a shoot-

ing method similar to those of Merrill (1977), and TO07. For the measured

values of U and ρ, coherent solutions to the Eigenvalue problem are not found

and the solution is dominated by modes associated with numerical instabil-

ities. Many techniques are attempted to abate such difficulties including,

changing the grid resolution, constraining the modes possible and fitting the

data with smoother cubic spline functions but no method yields coherent

results for the observed velocity and density profiles. The scheme (which we

will call M1), despite being checked against ‘synthetic cases’ generated from

the hyperbolic tan profiles used by Hazel (see figure 1), is only able to resolve

stability curves for the observed velocity and density profiles for increased

Fr (discussed later) .

In order to avoid stability problems at small ci and to allow more efficient

search for eigenvalues, a second method (M2) is developed. In M2 we write

(2) in the following form

(D2 + F (c))ψ = 0 (10)

where D2 is the second derivative operator and F (c) is function of the known

mean velocity and density profiles and c. Eigenvalues c exist when the de-
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terminant of D2 +F (c) is zero. An advanced nonlinear root finder is used to

find the roots of this expression and far more accuracy is found close to the

observed Froude number than M2 but the same results are yielded for the

cases shown in this report.

Our aim is to determine how far from being at the margin between sta-

bility and instability the observed profiles are or more precisely, how much

would we need to increase or decrease the mean velocity (or change the strat-

ification) to have a flow regime where infitesimal disturbances grow. In order

to do this we introduce a factor ǫ by which we shall divide the Froude num-

ber. A value of ǫ = 0 translates to an infinite mean velocity, no stratification

or some combination of the two extremes while ǫ = 1 translates to the ob-

served velocity and density profiles. By starting at ǫ = 0 and iterating toward

ǫ = 1 we can observe the trend in the maximum growth rates of the most

unstable modes. This technique is similar to that used by Nielsen (1991) and

TO07 increasing the bulk Froude number of the flow by the factor 1/ǫ and

extrapolating to a value of the Froude number such that the flow becomes

marginally stable. Figure (8) shows such curves for case 1 for epsilon=0 to

0.5 in steps of 0.1.

As we have both components of the velocity we may continue this 2 dimen-

sional analysis, but as in (Thorpe, 1999) we may orient the 2d disturbance in

each direction θ where the velocity in that direction is uθ = usin(θ)−vcos(θ)

and ψ(x, z, t) has the same meaning but the x direction is that of θ (see figure

9). We plot the maximum growth rates for each angle θ, again for ǫ = 0 to

0.5 in figure (12). Focusing on angles between Θ = −90o and θ = 0o rotating

between the along slope and down slope direction we estimate the critical

values of the bulk Froude number and the critical value of the maximum Ri

of the profile. We do this by extrapolating from the approximately linear re-
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Figure 9: A cartoon showing how we may orient disturbances ψ angle θ to
the down slope flow and use the velocity in that direction to conduct the
stability analysis.

lationship between ǫ and Ciα to a point where the growth rate would change

sign. An example of this linear relationship for the down slope flow of case

1 is shown in figure (10).

The manner in which such extrapolation is conducted is highly subjective

and such a method is only used to give an estimate of whether the observed

flow is ’close’ (i.e. within some range of 10%-20%) to being stable/unstable.

We may follow the same process for case 2. Figure (13) shows the stability

curves, phase speeds and growing modes for different values of ǫ for distur-

bances oriented in the down slope direction. Figure (14) again shows the

result of rotating the 2d analysis over various angles θ. We see in figure (14)
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Figure 12: Case 1: Greatest Growth Rate at each angle (panel a) and for
increasing ǫ ∗ Fr. Panel b shows a comparison between the observed bulk
Froude number of the flow and the critical value inferred from extrapolating
with increasing ǫ while panel c shows the same but for the peak Richardson
number in that direction.
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Figure 13: Nonsimensionalised Growth Rate (panel a), Phase Speed (panel
b) and (panel c) for various values of ǫ for case 2.

that a decrease in the mean velocity of case 2 reducing the bulk Froude num-

ber from the observed 0.44 to only 0.38, a reduction in the maximum velocity

of only 10-15%, would be enough to prevent perturbations from growing for

all wavenumbers. The stability analysis of case 1 suggests the flow is stable

as the extrapolation predicts a critical Froude number above that of the pro-

file, however an increase in the maximum velocity difference of only 10% in

the down stream direction would bring the flow into the estimated critical

region.

22



Figure 14: Case 2: Panel a shows the greatest growth rate at each angle and
for increasing ǫ∗Fr. Panel b shows a comparison between the observed bulk
Froude number of the flow and the critical value inferred from extrapolating
with increasing ǫ while panel c shows the same but for the peak Richardson
number in that direction.
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Figure 15: Predicted growth rates (panel a) and phase speeds (b) of most
unstable modes at given orientations θ, of the perturbation. For all values
shown the wavenumber k is approximately 0.24m−1 (λ ≈ 4.17m)
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5 Discussion and ongoing work

In this study we have looked at two stratified boundary flows and find them

both to be close to marginally stable to Kelvin-Helmholtz instability. We

define the flows as marginal if an increase or decrease of the observed mean

velocity of around 10% would render the flow unstable or stable (respectively)

to linear (infinitesimally small) perturbations.

We observe, in case 2 of the cascading flows from Lake Geneva, that

instabilities are likely to occur in an orientation 60o downslope of the along

slope direction and with growth rates of order 10−4s−1 (i.e. the perturbations

would grow by a factor of e = 2.71 over a period of 2.5-3hr) phase speeds of

order 0.02ms−1, and a wavelength of approximately 4.2m. The velocity and

Richardson number profile for this angle θ are shown in figure (16). Case 1

is predicted to be stable to K-H instability but an increase in flow velocity

of approximately 10% would be likely, according to our analysis, to allow

waves of lengths of order 6m and phase speeds around 4cms−1 to grow in a

direction down the slope.

As was discussed in section (1) the presence of a boundary can greatly

inhibit the growth of unstable modes and allow smaller Richardson numbers

(i.e. larger shears) to exist without instabilities occurring. In the observed

mean profiles, only when the minimum Richardson number is below 0.1 for

6-7m of the profile is it unstable. This may seem surprising to those who take

Ri = 1/4 to be the critical point below which instability occurs but there

exist analytical examples such as those of exponential u and ρ against a rigid

boundary, where the flow is stable to all Richardson numbers. Reinforcing

the assertion that the entire profile should be considered when conducting

such stability analysis.

In the two cases discussed the along slope component of the flow had
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a nontrivial influence on the stability. Indeed, although in case 2 the along

slope component of the flow was much smaller than the down slope, the effect

on the Richardson number was significant in both profiles displaying different

minimum Ris at different depths (figure (6)) leading to a slightly different,

and apparently more unstable profile at the angle of 30o to the right of the

down slope direction.

Although many cases remain to be explored, this work has presented

evidence in support of Turner’s conjecture that the mean state of stably

stratified boundary flows is maintained in a state of marginal stability. It

remains to be seen if deep ocean overflows and wind driven surface flows, can

be shown to be stable in a similar way and whether simple techniques can

then be applied to the output of numerical model data to asses its stability

and constrain such a model.
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