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Abstract. The results of an experimental investigation of the circular internal hydraulic jump in two-layer fluid are 

presented, with focus on the dependence on the flow rates and density differences between fresh and salty water 

used. For the lower flow rates the stable circular patterns, consisted of three or four well-formed stationary waves, 

were observed, while for the higher flow rates their axial symmetry was lost by deformation of entire wave pattern 

in cusp-like features. This stable, laminar regime lasted 4-5 minutes, after which instabilities started to develop, 

finally breaking the wave patterns in turbulent motion. The radii of stationary waves were measured, and the depths 

of the fluid inside and outside the jump were calculated in order to find the critical values of jump radius, fluid depth 

and Froude number just before the onset of instabilities. While the values of jump radius, fluid depth and Froude 

number inside the jump (reaching values of up to 12-14) strongly depend on variations in flow rate and density 

difference, this dependence does not seem to be so strong for the Froude number outside the jump. Their values are 

below 1, due to dispersion relation for the internal waves in two-layer fluid used to calculate the fluid depth outside 

the jump. Comparison of results with the analytic Watson’s (1964) model for the jump in the single-layer flow 

indicates the existence of similar functional dependence for the two-layer fluid. Finally, the experiments where the 

sharp density difference was smoothed by diffusion indicate that the stationary, laminar waves cannot occur in a 

continuously stratified fluid. 
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1. Introduction 
 

The circular hydraulic jump may arise when a fluid jet falling vertically at moderate Reynolds number 

strikes a horizontal plate (a usual fluid dynamics phenomenon, for instance often observed in a kitchen 

sink). Fluid is spread radially in a thin layer, until reaching a radius at which the layer depth increases 
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abruptly. Theoretical predictions for the jump radius based on inviscid theory were first presented by 

Rayleigh (1914) in a paper on hydraulic jumps and bores. The dominant influence of fluid viscosity on 

the jump radius was elucidated by Watson (1964), who developed an appropriate description of the 

boundary layer on the impact plate. Watson (1964), however, has not accounted for another important 

influence on the jump radius in single-layer flow: the surface tension. Bush and Aristoff (2003) reviewed 

Watson’s study of the circular hydraulic jump, and later illustrated the influence of surface tension on the 

jump radius in their experimental study (Bush et al., 2006). Subsequent studies of the circular jump have 

focused principally on describing the boundary layer separation and closed circulation cells (“rotors”), 

which may cause the changes of surface slopes and stable shapes other than circular, especially when 

fluids other than water are used (Watson, 1964; Craik et al., 1981; Bowles and Smith 1992; Bohr et al., 

1993; Higuera, 1994; Bush and Aristoff, 2003; Bush et al., 2006). 

The surface tension, however important it may be in the single-layer jumps, is negligible at the 

interface between the layers in the internal circular hydraulic jumps. These are produced when a denser 

fluid falls vertically onto a horizontal surface submerged beneath a deep layer of less dense, miscible 

fluid, radially spreading from the point of impact, at the typical distance of a few centimetres from it. 

Recent theoretical and numerical studies of internal hydraulic jumps in stably stratified two-layer miscible 

flows have been focused on the entrainment and mass transfer between the layers (Holland et al., 2002), 

and development of the proper parameterizations for description of energy dissipation in turbulent flows 

(Hassid et al., 2007). As seen from above, continuously stratified fluids are often represented as being in 

two layers. The subject of whether the stationary internal hydraulic jumps can occur in a stratified flow 

beneath of an unstratified stationary layer may be of some importance in relation to the jumps of much 

greater size that are postulated to occur in flows through channels on the flanks of mid-ocean ridges and 

through passages connecting the deep ocean basins (Thurnherr et al., 2005; Thorpe, 2007), although there 

are as yet no observations with sufficient resolution to establish the presence or otherwise of such 

transitions. Another example of what is described as the stationary internal hydraulic jump in the lee of 

The Sierra Nevada can be found in the book of Lighthill (1978; his Fig. 117). 

This experimental study of the circular internal hydraulic jump attempts to gain insight in this 

interesting problem and to answer to some of the above questions, extending experimental work with two-

layer fluid conducted by S. A. Thorpe. The report is organized as follows: first, a description of the 

experimental apparatus, with the details of representative experiments and observed jump patterns is 

given in Section 2. The calculated quantitative parameters are described in Section 3, followed by the 

conclusions and recommendations for future experiments in Section 4. 



2. Experiments and observations 

2.1. Experimental set-up 

The simplified sketch of apparatus is given in Fig. 1. Salty water of density ρ2 was pumped (Fig. 1, 5) 

from the bucket (Fig. 1, 6) through the nozzle of radius anoz = 0.113 cm (Fig. 1, 3) into the square glass 

tank (Fig. 1, 1; tank dimensions were 58.4×58.4 cm). Prior to the start of experiment it was necessary to 

establish the uniform flow of salty water by removing the bubbles of air. For that purpose an additional 

plastic tube with the T-junction (Fig. 1, 4) was used, directing the salty water in another bucket until the 

bubbles went out of the plastic tube. After that the flow was redirected to the nozzle for a few moments to 

push out the air from it. The nozzle was elevated to the height of about 0.3 cm from the tank bottom (to 

minimize any mixing between the descending with the surrounding fluid). Then, the tank was filled with 

fresh water of density ρ1 to a depth of 3 cm, and left undisturbed for 15-20 minutes so the water could 

come to rest. 

The pump was calibrated for the range of flow rates (Q) from 0.95-8.8 cm3s-1 (pump settings 0-

999). However, it was observed that their values were somewhat smaller with the full experimental setup. 

Apparently, the small nozzle radius, rather than the higher density of salty water used in experiments 

mostly affected the flow rate. The density of fresh water was almost constant through all experiments (ρ1 

≈ 0.99825 gcm-3). A plastic plate (Fig. 1, 2), covered with paper, was used both as support for the nozzle 

(in order to ensure that the impinging fluid was perpendicular to the tank bottom) and as the shadowgraph 

screen for observing and recording the observed patterns. They were made visible by the parallel light 

beam projected (Fig. 1, 9) onto (and reflected from) the mirror (Fig. 1, 7) below the tank, angled at α = 

45° from the horizontal, and recorded with the Nikon digital photo camera (Fig. 1, 8) placed on the ladder 

above the tank. The photo of experimental setup is given in Figure 2 (camera not shown). 

The range of flow rates used (also measured), and the corresponding speeds (vnoz) and Reynolds 

number (Renoz) of flow in the nozzle are shown in Table 1. Here the Reynolds number is calculated as 
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Figure 1. The simplified sketch of experimental apparatus: 1. Square tank: at = 58.4 cm, ht = 5 cm, filled with fresh 

water (ρ1); 2. Screen; 3. Nozzle (anoz = 0.113 cm), at da = 0.3 cm; 4. Plastic tube with T-junction; 5. Pump; 6. Bucket 

with salty water (ρ2, ρ2 > ρ1); 7. Mirror, α = 45°; 8. Camera; 9. Projector 

 

 

Setting Q (cm3s-1) vnoz (cms-1) Renoz

50 0.398 9.917 111.64 
100 0.828 20.625 232.20 
150 1.258 31.332 352.73 
200 1.675 41.720 469.68 
250 2.101 52.343 589.27 
300 2.520 62.790 706.89 
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and ν = 1.004×10-6 m2s-1 is the value of kinematic viscosity of fresh water at 20 °C. Since the range of 

temperature of both fresh and salty water used in these experiments was approximately 18–23 °C, and the 

salty water was on average about 5-10 % denser than fresh, the above value of kinematic viscosity can be 

used with reasonable accuracy. 

Two sets of experiments were made: the first with the higher density of salty water (ρ2 ≈ 1.10544 

gcm-3) for all flow rates in Table 1, and second using ρ2 ≈ 1.05044 gcm-3, for pump settings 100 and 200. 

Each of them (apart from the one with the highest flow rate, 300), was performed at least twice: once in 

the square tank, and the other time with the Pyrex glass pie dish (put into the tank, dimensions and 

geometry shown in Fig. 2a) needed to simulate the radially symmetric boundaries. When conducting 

experiments with the pie dish, the initial height of fresh water was set at about 4 cm (≈ 5 mm deeper than 

the height of the pie dish) so that the fresh water covered its edge. When emptying the tank at the end of 

the experiment, it was observed that in the case of lower flow rates (settings 50-200) almost all of the salt 

water remained in the pie dish. Fresh water was effectively pushed out by salty water without the return 

circulation over the dish edge. At the higher flow rates (settings 250–300) filling of the dish with salty 

water was quick, initializing relatively fast overflow over the dish edge and corresponding inflow of the 

fresh water. 

2.2. Development of the circular jump 

As can be seen from Table 1, the experiments were conducted in the range of moderate Reynolds 

numbers (order 102 - 103). After the preparations, described in Section 2.1, the flow of salty water was 

switched on. It produced a radially spreading density current that eventually reached the side walls and in 

which, at a few centimetres from the impinging jet, stationary circular waves were formed. Due to the 

difference in refractive indices of fresh and salty water it was possible to distinguish between the crests 

(bright bands) and troughs (dark bands) of stationary waves that formed the transition region between the 

interior and exterior flow. The time evolution of typical observed wave patterns is shown in Figs. 3 (an 

example for the square tank) and 4 (an example for the pie dish). In the square tank stationary waves were 

formed within first 10 s after the start , with radii from 0.8 to 3.5 cm (Fig. 3a, shown after ≈ 3 min after 

the start of experiment). When the pie dish was used, the wave patterns were formed ≈ 30 s after the start 

of experiment (Fig. 4a), with the similar range of wave radii. 

In the first set of experiments (ρ2 ≈ 1.10544 gcm-3), for both square tank and pie dish, the 

observed waves were circular for the pump settings 50-200 (see Table 1 for the corresponding Q and 

Renoz) and formed of three (settings 50-150) or four bright rings (setting 200). The same was observed in 

the second set when the lower density (ρ2 ≈ 1.05044 gcm-3) was used for flow rate Q100 (Fig. 3a). When 



the flow rate was increased to Q250 = 2.101 cm3s-1 in the first, or to Q200 = 1.675 cm3s-1 in the second set of 

experiments, the axial symmetry was lost in the cusp-like deformations (Fig. 4a). The higher flow rates 

(Q300 and Q250, for the first and second set of experiments, respectively) lead to wave breaking almost 

instantly after the flow of salty water started. Since they could not produce stable laminar wave patterns in 

the experiments presented, they are not discussed in this report. Also, the symmetry of waves was, even at 

the lower flow rates, extremely sensitive to any variations from horizontal; consequently, great care was 

taken in levelling the system. The white spot in Figs. 3 and 4 is a hole drilled in the plastic plate, through 

which potassium permanganate was added in most of the experiments in order to detect a possible 

appearance of boundary layer separation and rotors. Although we did not observe any clear indication of 

rotors, potassium permanganate was very useful in determining the general circulation patterns in the tank 

or the pie dish. 
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a) 

c) d)

b)

Figure 3. Observed jump patterns in the square tank at (a) 3 min 10 s, (b) 6 min, (c) 9 min 50 s and (d) 21 min 58 s 

after the start of experiment. Here Q100 = 0.828 cm3s-1, Renoz = 232.20 and ρ2 = 1.05058 gcm-3. 
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Figure 4. Observed jump patterns in the pie dish (a) 36 s, (b) 40 s and (c) 1 min after the start of experiment. Here 

Q250 = 2.101 cm3s-1, Renoz = 589.27 and ρ2 = 1.10511 gcm-3. The size of photos is ≈ 10 cm×14 cm 
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Figure 5. Time evolution of the standing wave radii (with error bars) for the pump setting 100: (a) without, and (b) 

with the pie dish for ρ2 = 1.10527 gcm-3 (solid) and ρ2 = 1.05058 gcm-3 (dashed). Here Q100 = 0.828 cms-1 and Renoz 

= 232.20; r1 and r3 are the radii of the innermost and outermost waves, respectively. 



 
 
Figure 6. Time evolution of the innermost wave radius (with error bars), r1, for the pump settings 100 (red, ρ2 = 

1.10527 gcm-3), 150 (blue, ρ2 = 1.10552 gcm-3) and 200 (black, ρ2 = 1.10507 gcm-3), for the experiments without 

(solid) and with the pie dish (dashed). 

 

The photos were processed by digitally extracting the cross-sections of wave patterns and 

detecting the positions of light maxima (in pixels), which then gave the estimates of the wave crests radii. 

To convert the radii from pixels to centimetres the translucent plastic ruler attached on top of the plastic 

plate (Fig. 1, 2, and Fig. 3) was used as the scale (at the resolution of photos used in experiments, 1 cm ≈ 

45 pixels). Figure 5 shows the time evolution of wave crests radii (r1, r2, and r3, respectively) for the flow 

rate Q100, for both the higher (solid) and lower (dashed) density of salty water. In this, and all following 

plots as well, the results are shown after the time needed for the salty water to completely cover the 

bottom of the tank (≈ 2 min, Fig. 5a) or the pie dish (≈ 30 s, Fig. 5b), so the waves could be considered as 

quasi-stationary. The error bars (vertical ticks in plots) were calculated from the estimated uncertainties in 

determining the crests radii (± 2 pixels ≈ ± 0.04 cm for the inner waves, due to the stronger and thus 

better resolved light maxima, and ± 3 pixels ≈ ± 0.07 cm for the outer waves). It can be seen (Fig. 5) that 

the distance between the rings decreases as their radii increase, independently of the density difference, 

flow rate or geometry used. Also, the decreased density difference between fresh and salty water is 

responsible for increasing the wave radii for the same flow rate (Fig. 5, dashed lines). In Figure 6 a 

similar comparison is given for the various flow rates at the same density difference (only the innermost 
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radius, r1, is shown), showing that increasing the flow rate (from Q100 to Q200) results in increase of wave 

crests radii (red, blue and black lines, respectively). Both Figures 5 and 6 show the main difference 

between the experiments without and with the pie dish, i.e. when the pie dish was used, the greater wave 

radii were observed, but their decreasing with time was faster (due to the faster filling with salty water). 

This rapidity of changes brings into question the assumption of waves being stationary in the pie dish, 

although the same assumption is valid in the square tank. 

2.3. Transition from steady wavelike to turbulent flow 

The stable wave patterns, described in Section 2.2, lasted for approximately 4 min for the salt solution of 

higher, and 5 min for the solution of lower density (Fig. 3a). After that time the outer band was deformed 

by the irregular undular instabilities moving around it, while the inner waves were still visible (Fig. 3b). 

After ≈ 1 min for the solution of higher, i.e. ≈ 1.5 – 2 min for the solution of lower density (Fig. 3c) the 

inner waves also collapsed and the motion became turbulent. This motion appeared to be organized in the 

forms looking alike the flower petals that were moving in groups around, and bursting in and out of the 

deformed outer band (Fig. 3c). As the turbulent mixing decreased the density differences, the flow 

eventually calmed (Fig. 3d). Experiments with the tank only therefore lasted from 30-50 min (depending 

on the flow rate) and the photos were taken initially every 10 s, and after that every 15-30 s as the flow 

became steadier. When the pie dish was used, the onset of instabilities was after ≈ 1 min after the start of 

experiment (Fig. 4b). Also, the transition between the laminar and turbulent regime happened almost 

instantly (within a few seconds), leading to the well developed turbulent forms (Fig. 4c). Because of the 

faster dynamics photos were initially taken every 5 s, and later every 10-15 s, and experiments lasted 

approximately 5 min. 

The last values of wave crests radii in Figs. 5 and 6 are those estimated just before the onset of 

undular instabilities deformed the outermost wave (Figs. 3b and 4b). They, and all the parameters that 

will later be derived from them, will be referred as the “critical values”. Besides increasing the wave radii 

for the same flow rate, it can be seen that the decreased density difference between fresh and salty water 

also postpones the onset of instabilities. For the flow rate Q100 (Renoz = 232.20), in the square tank the 

radii of last undisturbed waves were estimated 240 s after the start of experiment for ρ2 ≈ 1.10544 gcm-3 

(Fig. 5a, solid), and 350 s for ρ2 ≈ 1.05044 gcm-3 (Fig. 5a, dashed). As commented in Section 2.2, the 

duration of stable regime is shorter when the pie dish is used in experiments (Fig. 5b; ≈ 76 s for ρ2 ≈ 

1.10544 gcm-3, solid, and 90 s for ρ2 ≈ 1.05044 gcm-3, dashed). Interestingly, the onset of instabilities 

does not seem to depend on the increase of flow rates, and therefore the Reynolds numbers of the flow 

(Fig. 6).  



2.4. Experiments with continuous stratification 

The experiments in two-layer fluid, described above, were later modified in order to investigate whether 

the internal hydraulic jump can occur in a continuously stratified fluid. Two such experiments were made 

(only in the pie dish, at Q150 = 1.258 cm3s-1 and Renoz = 352.73), one for each mean density of salty water 

used (ρ2 ≈ 1.10544 gcm-3 and ρ2 ≈ 1.05044 gcm-3). To cover the distance between the nozzle and the pie 

dish bottom (about 3 mm of depth), the pie dish was initially filled with the salty water for approximately 

85 s. This layer of salty water was then let to diffuse for at least two hours so the continuous density 

gradient between it (below) and fresh water (above) could be established. Since the above layer of fresh 

water was ≈ 3 cm thick, it could be considered as being of uniform density. After that, the experiment was 

conducted as usual, and the observations were compared to the former ones with the same flow rate and 

sharp density interface. In both of these experiments, independently of density difference or flow rate 

used, no stable laminar wave patterns as in previous experiments were observed. Instead, the diverging 

flow instantly became turbulent with no appearance of a stationary, laminar, circular jump surrounding 

the point of impact of the jet on the horizontal plane. Figure 7 shows the comparison of experiments with 

sharp density discontinuity (two-layer fluid, Fig. 7a), and with the continuous stratification in the lower 

layer (Fig. 7b), both at ≈ 45 s after the start of experiment. According to these observations, the 

stationary, laminar hydraulic jump cannot be sustained in a continuously stratified layer in motion 

beneath a stationary layer of uniform density. 
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Figure 7. Observed jump patterns in the pie dish (a) in two layer fluid, and (b) with continuous stratification in the 

upper layer, both at ≈ 45 s after the start of experiment. Here Q150 = 1.258 cm3s-1, Renoz = 352.73 and ρ2 ≈ 1.10544 

gcm-3. 



3. Parameter study 

 

In this section we try to describe the observations in terms of some common parameters, which may also 

lead us to the conditions necessary for the development of instabilities in wave patterns. Furthermore, in 

Sec. 2 we saw that the difference in geometry of the problem (i.e. using the pie dish in experiments) 

affects the dynamics of observed waves. That brings us to the question: which are the common 

characteristics of these two types of experiments? As in Sec. 2, we will carry out this analysis first for the 

fixed density difference and different flow rates, and then we will compare results for the chosen flow 

rate, but with different densities of salty water. The main parameters we will use to describe the flow are: 

1. Froude number inside (upstream), Fr1, and outside (downstream) the jump, Fr2. Here they are 

defined as 

 

.
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U1 and U2 are the flow speeds inside and outside the jump, respectively, H1 and H2 are the corresponding 

depths of salty water, and g’ is the reduced density. U1,2 and g’ can be calculated as: 
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Here R1 and R2 are the radii within, and just outside the jump, determined from the estimated radii of 

wave crests as: 
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 where the value of R2 depends on the number of waves observed (3 for flow rates 50-150 and 4 for 

higher ones). In the first set of experiments (ρ2 ≈ 1.10544 gcm-3) δρ ≈ 0.097, and in the second (ρ2 ≈ 

1.05044 gcm-3) δρ ≈ 0.05 for all flow rates. According to Eqs. 4 and 6, the flow speed is inversely 

proportional to the wave radii. When relating this to the distances between the rings (Section 2.2, Fig. 5), 

it can be seen that as the wave radii increase from the inner to outer wave, the flow slows down.  
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Since the direct measurements of H1 and H2 were not available, they had to be estimated. The 

mean thickness of the layer below the interface along which the waves were propagating against the flow, 

h, was calculated in two ways. One was to use the flow rate, Q, the time, t, and the surface of the tank or 

pie dish covered with salty water, (A1)T,P. The latter was estimated from the total surface, (A)T,P, and R1 as 
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The another one, used further in this report, was to numerically estimate h from the dispersion relation for 

the phase speed (c) in two-layer, inviscid fluid (Thorpe, 2005) as 
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where λ is the wavelength (estimated as the difference in successive wave radii), and k is the 

corresponding wave number. This relation is derived taking into consideration the assumptions of small 

amplitudes of internal waves (i.e. linear displacements), and no velocity shear between the layers (see Eq. 

3.4, Thorpe, 2005). Since the observed waves were stationary, the phase speed had to be equal to the flow 

speed, U, given with (4). Then, (8a) becomes: 
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Rewriting Eq. 8 gives  so the values of Fr),kh/()khtanh(Fr2 = 2 thus obtained are between 0 and 1 

(corresponding to the limits for subcritical flow in 2D case). The depth outside the jump, H2, was then 

taken as H2 = h(r = R2). For the depth inside the jump, H1, we took the value of H2 at the first moment 

when the waves were well-formed, so their radii could have been measured from the photos. This was 

usually 10 s after the start of experiment in the tank, and 30-35 s in the pie dish (see Section 2.2). 

Furthermore, it was assumed that H1 remained constant and was never greater than H2. 

2. The ratio of outer (H2) and inner (H1) depth of the salty fluid, q 

(9) 
12 H/Hq =

 

Some of the calculated parameters for δρ ≈ 0.097 are plotted in Figures 8-11. The dependence of 

R2 on H2 (and therefore on λ) is given in Fig. 8. It can be seen that, independently of the geometry of 

experiment used (Fig. 8; values in the tank, circles, or in the pie dish, asterisks), we find almost the same 

values of R2 at the same H2 (i.e. the same wavelengths at the same jump radii) for the given flow rate.  
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Figure 8. Dependence of outer jump radius, R2 (with error bars), on H2 for the pump settings 100 (red), 150 (blue) 

and 200 (black), for the experiments without (circles) and with the pie dish (asterisks). The rest as in Figure 6. 

 

 
 
Figure 9. a) Downstream Froude number, Fr2 (with error bars), versus outer jump radius, R2; b) upstream Froude 

number, Fr1 (with error bars), versus inner jump radius, R1. The rest as in Figure 7. 
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Furthermore, as discussed in Section 2.2, the number of waves does not depend on the 

experimental geometry. From now on, we will refer to this behaviour of the observed waves as the 

“dynamical similarity” of wave patterns in the tank and the pie dish. The values of R2 decrease with time 

(see also Figs. 5 and 6) and H2 increases. The critical values of both R2 and H2, i.e. the values just before 

the onset of instabilities, seem to grow as the flow rate is increased. 

According to Eq. 8, the values of downstream Froude number (Fr2, Fig. 9a) are below 1, and 

there is no significant correlation with R2. However, the upstream Froude number (Fr1, Fig. 9b) clearly 

increases as R1 decreases (the jump becoming narrower with time), achieving the maximal values of ≈ 8-

10 for the lowest flow rate depicted (Q100, red), and ≈ 5-6 for the higher flow rates (Q150, blue; Q200, black) 

just before the onset of instabilities (smallest R1).  

The time evolution of the depth ratio, q, is shown in Fig. 9. This increase of the fluid depth at the 

jump is more evident in the pie dish (asterisks, dashed lines), reaching values of ≈ 1.1-1.25 before 

transition to turbulent regime. Also, the values of q are smaller when only the tank is used due to the 

slower filling. However, these results have to be taken with some caution, since they are calculated from 

H2, the estimate of which is mostly subject to uncertainties in determining the outer ring radii from 

photos. 

 

 
 
Figure 10. Evolution of q (Eq. 9), with error bars, in time. The rest as in Figure 7. 
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 Watson (1964) derived the theoretical prediction of the jump position (R1) in the single-layer, 

viscous fluid, for both the laminar and turbulent flows. He determined R1 by equating the rate of loss of 

momentum to the thrust of pressure, not taking into account the surface tension (significant factor in the 

single-layer fluid but not present here), and assuming that H1 << H2. He also assumed that the radial width 

of the jump can be ignored, which may not be the case here (see Fig. 5 for comparison of r3 and r1). His 

comparison of theory and experiments is repeated here in Fig. 11, i.e. Watson’s (1964) Fig. 4, with a 

being the nozzle radius (here anoz), Re the Reynolds number of flow in the nozzle (here Renoz), r1 position 

of the jump (here R1), and d the depth outside the jump (here H2). In two-layer fluid experiments his 

theoretical relations can be written as (see his Eqs. 41 and 42): 
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From Table 1 it can be seen that Reynolds numbers in our experiments are of order of magnitude less than 

his, due to the lower flow rates used. The observed R1 are here from 0.5 to 2 cm (Fig. 9a), while in his 

experiments their range is ≈ 2.5-18 cm (1-7 in.). Measurements of d in his experiments gave results of ≈ 

0.33-1.65 cm (0.13-0.65 in.), and here H2 was estimated as ≈ 0.04-0.06 cm. The differences between his 

and our measurements result mainly in shifting our calculated values given in Eq. 9a to the right (Fig. 12) 

of his theoretical curve (Fig. 11). As for the values of B, their range (-1.55 to -2) is close to his values 

( 5.2 - 2 , Fig. 11, equivalent to the span of -1.5 to -2 in Fig. 12), and also with similar, but slower, linear 

decay. These results indicate that the analogous theoretical relation might also hold for the jump radius of 

the problem studied here. 

Figures 13 and 14 show some of the parameters already calculated using the density ρ2 ≈ 1.10544 

gcm-3 (δρ ≈ 0.097) for flow rate Q100, but now compared with the results for reduced density of salty 

water, ρ2 ≈ 1.05044 gcm-3 (δρ ≈ 0.05). We see that the functional dependence of R2 on H2 remains the 

same, i.e. there is “dynamical similarity” of experiments with and without the pie dish (Fig. 13a, asterisks 

and circles, respectively). However, the critical values of both R2 and H2 are greater for the lower density 

of salty water (Fig. 13a, black). There is also clear dependence of upstream Froude number, Fr1, on 

density difference between salty and fresh water (Fig. 13b). As can be expected from theory (Eqs. 3 and 

5), decreasing ρ2 results in increase of critical Fr1 from 8-10 for δρ ≈ 0.097 (Fig. 13b, red) to 12-14 for δρ 

≈ 0.05 (Fig. 13b, black). As before, the values of Fr2 are below 1 and without significant correlation with 

R2 (not shown).  
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Figure 11. Watson’s (1964, Fig. 4) 

comparison of experiment and theory for 

jump relation (single layer, laminar 

flow). Here a is the nozzle radius (≈ 0.3 

cm), R is the Reynolds number, g is 

gravity and d is the depth of fluid outside 

the jump (here corresponding to H2). 

 

 
 

 
 
Figure 12. Comparison with Watson’s results, with error bars (see Fig. 11). The rest as in Figure 6. 
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Figure 13. a) Dependence of outer jump radius, R2 (with error bars), on H2; b) upstream Froude number, Fr1 (with 

error bars), versus inner jump radius, R1. Pump setting in both plots is 100 (Q100 = 0.828cm3s-1, Renoz = 232.20), for 

the experiments without (circles) and with the pie dish (asterisks). Results for ρ2 ≈ 1.10544 gcm-3 (δρ ≈ 0.097) are in 

red, and for ρ2 ≈ 1.05044 gcm-3 (δρ ≈ 0.05) are in black.  
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Figure 14.a) Comparison with Watson’s results, with error bars (see Fig. 11); b) evolution of q (Eq. 9), with error 

bars, in time. The rest as in Figure 13. 
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Not only the critical values of R2 (and R1, Fig. 13a) are greater when the density difference is 

decreased; it is also the case for q (Fig. 14b, black), with values of ≈ 1.3-1.4 for both the pie dish 

(asterisks, dashed line) and the square tank only (circles, solid line). These increased values affect the 

theoretical predictions based on Watson’s (1964) relations (Eq. 9) by placing the results for δρ ≈ 0.05 (Fig. 

14a, black) below the ones for δρ ≈ 0.097 (Fig. 14a, red). 

 

4. Conclusions and recommendations for future experiments 
 

The circular hydraulic jump has been the subject of many theoretical, experimental, and lately numerical 

studies. Still, many facets of it remain unexplained or unexplored. In this experimental study we tried to 

describe some of the features of the circular internal jumps in two-layer fluid, and explore the possibility 

of their occurrence in fluid with continuous stratification. 

In the two-layer case, both qualitative behaviour and calculated parameters show dependence on 

the flow rates and density differences used. Increasing Reynolds number in the nozzle (for the same 

density difference) or decreasing the density difference between fresh and salty water results in 

destabilizations of the flow, which can be seen as the cusp-like deformations and narrow, quickly varying, 

waves within the internal ring of the jump (Fig. 4a and 4b). The onset of instabilities seems to depend 

more on the density difference than on Reynolds number. Results for upstream Froude numbers (Figs. 9b 

and 13b) seem to confirm those observations. Although there are differences in values of R and H (and 

consequently Fr1, Eq. 3) when the pie dish is used in experiments, the overall dynamic behaviour also 

seems to be similar (Figs. 8 and 13a). The time evolution of jump amplitude q (Eq. 9), although not 

completely precise because of uncertainties in determining the outer wave radii, still indicates that the 

maximal values are reached just before the transition into turbulent regime (≈ 1.1-1.4). In all experiments, 

no clear indication of rotor formation has been observed. 

The experiments where the sharp density difference was smoothed by diffusion show no 

observational evidence of stationary waves (Fig. 7), implying that the stationary, laminar waves cannot 

occur in continuously stratified fluid. Still, it would be recommendable to further verify these 

observations by repeating the experiments in fluid with the known (prescribed or measured) density 

gradient. 

 The above conclusions for two-layer fluid, however, have to be taken with some caution, because 

their derivation is based not on measured values of fluid depth, but their estimates from the dispersion 

relation for inviscid fluid (Eq. 8). The direct measurements of the depth of salty fluid would therefore be 
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very useful for investigating the role of viscosity, and revealing the jump structure itself. Craik et al. 

(1981), in their experiments for single-layer fluid, used a laser dye absorption for measurements of the 

height profile and thus the jump radius. Bloom and Burns (1997) also recommended this method in their 

experimental report. The method works by scanning a laser perpendicular to the tank bottom, and reading 

the intensity of transmitted light. The presence of dye in the fluid then makes the amount of light 

absorbed directly proportional to the fluid height. For the two-layer fluid, the laser should perhaps be 

aimed through side walls of the tank, and due to differences of refractive indices for salty and fresh water 

the dye might not be necessary at all. 

Ideally, the experiments would have to be conducted in a circular tank, large enough so the 

circulation caused by the side walls would not significantly affect the jump patterns. Also, the great 

sensitivity of experiment on disturbances from its surroundings makes it necessary that the support base 

for the tank is stable, and attenuating vibrations. In this experimental study we have only explored 

moderate Reynolds numbers (of order 102); it would be worth to explore the behaviour for the higher 

Reynolds numbers by increasing the radii of nozzles used. Further experimental investigation, as well as 

the developed theoretical model to verify the observations against, would be very useful in revealing the 

dynamics of this interesting phenomenon. 
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