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1 Introduction

Fluids that undergo reversible and time-dependent changes to their internal structure as a
result of flow are called thixotropic. Specifically, the internal structure of a thixotropic fluid
is broken down by the presence of flow, while in the absence of flow, the structure rebuilds,
and the fluid is said to ‘heal’ over time. Typically, the break-down of structure is relatively
rapid, while the rebuilding of structure is slow.

Thixotropic behaviour has been reported in a wide range of fluids [6, 18]. Industrial
drilling fluids and cements, printing inks and paints, oils and grease, biological fluids (e.g.
blood), and food products such as mayonnaise, yoghurt, and ketchup have all been shown to
exhibit elements of thixotropy. More complex fluids, such as dry foams and granular media,
also exhibit many of the same phenomena as thixotropic fluids [12]. In nature, mineral
slurries and certain mud and clay suspensions are thixotropic: part of the motivation for
this study comes from mudslides, in which large volumes of mud can suddenly become
‘de-structured’ and catastrophically fail.

Thixotropic fluids are most commonly colloidal suspensions, with a microstructure that
exhibits weak attractive forces between particles: this leads to flocculation and ‘structuring’
in the fluid at rest, while flow-induced mechanical stresses can break down this structure.
On a macro-scale, this behaviour can be described by variations in the fluid viscosity.
Thixotropic fluids are, therefore, typically modelled with a non-Newtonian variable viscosity,
which decreases dramatically in the presence of shear, but increases slowly when the fluid is
at rest. This rheology gives rise to a variety of phenomena: variable yield-stress behaviour,
hysteresis in the constitutive relationship, and ‘jamming’ or ‘avalanching’ in the fluid (see,
e.g. [1, 7, 10, 19]). We will examine these features in this report.

There has been a relatively wide range of work presenting rheological measurements
and models for thixotropic fluids (see section 2). However, there have been very few studies
that incorporate this rheology into a physical scenario. In this report, we consider the flow
of a finite shallow layer of thixotropic fluid down an inclined plane under the action of
gravity. Such a system has been well studied in the case of a Newtonian fluid [15, 16], and
an ideal yield-stress (e.g. Bingham) fluid [4, 14, 17]. A previous study of a ‘dam-break’
of thixotropic fluid [8] has explored the gravity-driven flow of a (non-shallow) thixotropic
fluid by tracking characteristics. There are, however, currently no systematic studies of the
shallow thixotropic gravity current on a slope. Brief experimental observations of such a
system by Coussot et al. [10], using bentonite clay, have suggested that this system can
exhibit dramatic ‘avalanche’ behaviour: they found that fluid inclined at a certain angle
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will not move at all, while fluid inclined at a slightly larger angle will dramatically collapse
and flow rapidly down the inclined plate. In the latter case, they observed that a structured
‘horseshoe’ of fluid at the back of the current remained immobile, while the front of the
current flowed down the slope. In the present study, we attempt to reproduce and explore
such behaviour experimentally, and to describe it theoretically and numerically.

The report is structured as follows. In section 2, we discuss the rheological model of
thixotropy that we will employ, including our simplifying ‘rapid-transit’ approximation. In
section 3, we outline the governing equations for flow in a shallow layer (directly following
[2]). In section 4, we present numerical results of the system, in both two and three dimen-
sions, and discuss the main qualitative features of the flow. In section 5, we examine the
stability of the system, and show that the flow is unstable to a form of interfacial instability.
In general, this instability is relatively benign, in that it does not significantly destabilise the
flow. Finally, in section 6 we present experimental results of the system using two different
thixotropic fluids: a bentonite clay solution, and Heinz tomato ketchup. Broadly speaking,
the experimental results show good qualitative agreement both with previously published
observations [10], and with our numerical simulations.

2 Thixotropic model

2.1 Basic rheological model

A range of rheological models that describe the effects of thixotropy have been proposed
(see, e.g. [6, 18]). Many of these models employ a time-dependent structure parameter λ(t)
to describe the amount of internal structure in the fluid [1, 10, 13, 19, 21]. The viscosity
µ(λ) is then given as a prescribed function of the structure parameter. The constitutive
equation for such a fluid, which relates the deviatoric stress tensor τij to the rate of strain
tensor γ̇ij , is given by the generalised Newtonian form,

τij = µ[λ(t)] γ̇ij . (1)

In this report, we use a rheological model of this form, which is outlined and discussed
below. Our model is adapted from models presented by Coussot et al. [10, 11] and by
Moller et al. [19, 20]. The main difference in our model is the (implicit) inclusion of an
‘absolute yield stress’, above which the fluid will flow irrespective of its structure: this
removes an unphysical feature of the previous models, namely that infinite-viscosity fluid
remains so for arbitrarily large stresses.

The structure parameter lies in the range 0 6 λ 6 1: λ = 1 corresponds to fully
structured fluid, and λ < 1 corresponds to fluid that is de-structured to some degree. The
structure parameter is assumed to satisfy an evolution equation of the form

Dλ

Dt
=

1− λ
T
− αλγ̇, (2)

where γ̇ =
√
γ̇ij γ̇ij/2 is the second invariant of the rate of strain tensor γ̇ij , T > 0 is

the constant ‘healing timescale’ for the fluid, and α > 0 is a constant that controls the de-
structuring of the fluid by the flow. The two terms on the right-hand side of (2) correspond,
respectively, to the rebuilding or ‘healing’ of the fluid structure at rest, and the destruction
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Figure 1: Phase diagram for λ, given by (4), for Γ = 20, β = 0.9, and increasing values of
the stress τ as marked. There is a bifurcation at the critical value τC = 4β/Γ: below this
stress, the only fixed point is at λ = 1, which is stable, and corresponds to the structured
state; above this stress there are two additional fixed points λ1 < λ2 < 1, the lower of which
is stable. At a higher stress τ = τA = 1/Γ(1 − β), the unstable fixed point (λ2) reaches
λ = 1, and the fixed point at λ = 1 becomes unstable.

of structure by gradients in the flow. Empirical measurements [1, 7, 11, 20] suggest that
both T and α are typically large, such that destruction of structure is fairly rapid, while
regeneration of structure is very slow.

The structure parameter is related to the viscosity through an equation of the form

µ =
µ0γ̇

n−1

(1− λ)m (1− βλ)
, (3)

where µ0 is a constant reference viscosity, and m > 1, n, and 0.5 < β < 1 are constant
parameters. The viscosity increases with the structure λ, and diverges as the fluid becomes
fully structured (λ→ 1). Therefore, if the fluid is fully structured, the constitutive equation
(1) implies that the strain rate γ̇ is zero.

Throughout this report, for simplicity, we take the parameters m = n = 1, such that the
viscosity does not explicitly depend on the rate of strain γ̇. The model can be generalised to
give shear thinning or thickening behaviour (by changing n), or to give a different sensitivity
of the viscosity on the structure (by changing m).

The evolution equation for λ (2) can be re-written in terms of the second invariant of
the stress τ =

√
τijτij/2, using the constitutive equation (1) and the viscosity equation (3)

(here with n = m = 1), which gives

T
Dλ

Dt
= (1− λ) [1− Γλ (1− βλ) τ ] , (4)

where Γ = αT/µ0.
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Figure 2: Constitutive relationships (1), showing the stress τ against the rate of strain γ̇:
(a) schematic of the model relationship at the steady-state solutions of (4) (thick blue),
where dashed lines correspond to unstable fixed points, and the thin red arrows signify
the ‘rapid-transit’ (see section 2.3) hysteresis behaviour that might be expected in a stress-
ramp test; (b) measurements of 10 wt% bentonite clay under an increasing and decreasing
stress-ramp test, taken from [19].

2.2 Implications of the model

The phase diagram for λ from (4) is shown in figure 1. For sufficiently small values of the
stress, there is only one fixed point in the range 0 6 λ 6 1, which is stable, and located
at λ = 1. Therefore, if the stress is sufficiently small, the fluid always evolves towards the
fully structured state. However, at the critical stress τ = τC = 4β/Γ, there is a bifurcation
at λ = λC = 1/2β, and two additional fixed points λ1,2 are created:

λ1,2 =
1

2β

[
1∓

(
1− 4β

Γτ

)1/2
]
. (5)

The lower value, λ1, is a stable fixed point, which decreases as τ increases, while λ2 is
unstable and increases with τ . As the stress is increased further and reaches the absolute
stress τ = τA = 1/Γ(1− β), this unstable fixed point λ2 reaches λ = 1, and so, for τ > τA ,
the fixed point at λ = 1 becomes unstable. Therefore, if the applied stress is very large, the
fluid always evolves towards a de-structured state, corresponding to a small value of λ.

For a given value of the structure λ, there is a corresponding viscosity µ(λ), given by
(3), which defines a relationship between the stress τ and the rate of strain γ̇, given by the
constitutive equation (1). This relationship is plotted schematically for the fixed points of
(4) in figure 2(a). As discussed above, we can see that for small values of the stress τ < τC ,
the fluid will evolve to the structured state with γ̇ = 0 (λ = 1). For large stress τ > τA , the
fluid will evolve to a de-structured state, with γ̇ > 0 (λ� 1).

For intermediate values of the stress τC < τ < τA , the behaviour of the fluid will depend
on the stress history of the sample: in other words, it will depend on which side of the
unstable fixed point the structure parameter currently lies. The system therefore exhibits
hysteresis, as can be seen by considering a simple stress-ramp experiment. Suppose the
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fluid is initially fully structured, and a gradually increasing stress is applied. The shear
rate will remain zero until the stress exceeds the absolute stress, τ > τA . At this point,
the fluid will ‘de-structure’, λ will decrease towards the small stable fixed point, and γ̇
will increase towards the stable branch. If the stress is then decreased, the strain rate will
remain on the stable (non-zero) branch until the stress falls below τC , at which point the
structure parameter will evolve back towards λ = 1, and the shear rate will decay to zero.
Experimental results of such a test on bentonite clay are shown in figure 2(b).

It should be noted that if the fluid is not initially fully structured, such that λ < 1, then
the corresponding initial viscosity µI has some finite value. Alternatively, the viscosity of
a real fluid is unlikely to be unbounded, in which case µI represents the upper bound that
can be attained. In either case, we would not expect the rate of strain to remain zero as
the stress is increased: instead it should follow the linear constitutive relationship τ = µI γ̇.
The corresponding stress at which the fluid evolves to the ‘de-structured’ small-λ stable
branch would then be smaller than τA , and the effects of hysteresis would be smaller. This
behaviour can be seen in the experimental measurements of figure 2(b), where the initial
slope of the curve is not vertical.

The extent of hysteresis in the system is controlled by the parameter β. As the value of
β is increased towards 1, the value of τA increases towards ∞, while τC remains finite: the
size of the hysteresis loop therefore increases. Alternatively, as β is decreased towards 1/2,
τA → τC , and there is no hysteresis in the system. On setting β = 0 and ignoring the time
derivative in (4), this thixotropic rheology reduces to that for an ideal Bingham yield-stress
fluid, with yield stress 1/Γ.

It is worth, at this point, drawing a comparison between this thixotropic model (for non-
zero β) and models for ideal yield-stress fluids (i.e. Bingham or Herschel–Buckley models
[3]). The thixotropic model does incorporate the idea of a yield stress, as for stresses below
τC the strain rate always evolves to zero. However, there are some significant differences.
Firstly, in the thixotropic model the value of the ‘yield stress’ is dependent on the stress
history of the particular fluid element: the system exhibits hysteresis, and the extent of the
hysteresis loop in the constitutive relationship is given by the extent to which the fluid is
structured at that particular time. In contrast, in an ideal yield-stress fluid the yield stress
is constant. Secondly, in the thixotropic model there is a discontinuity in the steady-state
rate of strain at the ‘yield stress’, which has been described as a ‘viscosity bifurcation’
[11]: the viscosity, which is infinite for smaller stresses, discontinuously becomes finite and
relatively small as the stress is increased past the ‘yield stress’. In an ideal yield-stress fluid,
however, the viscosity varies continuously away from infinity as the stress is increased past
the yield stress. A more detailed discussion of the differences between thixotropic models of
this form and yield-stress models can be found in [20]. In sections 4 and 6, we will compare
the behaviour of thixotropic and ideal yield-stress fluids numerically and experimentally,
and show that there are significant phenomenological differences between the two types of
fluid.

2.3 Rapid-transit

Rheological measurements and observations of a variety of thixotropic fluids [1, 7, 11, 20]
have shown that there is a significant separation of timescales between the ‘healing’ time T ,
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Figure 3: Schematic showing the system under consideration: fluid of aspect ratio ε =
H/L� 1 on a slope of angle θ, in two dimensions.

which is typically large, and the timescale over which the fluid evolves to the steady state
under stress, which is often much smaller. Motivated by these observations, we make a
simplifying ‘rapid-transit’ approximation to the evolution equation for λ (4): the evolution
to the steady state is assumed to be instantaneous, and the material derivative is replaced
by zero. Equation (4) therefore becomes

(1− λ) [1− Γλ (1− βλ) τ ] = 0. (6)

The relevant root λ of (6) for a given stress τ is determined by the stability of the full
time-dependent equation (4).

The constitutive relationship (1) is then given exactly by the steady-state curve plotted
in figure 2(a). At the bifurcation points τ = τC and τ = τA , the structure parameter jumps
to the structured (λ = 1, γ̇ = 0) or de-structured (λ� 1, γ̇ > 0) branches, as shown by the
arrows in figure 2(a). For intermediate values of the stress τC < τ < τA , the corresponding
value of λ depends on the stress history of the fluid.

3 Gravity driven flow in a shallow layer

In this study, we incorporate the rheological ‘rapid-transit’ thixotropic model into the prob-
lem of shallow fluid flow on an inclined plane. In order to distinguish between dimensional
and dimensionless variables, in this section we denote all dimensional quantities with a ∗.
The problem formulation is independent of the rheology, and exactly follows that given in
[2].

3.1 Dimensional formulation

We consider the flow (u∗, w∗) of a finite volume of fluid of density ρ, in two dimensions
(x∗, z∗), where the x∗-axis is aligned along a slope inclined at a constant angle θ to the
horizontal. The fluid lies in a shallow layer, such that the typical depth scale H is much
smaller than the typical along-slope scale L. We define their ratio to be ε = H/L� 1. The
fluid has depth z∗ = h∗(x∗, t∗), as shown in figure 3.

The flow is incompressible,
∂u∗

∂x∗
+
∂w∗

∂z∗
= 0, (7)
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and satisfies the Cauchy momentum equations,

ρ

(
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ w∗∂u

∗

∂z∗

)
= ρg sin θ − ∂p∗

∂x∗
+
∂τ∗xz
∂z∗

+
∂τ∗xx
∂x∗

, (8)

ρ

(
∂w∗

∂t∗
+ u∗

∂w∗

∂x∗
+ w∗∂w

∗

∂z∗

)
= −ρg cos θ − ∂p∗

∂z∗
+
∂τ∗xz
∂x∗

+
∂τ∗zz
∂z∗

. (9)

The deviatoric stress tensor τ∗ij is related to the rate of strain tensor γ̇∗ij by the constitutive
equation (1). The boundary conditions are given by no normal or tangential flow at the
base,

u∗ = w∗ = 0 at z∗ = 0, (10)

no normal stress at the upper boundary,(
τ∗ij − p∗δij

)
nj = 0 at z∗ = h∗(x∗, t∗), (11)

and the kinematic condition at the upper boundary,

∂h∗

∂t∗
+ u∗

∂h∗

∂x∗
− w∗ = 0 at z∗ = h∗(x∗, t∗), (12)

where n ∝ (−h∗x∗ , 1) is a vector that is normal to the surface z∗ = h∗. The kinematic
condition (12), combined with the continuity equation (7), gives

∂h∗

∂t∗
+

∂

∂x∗

∫ h∗

0
u∗ dz∗ = 0. (13)

3.2 Dimensionless formulation

We scale x∗ with L, z∗ with H, and the pressure p∗ with ρgH cos θ. We take a constant
velocity scale U , and scale u∗ with U , w∗ with HU/L, and time t∗ with L/U . The stress
τ∗ij is scaled with µ0U/H. We assume that the horizontal pressure gradients balance the

vertical gradients of the shear stress, and thus identify U = H3g cos θ/Lµ0.
As discussed above, we define the ratio H/L = ε � 1. With respect to dimensionless

variables, (8), (9), and (13) are given by

ε2Re

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
= S − ∂p

∂x
+
∂τxz
∂z

+ ε
∂τxx
∂x

, (14)

ε4Re

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
= −1− ∂p

∂z
+ ε2

∂τxz
∂x

+ ε
∂τzz
∂z

, (15)

∂h

∂t
+

∂

∂x

∫ h

0
u dz = 0, (16)

where S = ε−1 tan θ, and the Reynolds number Re is given by Re = ρUL/µ0. The compo-
nents of the rate of strain tensor are given by

γ̇xx = −γ̇zz = 2ε
∂u

∂x
, γ̇xz =

∂u

∂z
+ ε2

∂w

∂x
. (17)

The stress boundary condition (11) becomes(
ετxx − p ετxz
ετxz −ετxx − p

)(
−ε∂h/∂x

1

)
= 0 at z = h(x, t); (18)
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3.3 Leading order equations

Under the assumption that S ∼ O(1) and Re is no larger than O(1/ε), the leading order
terms in ε from (14) and (15) give

0 = S − ∂p

∂x
+ µ

∂2u

∂z2
, (19)

0 = −1− ∂p

∂z
. (20)

Together with the leading order boundary conditions from (11), equations (19) and (20)
give

p = h− z, (21)

τxz = µ
∂u

∂z
=

(
S − ∂h

∂x

)
(h− z) . (22)

If the viscosity µ is a constant, (16) and (22) can be combined, and reduce to the usual
governing equation for a Newtonian viscous gravity current on a slope [16]. Here, instead,
the viscosity is given as a function of the structure parameter λ (3), and the structure
parameter λ(τ) is given by the rapid transit model, discussed in section 2.3. These equations
are given here in dimensionless form:

µ(λ) =
1

(1− λ) (1− βλ)
, (23)

(1− λ) [1− Γλ (1− βλ) |τxz|] = 0, (24)

where we have set the parameters n = m = 1, rescaled the parameter Γ as Γ = αT/ε, and
replaced the stress τ by |τxz| following (17). Since we expect α and T to be large, we also
typically consider Γ to be large.

3.4 Anatomy of the flow

Before we present our numerical results, it will be helpful to examine the anatomy of
the flow, which is shown schematically in figure 4. From the rheological model, and the
hysteresis behaviour shown in figure 2, we should expect changes in the fluid structure, and
thus changes in the flow, at the bifurcation stresses: that is, at the critical and absolute
values of the stress, τC and τA . In the shallow-layer formulation, the stress is dominated by
the shear stress τxz, which is given by (22), and is a linearly decreasing function of z. The
contour τ = τC therefore defines a surface z(τC ) 6 h. Above this surface, the stress is less
than the critical value, and, as such, the fluid is structured: λ = 1, and γ̇ = ∂u/∂z = 0.

Similarly, the contour τ = τA defines a surface z(τA) 6 z(τC ). Below this surface, the
stress is greater than the absolute value, and the fluid is de-structured: therefore λ � 1,
and ∂u/∂z > 0.

Between the two stress surfaces, z(τC ) < z < z(τA), the structure of the flow depends
on the history of each fluid element. Suppose that the fluid is initially fully structured.
Then, when the fluid is inclined, the de-structured fluid will be exactly bounded above by
the absolute stress surface z = z(τA). However, as the flow evolves, de-structured fluid
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Figure 4: Schematic showing the flow of thixotropic fluid down a slope of angle θ. The
height h(x, t) is shown in red. Lines of constant shear stress τ=τA and τ=τC are shown
dashed. Above the line τ = τC , the fluid is fully structured and λ = 1, while below the line
τ = τA , the fluid is de-structured and λ � 1. The yield surface z = Y (x, t) (green), which
separates structured and de-structured flow, is bounded by these stress contours. Between
the two contours, the structure of the flow is determined by the local stress history: in this
region the yield surface is a material curve which satisfies (26). The inset shows a typical
velocity profile u(z) through a slice of the flow as marked: u(z) increases from zero at the
base up to the yield surface, at which point there is a discontinuity in ∂u/∂z, and plug flow
in the structured region above the yield surface.

elements will remain de-structured until the stress falls below the critical stress τC . These
fluid elements will also move with the flow, and so there is a material curve which runs
between the two stress contours, and separates the structured and de-structured fluid.

We can, therefore, define a yield surface z = Y (x, t) which runs throughout the current
and separates the structured fluid above from the de-structured fluid below (figure 4). At
points in the flow where the absolute stress surface z(τA) is moving up into structured fluid,
the yield surface lies along this stress surface. Similarly, at points in the flow where the
critical stress surface is moving down into de-structured fluid, the yield surface lies along
this stress surface. Between the two stress surfaces, the yield surface is a material curve,
as discussed above. Therefore, in this region z(τC ) < z < z(τA) the yield surface satisfies a
kinematic condition,

∂Y

∂t
+ u

∂Y

∂x
− w = 0 on z = Y (x, t), (25)

which, together with incompressibility (7), reduces to an evolution equation for Y in this
region:

∂Y

∂t
+

∂

∂x

∫ Y

0
u dz = 0. (26)

For clarity, a summary of our complete model is given here. The leading-order stress
contribution (22) and the rheological model (23), (24), are given by

τxz = µ(λ)
∂u

∂z
=

(
S − ∂h

∂x

)
(h− z) , (27)
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µ(λ) =
1

(1− λ) (1− βλ)
, (28)

(1− λ) [1− Γλ (1− βλ) |τxz|] = 0. (29)

The relevant root 0 6 λ 6 1 of (29) is given by the stability of the full time-dependent
equation (4). Equations (27)—(29) are solved together with the evolution equation (16) for
the height of the current h(x, t),

∂h

∂t
+

∂

∂x

∫ h

0
u dz =

∂h

∂t
+

∂

∂x

∫ Y

0
(h− z) ∂u

∂z
dz = 0. (30)

The location of the yield surface Y (x, t) depends on the stress history of the fluid. In
regions where the absolute stress surface z(τA) is moving up into structured fluid, or where
the critical stress surface z(τC ) is moving down into de-structured fluid, the yield surface
Y (x, t) lies along the respective stress surface (figure 4). Otherwise, the yield surface lies
between the two stress surfaces and evolves as a material curve (26):

∂Y

∂t
+

∂

∂x

∫ Y

0
u dz =

∂Y

∂t
+

∂

∂x

∫ Y

0
(Y − z) ∂u

∂z
dz = 0. (31)

4 Numerical results

4.1 Initial conditions

The initial height profile h(x, t = 0) for our numerical calculations is given by the final rest
state of a finite volume of fluid that has slumped under gravity on a horizontal plate. This
state corresponds to one in which the stress in the current has fallen below the critical stress
τC at all points: the fluid then becomes structured and stops flowing.

Applying this stress condition at z = 0, (27) (with S = 0) gives a simple differential
equation for the height of the final state on a horizontal plate,∣∣∣∣h∂h∂x

∣∣∣∣ = τC =
4β

Γ
. (32)

Equation (32) can be combined with a volume-conservation condition, and solved to give a
profile (centred on x = 0)

h(x) =

[(
6βV

Γ

)2/3

− 8β

Γ
|x|
]1/2

, (33)

where V is the constant volume of fluid. Equation (33) is identical to the final state obtained
for an ideal yield-stress fluid with yield stress τC . This final state is then used as an initial
condition in the numerical calculations. In addition, in these simulations we assume that
the fluid which has attained this initial condition has then been left to rest on the horizontal
plane for sufficient time that the initial structure has fully healed throughout the fluid, and
is uniformly given by λ = 1.
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4.2 Two-dimensional results

We have solved the governing equations (30)-(31) numerically. The calculations were signifi-
cantly simplified by analytically integrating over the vertical component z in these equations
using (27)-(29), and thus reducing the system to a one-dimensional model (these calculations
result in fairly involved analytic expressions, which are not shown here). The resulting one-
dimensional equations were solved numerically, using second-order centred finite differences
in space, and a second-order midpoint method in time.

Numerical results for Γ = 20, β = 0.95, and S = 1.5 are shown in figure 5. In addition
to the height of the interface h(x, t), this figure shows the two stress surfaces and the yield
surface that were discussed in section 3.4.

The initial stress on the fluid is greatest at the base, below the highest point of the
current. Therefore, as fluid begins to move, the most significant de-structuring occurs
there, and leads to a partial collapse of the fluid column above. This process results in the
formation of a ‘nose’ at the front of the current (figures 5c and d). There is a local minimum
in the height profile in the interior of the current, and, most notably, at the back of the
current there is a raised remnant of structured fluid that remains immobile. In contrast,
figure 5(e) also shows the evolution of an ideal Bingham yield-stress fluid, with a yield
stress given by τA , and the same initial profile. Here, the height of the current has quite
a different profile, being highest at the front, not having a height minimum in the middle
of the current, and not leaving a raised remnant at the back, at least for the length of the
computation shown.

Some notable oscillations can be observed in the results of figure 5. These features
appear to take the form of high-wavenumber travelling waves, which are typically first
observed on the material part of the yield surface z = Y near to one of the stress contours.
The waves are independent of the temporal resolution of the simulations, but do exhibit
some dependence on the spatial resolution. However, the macro-scale features of the flow
remain almost unaltered, as the waves move with the flow and are rapidly damped when
the yield surface joins one of the two stress contours. In section 5, we rationalize these
waves in the form of an instability of the material part of the yield surface.

4.2.1 Critical angle

The stress on the fluid increases with the slope S (27). If the slope is not sufficiently high,
the stress will be below the absolute value τA throughout the fluid. The fluid will therefore
remain structured, and there will be no flow. However, if any of the fluid is de-stabilised,
then it will remain destabilised until the stress on that fluid parcel falls below the critical
value τC . We therefore find that there is a critical vale of S, corresponding to a critical
angle, below which there is no flow, and above which the fluid will de-structure and flow.
This behaviour agrees with the ‘avalanching’ above a critical angle, which was reported in
[10].

The critical angle can be calculated analytically. The initial condition for the height of
the current is given by |h∂h/∂x| = τC (see section 4.1). For a given inclination angle, and
thus a given value of S, the new stress along the base of the current is given by

τ =

∣∣∣∣S − ∂h

∂x

∣∣∣∣h = τC + Sh. (34)
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Figure 5: Numerical results of the two-dimensional system, for Γ = 20, β = 0.95, S = 1.5,
and an initial volume of fluid V = 4. The lines show the height of the current h(x, t) (red),
the yield surface Y (x, t) (green), the critical stress contour (purple), and the absolute stress
contour (blue), at times: (a) t = 0; (b) t = 5; (c) t = 50; and (d) t = 200. For comparison,
(e) shows the height of an ideal Bingham yield-stress fluid, with yield stress (Bingham
number) τA , slope S = 2, and the same initial conditions as (a). The height profile in (e)
is printed every 10 time units.
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The fluid will de-structure if this stress exceeds the absolute value τA . Therefore, for a given
initial height profile, the critical angle Θ is given by

S =
tan Θ

ε
=
τA − τC
maxx h

=
(1− 2β)2

(6βΓ2V )1/3 (1− β)
, (35)

where maxx h signifies the maximum value of h over all values of x, which we have substi-
tuted from the initial height profile (33), for a given constant volume of fluid V . We have
also substituted the expressions for τA = 1/Γ(1− β) and τC = 4β/Γ from section 2.2.

4.2.2 Final rest state

As in the case on a horizontal plate (section 4.1), the final rest state for the current is given
by the height profile that corresponds to the stress on the base falling below the critical
value everywhere. After this point, the fluid re-structures and there is no further flow.
Therefore the final state is identical to that for an ideal yield-stress fluid with a yield stress
τC [14], and is given by ∣∣∣∣S − ∂h

∂x

∣∣∣∣h = τC . (36)

Equation (36) has a solution h(x) that is given implicitly by

log

(
1− S

τC
h

)
+
S

τC
h =

S2

τC
(x− xF ) , (37)

where xF is a constant of integration corresponding to the final position of the nose of
the current. If the back of the current has not moved from the initial state, then (37)
is matched with the initial condition there, in such a way as to conserve volume. This
matching determines xF . Equation (37) gives profiles for the height that are almost flat,
with a localised steep drop at the nose. Therefore, perhaps surprisingly, the theory predicts
that the raised structured remnant at the back of the current (figure 5) will eventually
collapse to give a roughly flat end state. This end state is not attained until the stress
on the fluid is everywhere below the critical stress, and numerical results suggest that the
approach to this state is extremely slow compared with the initial rate of spreading of the
current.

4.3 Three-dimensional results

We can also perform the analysis of section 3 for three-dimensional flow, which includes the
cross-slope co-ordinate y and velocity v. The leading order equations (c.f. (27) and (30) in
two dimensions) reduce to

∂h

∂t
+

∂

∂x

∫ h

0
u dz +

∂

∂y

∫ h

0
v dz = 0, (38)

τxz = µ(λ)
∂u

∂z
=

(
S − ∂h

∂x

)
(h− z) , τyz = µ(λ)

∂v

∂z
= −∂h

∂y
(h− z) , (39)
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Figure 6: Numerical results of the three-dimensional system, for Γ = 20, β = 0.9, S = 1,
and an initial volume of fluid V = 2: (a) the height of the current h(x, y, t) visualised in
three dimensions, for t = 0 and t = 300; (b) colour maps of the height of the current,
viewed from above, for t = 0, t = 50, t = 150, and t = 300 as marked. A clear ‘horseshoe’
of structured fluid can be seen at the back of the current.
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τ =
√
τ2xz + τ2yz = (h− z)

√(
S − ∂h

∂x

)2

+

(
∂h

∂y

)2

, (40)

and the rapid-transit rheological model is the same as previously (28), (29).
As mentioned in section 4.2, we can calculate the integrals in the vertical component

of (38) analytically (not shown here), and thus reduce the system to a two-dimensional
model in x and y. We have solved (38)–(40) numerically, using a modification of the one-
dimensional routine discussed in section 4.2.

Figure 6 shows solutions of the height h(x, y, t) at different times, for Γ = 20, β = 0.9,
and S = 1. Similar qualitative features to the two-dimensional model can be seen. Firstly,
the fluid appears to collapse most rapidly in the centre. Secondly, a distinct remnant of
structured fluid is left behind at the back of the current, which persists as the nose flows
away down the slope. This structured remnant appears to be very similar to the observations
of a ‘horseshoe’ that were reported in [10]. There is less of a distinct raised nose in these
simulations as in the one-dimensional results (figure 5); this appears to be due to the lower
value of β used here, which corresponds to a smaller hysteresis loop in the constitutive
equation. At values of β closer to 1, the calculations show noticeable high-wavenumber
oscillations in the material part of the yield surface z = Y , which are also visible as ripples
in the free surface z = h: these are analogous to the features seen in the two-dimensional
results, and are discussed in the following section. Their possible physical relevance is
considered in the context of our experimental results with ketchup (section 6.2).

5 Stability

It has been shown that two inclined shallow layers of Newtonian [9] or non-Newtonian
power-law [5] fluid with differing viscosities can be unstable to an interfacial instability,
even in the absence of inertia, due to the additional degrees of freedom given by the ma-
terial surface between the layers. We might, therefore, expect to find a similar interfacial
instability in the shallow thixotropic layer, when the yield surface is a material curve which
separates infinite-viscosity structured fluid above from relatively low-viscosity de-structured
fluid below. Indeed, as mentioned in section 4, we can observe instabilities forming on the
material yield surface in our numerical simulations.

In this section we consider the linear stability of an idealised two-dimensional system,
in which the background height z = h and yield surface z = Y are both constant. The
yield surface is a material curve lying between the two stress contours τ = τA and τ = τC ,
as shown in figure 7(a). This study is limited to times before the yield surface touches
either of these stress contours. We begin this section by performing a theoretical stability
analysis, which shows that the system is always weakly unstable to perturbations at any
wavenumber. We then present numerical simulations of the system, which reveal that the
instability results in the generation of travelling shocks on the yield surface.

5.1 Theoretical stability analysis

The system is governed by continuity below and above the yield surface, and by the kine-
matic condition at both z = Y and z = h. These conditions give governing equations (30)
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Figure 7: (a) The system under consideration in the linear stability analysis: the background
height and yield surface are given by the constants h0 and Y0 respectively, and, for the
numerical calculations, the boundaries are periodic. (b) The two roots of the growth rate,
for Γ = 20, β = 0.95, S = 2, h0 = 1, Y0 = 0.25. One root (blue) decays like −k2; the other
(red) tends to a small positive constant for large values of k.

and (31), which can be written in the form

∂h

∂t
+

∂

∂x
F (h, Y ) = 0,

∂Y

∂t
+

∂

∂x
G(h, Y ) = 0. (41)

The functions F and G are the fluxes of h and Y respectively, given by

F =

∫ h

0
u dz =

∫ Y

0
(h− z) ∂u

∂z
dz, (42)

G =

∫ Y

0
u dz =

∫ Y

0
(Y − z) ∂u

∂z
dz. (43)

The rate of strain ∂u/∂z (27) depends on the structure parameter λ, which itself is a function
of the shear stress (29), and thus a function of z. The fluxes (42), (43) can therefore be
written as

F (h, hx, Y ) = (S − hx)

∫ Y

0
(h− z)2 (1− λ) (1− βλ) dz, (44)

G(h, hx, Y ) = (S − hx)

∫ Y

0
(h− z) (Y − z) (1− λ) (1− βλ) dz, (45)

where hx is the partial derivative of h with respect to x, and, from (29), the structure
parameter is given by

λ(z, h, hx) =
1

2β

[
1−

(
1− 4β

Γ (h− z) (S − hx)

)1/2
]
. (46)
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These integrals (44) and (45) can be calculated analytically (not shown here).
We perform a linear stability analysis of (41) by looking for normal modes, with growth

rate σ and wavenumber k:

h = h0 + h̃eσt+ikx, Y = Y0 + Ỹ eσt+ikx, (47)

where h0 and Y0 are the constant background values of the height and the yield surface,
and h̃ and Ỹ are small perturbations which satisfy h̃, Ỹ � h0, Y0. Neglecting terms that
are non-linear in the perturbation quantities, we find that the growth rate σ satisfies a
dispersion relationship of the form

σ2 + σ
(
Ak2 +Bik

)
+ Cik3 +Dk2 = 0 (48)

where A, B, C, and D are real functions of the governing parameters of the problem, Γ, β,
S, h0, and Y0, and are given in terms of the fluxes F and G by

A =
∂F

∂hx
, B =

∂F

∂h
+
∂G

∂Y
, C = − ∂G

∂hx

∂F

∂Y
, D =

∂G

∂h

∂F

∂Y
− ∂G

∂Y

∂F

∂h
, (49)

all evaluated at h = h0, Y = Y0, and hx = 0.
Unstable modes k correspond to a positive real part of the growth rate Re[σ], and

marginally stable wavenumbers are obtained when Re[σ] = 0. Equation (48) gives marginal
stability only at k = 0, which means that any unstable (or stable) solutions will be unstable
(or stable) for all wavenumbers k. In the limit of large k, (48) gives two roots σ1,2 with
leading order real parts given by

Re[σ1] = −Ak2 +O(1), Re[σ2] =
C2 −ABC −A2B

A3
+O(k−1). (50)

The algebra for this problem is significantly simplified if we consider the limit of large
Γ, and expand the coefficients in powers of 1/Γ. For ease of notation we also define the
quantity Θ0 = h0 − Y0. To leading order in 1/Γ, we find that A = [h30 −Θ3

0]/3 > 0, and

C2 −ABC −A2B

A3
=

3h30Θ
3
0 (h0 −Θ0)

4 (h0 + 2Θ0)
2 S2

4
(
h30 −Θ3

0

)3 > 0. (51)

Therefore, in the limit of large Γ, the first root σ1 has a negative real part, with a magnitude
that grows like k2. However, the second root σ2 has a positive real part, that is a constant
to leading order for large values of k. We can also show that for small k the unstable mode
grows like k2, and then increases monotonically to this constant value for large k. The
system is therefore unstable to perturbations of any wavenumber. For parameter settings
relevant to the full slump problem, the positive growth rate is typically extremely small in
magnitude.

We have also shown numerically that this behaviour is generic for arbitrary values of
Γ: that is, there is always one negative root that decays like k2, and one positive root that
grows monotonically from zero at k = 0 to a (typically very small) constant for large k.
Therefore all wavenumbers are unstable. An example of the two roots is plotted in figure
7(b).
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Figure 8: Numerical stability results for an initial perturbation of amplitude 10−5 and
wavenumber k = 8π, for Γ = 20, β = 0.95, S = 2, h0 = 1, and Y0 = 0.25: (a) the
perturbations to the yield surface Y −Y0 (blue, solid) and to the height h−h0 (red, dashed),
at time t = 50, showing the formation of shocks in the yield surface; and (b) the measured
root-mean-squared yield surface (blue) and height (red), scaled by the initial perturbation
amplitude, and compared to the theoretical unstable growth rate

∣∣eσt∣∣ (dashed) for large k,
calculated from (50).

5.2 Numerical stability analysis

We can simulate the setup shown in figure 7(a) directly, with periodic boundary conditions
in the x-direction. The height h and the yield surface Y are both subjected to the same small
single-mode perturbation, which then evolves according to (41). Figure 8 shows the results
of such a simulation, for an initial perturbation with wavenumber k = 8π, corresponding to
4 waves. The resulting perturbation to the height and to the yield surface (figure 8a) are
observed to grow extremely slowly in comparison with the advection time of the background
velocity. The instability is more prominent on the yield surface than on the height of the
current. In the non-linear regime, the instability appears to lead to the formation of shocks
on the material yield surface, with the same wavenumber as the original perturbation.
We find that these shocks drive the initiation of high wavenumber oscillations, and this
behaviour is perhaps a feature of our numerical scheme. The corresponding deformation of
the height of the current takes the form of travelling waves. The measured amplitude of
the perturbations gives the same growth rate as the theoretical prediction (50) for large k
(figure 8b).

The analysis of this section shows that the idealised system is unstable to an interfacial
instability at all wavenumbers, in the regions where the yield surface is a material curve.
This result has important implications for our numerical simulations of the full slump prob-
lem, as instabilities with length scales down to the gird scale might be expected to form,
and the results will likely vary with the spatial resolution of the computation. However, it
should be remembered that the full system is not periodic in x, but rather the material part
of the yield surface is bounded at each end by either critical or absolute stress contours,
which limit the development and propagation of the instability. Furthermore, because the
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(a) (b)

Figure 9: Snapshots of a typical experiment in progress, with 10% by volume bentonite
solution, Tage = 240 minutes, and an angle of 20◦: (a) after t = 5 seconds; (b) after t = 50
seconds. For scale, the tattered white paper below the sample in each picture is 20 cm long.

growth rate is (typically) extremely small, the background advection of the flow is much
faster than the growth of instabilities, and we expect them to be rapidly transported along
the yield surface until they reach one of the stress contours. This behaviour is observed
in the numerical results of section 4, where the instabilities are typically quashed by the
absolute or critical stress contours before they significantly destabilise the flow and cause
any noticeable deformation to the height z = h of the current. It should, however, be noted
that this is not always the case: particularly at smaller values of Γ and larger values of β,
we find that instabilities on the yield surface can result in wave generation and deformation
of the height of the current.

6 Experimental results

We have carried out a series of experiments to compare with the numerical simulations of
our model. Our experimental setup consisted of a ≈ 1 m2 glass plate, which was hinged at
one end, and could be tilted and held at a desired angle using a pulley system. The plate
was joined to a frame, which allowed for a laser pointer and a camera to be held in the
same frame of reference as the plate. Samples of fluid were placed on the plate, which was
then lifted to a given angle (details of the preparation of the fluid and the initialisation of
the experiment are discussed below). A laser line was projected onto the fluid surface from
directly above, facing down the slope, which allowed for measurements of the height of the
current along the midplane (see figure 9 for typical photographs of the system during an
experiment).

We performed experiments with two different thixotropic fluids: bentonite clay solution
(10% by volume, Quik-Gel sodium bentonite, Baroid drilling fluids), and tomato ketchup
(Heinz ). Each of these fluids have been observed to exhibit thixotropy [6, 18]: in particular,
there have been a variety of rheological measurements of bentonite [11, 19], which suggest
that it exhibits many of the features of our rapid-transit rheological model (section 2). In
order to ensure reproducibility in the results, all the fluid samples were initially subjected
to vigorous shear for at least 30 minutes. This shear was intended to remove any initial
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Figure 10: Schematic of the steady-state constitutive relationship (thick blue), as in figure
2, together with the local linear relationship between τ and γ̇ for increasing ageing times
Tage as marked (thin red dashed). The time-dependent ‘effective yield stress’, above which
the fluid de-structures, is given by the intersection between the curves. For Tage = 0, the
effective yield stress is equal to the critical stress τC , and there is no hysteresis in the system.
As Tage →∞, the effective yield stress tends towards the absolute stress τA , and λ→ 1.

structure in the fluid. A fixed volume (150 ml) of the fluid was then slumped on a horizontal
plate, by pouring into a hollow cylindrical (5 cm radius) mould, which was then lifted.
In this way, the fluid attained its rest state on a flat plate, which corresponds to the
initial condition of the numerical simulations (section 4). Samples were then left to age
for different periods of time Tage. During this time, the samples were kept under airtight
covers to limit the effects of evaporation. The substrate for the experiments was made of
sanded perspex, in order to avid any slip at the base of the current. There is an important
phenomenological distinction between this ‘genuine’ slip, in which the whole fluid column
slides on the substrate, and the apparent slipping of structured fluid which is actually due
to lubrication from a de-structured layer at the base of the current. The latter effect, which
results in a thin layer of fluid being left behind on the substrate, is consistent with the
theoretical ‘no-slip’ boundary condition on the base of the current (10), and was observed
in many of our experiments.

Before presenting our experimental results, we briefly consider how we expect the be-
haviour of the fluid to vary with different ageing times Tage, based on the theoretical model
that was discussed in section 2. While the fluid sample is at rest, the structure should
evolve according to (2), with γ̇ = u = 0: i.e.

∂λ

∂t
=

1− λ
T

. (52)

For a given ageing time Tage, there is a corresponding value of λ, given by (52). This
value of λ corresponds to a viscosity, µ(λ), and thus to a linear constitutive relationship
τ = µ(λ)γ̇. The local value of the stress at which the fluid becomes de-structured (the
‘effective yield stress’) is then given by the intersection between this linear constitutive
relationship and the steady state hysteresis loop (shown schematically in figure 10). If the
ageing time Tage is small, this effective yield stress will be very close to the critical stress τC ,
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and we would therefore expect the sample to behave rather like a simple yield-stress fluid.
As Tage increases, the sample should increasingly exhibit the features that we observed in
our numerical simulations (section 4), as the effective yield stress increases towards τA , and
the extent of hysteresis in the system increases. Moreover, the discontinuity in γ̇ at the
effective yield stress will also increase with Tage, and the system should exhibit increasingly
dramatic ‘avalanche’ behaviour.

6.1 Bentonite

We examined the behaviour of different bentonite solutions with filtered water: 7.5%, 10%,
and 12.5% bentonite by volume. The 12.5% solution was very viscous, and so suffered
from slipping on the substrate, while the 7.5% solution had a relatively low viscosity, which
appeared to result in some inertial effects, and caused the fluid to flow too rapidly for
accurate measurements. Here, therefore, results are presented only for the 10% bentonite
solution.

Figure 11 shows measurements of the height profiles over time, for different ageing
times Tage, at a fixed angle of 20◦. Figure 12 shows the height profiles at different ageing
times for a slightly larger inclination angle of 24◦. As a comparison, we also carried out
some experiments with a ‘joint compound’ solution (Sheetrock all-purpose joint compound),
which, over the timescale of an experiment, appeared very like an ideal yield-stress fluid.
Measurements of the height of the joint compound are shown in figure 11(a).

These measurements show that the behaviour of bentonite is strongly dependent upon
the ageing time. Consider, for example, the results on a 20◦ slope (figures 11b-d). For
very small ageing times, the behaviour is similar to the joint compound (yield-stress fluid,
figure 11a), although the formation of a nose at the front of the downward-moving current
is more pronounced: there is no raised ‘horseshoe’ at the back of the current, and the fluid
evolves rapidly after the experiment starts. However, as the ageing time Tage increases, the
samples display behaviour that is more similar to the numerical simulations of section 4:
there is an increasingly pronounced residual ‘horseshoe’ of fluid left behind at the back of
the current, and the thinnest part of the current for late times is in the middle, between
the horseshoe and the nose. These features are even more striking if the slope is increased
by 4◦ (figure 12). Here, the sample thins very dramatically in the interior, which results
in an extremely pronounced nose at the head of the current and residual horseshoe at the
rear. This behaviour is more dramatic than is predicted by the theoretical model, possibly
because of the destructuring effects of extensional stresses in the current, which the model
does not take into account. This issue is discussed in section 7. It is important to highlight
that, even in the most extreme examples (e.g. figure 12c), the nose did not appear to be
slipping on the substrate as it moved down the slope, but rather there was always a thin
lubricating layer of de-structured fluid along the base.

Figure 13(a) shows the final position of the nose of the current, xF , as a function of the
inclination angle, for different ageing times Tage. As discussed above, we anticipate that for
larger ageing times, the stress (and hence the angle) at which the fluid de-structures (and
evolves to the small-λ stable branch of the constitutive relationship), should increase, and
the corresponding flow after de-structuring should be increasingly dramatic (as the value
of γ̇ on the small-λ stable branch will be larger). Both of these features can be observed in
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Figure 11: Snapshots of the height of the midplane over time, measured using a laser line,
for (a) a joint compound solution on a 34◦ slope, which behaves very like an ideal yield-
stress fluid [14, 17], and for (b) – (d) 10% (by volume) bentonite solution on a 20◦ slope, for
different ageing times Tage as marked. The x axis gives the distance from the back of the
current. Lines are plotted every ≈ 2 seconds, except in (b), where lines are plotted every
≈ 0.5 seconds. Red and blue lines signify the initial and final profiles, respectively. As
Tage increases, the response of the bentonite increasingly differs from the ideal yield-stress
behaviour in (a), as discussed in the text, and in the caption to figure 12.
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Figure 12: Snapshots of the height of the midplane over time for 10% (by volume) bentonite
solution on a 24◦ slope, for different ageing times Tage as marked.. Lines are plotted every
≈ 2 seconds, except in (a), where lines are plotted every ≈ 0.5 seconds. Red and blue lines
signify the initial and final profiles, respectively. In (b) and (c), the nose of the current
eventually moves off the end of the plate. For the larger values of Tage, the same qualitative
features that were observed in the numerical results (section 4) can be seen: the back of the
current remains fixed (the ‘horseshoe’), and there is a ‘nose’ of fluid which moves rapidly
down the slope. The sample in (d), which is aged for 1080 minutes, does not move on a
20◦ slope, which exemplifies the increasingly dramatic ‘avalanche’ behaviour of the fluid for
large Tage.
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Figure 13: Position of the nose of the current for 10% (by volume) bentonite solution: (a)
the final distance travelled by the nose xF , for different ageing times Tage, showing the
increasingly narrow band of angles over which the de-structuring of the fluid becomes more
dramatic; (b) the distance travelled by the nose xN (t) on a 20◦ slope; and (c) the distance
travelled by the nose xN (t) on a 24◦ slope. Notice the change in curvature of the lines in
(b) and (c) for longer ageing times. Measurements which appear above the top of the graph
signify that the current reached the end of the plate.
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figure 13(a): for small values of Tage, the final distance of the nose xF steadily increases with
the angle of inclination, while for larger Tage, there is an increasingly thin band of angles
over which xF changes dramatically. This ‘avalanche’ behaviour is most clearly observed in
the samples that were left to age for Tage = 1080 minutes, where the fluid remains stationary
on a 20◦ slope, but fails dramatically and flows off the bottom of the plate at 24◦.

The transient behaviour of the nose of the current xN (t) is shown for two different angles
in figures 13(b) and (c), again for different values of Tage. These figures reveal a change
in the evolution of the current for larger ageing times. For small values of Tage, the nose
of the current moves most rapidly at t = 0, as in the case of an ideal yield-stress fluid.
However, as Tage increases the nose of the current takes increasingly long to move, and then
gradually accelerates. This behaviour agrees with previous observations made by Coussot
et al. [10]. We anticipate that this slow acceleration is a result of the gradual breakdown
of structure in the fluid, which mathematically corresponds to the slow evolution of the
structure parameter λ towards the steady state, as modelled by time derivative in (2). This
behaviour is not, therefore, captured by the rapid-transit model, and thus is not observed
in our numerical results.

Figures 13(b) and (c) also show that the current comes to an abrupt halt after flowing
down the plane. The shape of this final profile is much like the profile during the flow: the
immobile current has a clear raised horseshoe at the back and a raised nose at the front.
This behaviour is quite unlike that predicted by the numerical simulations (section 4.2.2),
which suggest that the flow should slowly evolve towards a final profile that is approximately
flat. The reasons for this difference are unclear.

6.2 Ketchup

We have also carried out experiments using Heinz tomato ketchup. Ketchup is an interesting
and complex multicomponent fluid, and is difficult to use experimentally due to its tendency
to separate over time. In particular, ketchup readily expels vinegar, which gathers around
the base of the sample if it is left at rest for more than a few minutes. Despite these
difficulties, which suggest caution is needed in analysing these results, it is still possible
to observe clear thixotropic behaviour, and to draw qualitative comparisons both with the
measurements for bentonite and with our theoretical model. While we gathered a range
of measurements using ketchup, we will only briefly discuss the qualitative behaviour here,
because of this separation problem.

Figure 14 shows snapshots of the height of the current over time, for different ageing
times Tage. Although the dependence on Tage seems much less dramatic than with bentonite
(figure 11), we still observe the development of a structured horseshoe of fluid at the rear
of the current for large ageing times, which is absent for smaller ageing times. We found
that ketchup does not exhibit the same catastrophic failure at a particular angle that we
observed in fully structured bentonite (e.g. figure 12c), except at much larger angles, when
the fluid starts to slip on the base (see the discussion of slip above), so that the nature of
the experiment changes.

A photograph of the ketchup current (figure 15a) shows the structured horseshoe rem-
nant, and the gravity current extruding down the slope. This picture highlights the complex
structure of the surface of the current: the evident surface structure is perhaps the result
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Figure 14: Snapshots of the height of the midplane over time for Heinz tomato ketchup on a
14◦ slope, for different ageing times Tage as marked.. Lines are plotted every ≈ 10 seconds.
Red lines signify the initial profiles: in contrast to bentonite, the samples continue to move
slowly down the slope for very long times, and thus the final position of the slump is not
necessarily attained. For larger values of Tage there is a clear structured horseshoe at the
rear of the current.
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Figure 15: Results with Heinz tomato ketchup: (a) a photograph from above of a ketchup
current after an experiment (downslope is to the right), showing a structured horseshoe
at the back (left), and significant surface texture on the rest of the current; and (b) the
evolution of the nose of the current xN (t) on a 14◦ slope, showing the same change in
curvature that was observed with bentonite (figure 13b and c). Unlike bentonite, the
current continued to flow throughout the experiment, rather than coming to a halt.

of an instability, such as the interfacial instability that was analysed in section 5.
Figure 15(b) shows the evolution of the position of the nose xN (t) for different values

of Tage. As in the case of bentonite (figure 13b and c), the current gradually accelerates
for longer ageing times, in contrast to the behaviour at small values of Tage. Interestingly,
the ketchup current continued to flow throughout the experiment, rather than coming to
an abrupt halt like the bentonite.

7 Conclusions

As discussed in section 1, despite a range of rheological studies of thixotropy there has
been relatively little work that couples the rheology to the flow in a physical system. In
this report we have presented and discussed a rheological model for thixotropic fluids, and
applied it in the context of gravity-driven flow on a slope. We modelled this system both
numerically and experimentally, and, despite some intriguing differences, on the whole we
found broad qualitative agreement between the results.

In section 2, we presented a rheological model that we use to describe the effects of
thixotropy. This model is based on a selection of previous models (e.g. [11, 19]), but
also includes the concept of an absolute stress τA , above which even fully structured fluid
will de-structure and begin to flow. In addition, based on previous empirical observations
[1, 7, 11, 20], we introduced the simplifying ‘rapid-transit’ approximation, which assumes
that λ evolves instantaneously to its steady-state value.

In sections 3 and 4, we applied our rapid-transit rheological model to the problem of
a finite shallow current on a slope, and presented numerical results of the flow in two and
three dimensions. For these theoretical results, we assumed that the fluid was initially fully
structured. We found that the flow is characterized by a raised ‘horseshoe’ of structured
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fluid at the back of the current, in agreement with previous experimental observations [10].
The model also shows that there is a critical angle, above which the current will flow (in
some cases, dramatically), and below which the current will not move.

Motivated by the presence of high-wavenumber fluctuations in these numerical results,
in section 5 we explored the stability of an idealised shallow-layer system. We found that the
internal interface (yield surface) between the structured and de-structured fluid is always
weakly unstable to perturbations at any wavelength. Within this idealised system, we
numerically followed the instability into the non-linear regime, and found that the instability
develops into travelling shocks on the material part of the yield surface. However, the growth
rate of the instability is typically extremely small compared to the rate of propagation of
the current, and, in the full (non-idealised) system, the material part of the yield surface
is always bounded by a constant stress contour at either end, which damp any oscillations.
On the whole, therefore, this instability does not appear to have a significant effect on the
propagating current.

Finally, in section 6, we presented experimental results of the same shallow-layer inclined
system, with two thixotropic fluids: bentonite clay solution, and tomato ketchup. We
observed that, as the ageing time Tage increased, the bentonite solution evolved in qualitative
agreement with the theoretical predictions: from simple yield-stress-fluid behaviour for small
Tage, to increasingly dramatic ‘avalanche’ behaviour for larger Tage. The shape of the current
for larger Tage is similar to that predicted by the numerical simulations: a notable structured
horseshoe of fluid at the back of the current; a thinner region in the interior; and a nose at
the front. However, unlike the numerical predictions, which suggest that the current should
evolve slowly to a relatively flat final profile, the bentonite always came to an abrupt halt
after flowing some way down the plane, leaving a pronounced horseshoe and nose at the
back and front of the current respectively. The reasons for this different behaviour are not
clear, although perhaps the neglect of extensional stresses in the theoretical model could be
relevant (see the discussion below).

The results for ketchup are more difficult to analyse, due to the material separating into
its constituent fluid components. However, we again observe that the shape of the current
increasingly resembles the numerical solutions for larger ageing times, with a structured
horseshoe at the back of the current. The ketchup current also undergoes an instability
or deformation of the free surface as it flows down the slope, which may be related to
the instability process in the theoretical model (section 5). The evolution of the nose of
the current for both ketchup and bentonite solution undergoes a qualitative change for
different values of Tage (as in [10]), from initial gradual deceleration for small Tage, to initial
gradual acceleration for larger Tage. This behaviour is not captured by the numerical results,
presumably because of the rapid-transit approximation.

While many of the main phenomenological features of the experimental results agree
well with both the numerical and theoretical models, we find that bentonite can undergo
even more dramatic de-structuring than the numerical solutions suggest. This difference
is perhaps due to the details of the rheological model, in which, for example, the viscosity
may have a more sensitive dependence on the strain rate. However, the difference could also
be explained by the neglect of extensional stresses from the theoretical shallow-layer model
(section 3). Flow in a de-structured layer may induce significant extensional stresses in the
structured (and therefore much more viscous) layer above, which are not included in the
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model. If the upper layer is sufficiently viscous, these extensional stresses can contribute to
the stress invariant τ at the same order of ε as the shear stress. The inclusion of extensional
stresses would lead to more of the current becoming de-structured, which would result in
an increased thinning of the interior of the current, as is observed experimentally. It has
proved somewhat complicated to develop a consistent model that incorporates extensional
and shear stresses throughout the current, and this remains an intriguing avenue for further
study.
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