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1 Introduction

The calculation reported in this paper is a standard one for those who study pattern forma-
tion in nonlinear systems. Pattern formation is prevalent when instability breaks symme-
tries present in a basic state. In the canonical example, stationary fluid heated from below
gives way to patterns through Rayleigh-Bénard instability. For a wide class of problems,
one may derive amplitude equations that govern the weakly nonlinear development of an
instability. Amplitude equations describe the slow modulation in space and time of distur-
bances excited near the threshold of an instability. The form of the amplitude equations is
determined generically by symmetries of the governing equations and the structure of the
linear instability ([5], [3]).

When a large, dissipative, system undergoes a Hopf bifurcation, with a trivial steady
state losing stability to a growing, unsteady wave pattern, an amplitude equation that
generically arises is the complex Ginzburg-Landau equation (CGL)

∂A

∂t
= µA+ ν

∂2A

∂x2
− ζA |A|2 . (1)

The function A = A(x, t) is a complex valued function of two real variables. It represents
the slowly varying amplitude envelope of packets of waves generated by the instability. The
variable x is spatial displacement in a frame moving at the group velocity of the unstable
wavepackets. The coefficients µ, ν, and ζ are complex, with Re {µ} > 0, Re {ν} > 0. When
Re {ζ} > 0, the cubic nonlinearity will balance the linear growth term and halt the growth
of the disturbance when |A| becomes large enough. This case is a supercritical bifurcation.
If Re {ζ} < 0, the cubic term will never balance the linear growth term and the equation
predicts growth without bound. In such cases, the bifurcation is subcritical and equation
(1) is not a good asymptotic description of the nonlinear dynamics. Higher order terms
must be calculated that balance the exponential growth. Whereas µ and ν can be predicted
from a knowledge of the linear theory alone, ζ and the all important sign of Re {ζ} cannot
be predicted without a nonlinear theory, and must be determined case by case by direct
calculation.

To understand the origin of equation (1), consider the situations depicted in figure 6.
When a system is weakly unstable, the unstable modes grow exponentially, but very slowly.
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Most of the stable modes, on the other hand are relatively strongly damped. Because the
stable modes decay rapidly, they are present in the system only to the extent that they
are forced by nonlinear interactions with the unstable modes. Their evolution is slaved to
that of the unstable modes. In many cases, Ginzburg-Landau type amplitude equations
emerge from asymptotic methods that exploit the timescale separation between the stable
and unstable modes.

Equation (1) governs only systems that are sufficiently large in the following sense. The
spatial variations of the unstable wave packets must be produced by the interaction of a
large number of closely spaced unstable modes. In a system of finite size, the spectrum
of available wavenumbers must be discrete to satisfy boundary conditions. The smaller
the system becomes, the larger the separation between neighboring modes in wavenumber
space. If the modes are widely spaced, then a weakly unstable state may consist of only one
or a small number of weakly unstable modes with all others relatively strongly damped, as
shown in figure 6b. The amplitude equations governing such a situation would be a finite
system of real, ordinary differential equations in time for the amplitudes of the unstable
modes [2]. However, if the system is infinitely large, then the wavenumber spectrum is
continuous. In that case, when the system is weakly unstable, a narrow band containing an
infinite number of modes becomes unstable as shown in figure 6a. The nonlinear interaction
of an infinite number of slowly evolving unstable modes leads to amplitude PDEs such as
equation (1), rather than amplitude ODEs. Even when a system is finite, if it is sufficiently
large that weak instability leads to the nonlinear interaction of a large number of closely
spaced unstable modes, then equation (1) is still the appropriate asymptotic description of
the evolution of the instability.

Though the form of equation (1) can be guessed a priori from considerations of sym-
metry [5], one must calculate the equation in detail in order to discover an expression
for ζ. Knowing the coefficients is useful, and not only because the sign of Re {ζ} deter-
mines whether the Hopf bifurcation is supercritical or subcritical. Solutions of the complex
Ginzburg-Landau equation exhibit a rich variety of different qualitative behaviors as the
coefficients are varied. In large regions of parameter space, spatiotemporal chaos, inter-
mittency, or the spontaneous formation of coherent structures may be observed. In others
regions, stable, monochromatic plane wave solutions dominate. By computing the coeffi-
cients in terms of physical variables, it is possible to determine which of these behaviors are
characteristic of the real physical system.

In this paper, we derive a complex Ginzburg-Landau equation for baroclinic instability.
Baroclinic instability is important in the study of the atmosphere and oceans. It is the
mechanism that generates weather systems in the midlatitude atmosphere, and it gener-
ates eddies in the oceans that are responsible for a great deal of heat transport from the
equator to the poles. Baroclinic instability occurs when vertical shear flows driven by hor-
izontal temperature gradients in a rotating domain become unstable, and large, wavelike
disturbances develop that redistribute temperature fields in a kind of horizontally slanted
convection.

A number of models have been used to study this phenomenon, the most well known of
which are the Charney model and the Eady model. A basic introduction to these models
and others can be found in the textbooks by Pedlosky [9], and Gill [4]. In this analysis, we
use perhaps the simplest model exhibiting baroclinic instability. Introduced by Phillips in
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1954 [10], it consists of a two-layer quasi-geostrophic flow in a rotating channel as shown
in figure 1. Phillips analyzed the linear stability of a shear flow in which the fluid in each
layer moves with a uniform zonal velocity. The basic state differs from that of the standard
Kelvin-Helmholtz instability because rotation forces a slanting of the free surface between
the two layers in order to balance the Coriolis force on the zonal flow. Phillips found that
instability occurs when the difference between the velocities of the two layers exceeds a
critical threshold. The model can easily be modified to include important physical effects,
such as dissipation or a planetary vorticity gradient β.

The present work is motivated by a series of papers by Pedlosky ([6], [7], and a paper by
Romea [11] that analyzed the nonlinear development of baroclinic instability in the Phillips
model in a number of physically interesting situations. Pedlosky’s papers, in particular,
were the first to use multiscale asymptotic methods to compute amplitude equations for
baroclinic instability. In contrast to the present effort, Pedlosky and Romea used periodic
zonal boundary conditions and were therefore investigating the nonlinear interaction of a
discrete spectrum of unstable modes. Consequently, their calculation led to amplitude ODEs
as described above. Periodic boundary conditions are physically motivated for a model of
atmospheric dynamics, because the midlatitude β-plane is typically conceived as a periodic
strip wrapping around the earth. A typical wavelength for a baroclinic disturbance in the
atmosphere is about 2000 km, which leaves space for only ten to fifteen wave periods in a
complete traversal of the globe at midlatitudes. Nonetheless, there are physical examples
of baroclinic instability to which the large aspect ratio approximation is applicable. For
example, baroclinic instability produces eddies in ocean currents on the scale of 200 km.
In an ocean measuring several thousand kilometers across, there is plenty of room for large
scale structures to emerge. Our analysis of the large aspect ratio Phillips model should
provide some insight into the kinds of structures one might expect in these situations.

To relate the CGL derived here to preexisting analysis of the qualitative behaviors of
solutions of the CGL, we make use of two studies by Shraiman et al [12] and Chaté [1].
These papers present a fairly exhaustive numerical study of the parameter space of the one
dimensional CGL. By mapping the coefficients calculated here onto the coefficients used
in those studies, we determine what region of parameter space is inhabited by baroclinic
instability. We find that most of the physical parameter space maps onto a region of CGL
parameter space where non-chaotic, stable, monochromatic waves are the dominant solution
at long times. Intermittent behavior may be possible when the β effect is strong compared to
dissipation, but this has not been confirmed either analytically or by numerical simulation.

In §2, we give a detailed description of the Phillips Model, the physical variables in-
volved, and the scaling limits underpinning its derivation. The physical situations exam-
ined by Pedlosky in [6], [7], and [8] are then described and contrasted with the situation
considered here. In §3, the linear theory of baroclinic instability is outlined, and the CGL
for baroclinic instability is derived in detail. In §4, we use the calculated coefficients to map
realistic physical values of the variables onto Shraiman et al and Chaté’s parameter regime,
thus giving a preliminary prediction of the structures that may be observable in baroclinic
instability
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2 Description of the Phillips Model

The physical picture underlying the Phillips Model is given in figure 1. Two layers of fluid
with different constant densities ρ1 < ρ2 lie in an infinitely long channel of finite width L
and height D. The thickness of the lower layer is given by h(x, y). When undisturbed, each
layer has thickness D/2. The fluid is bounded above and below by rigid horizontal planes.
The x-axis is oriented along the channel, the y-axis is oriented across the channel, and the
z-axis points upward. The velocities u1, v1, and w1 are the upper layer fluid velocities in
the x, y, and z directions respectively. The lower layer velocities are likewise called u2, v2,
and w2. The pressures are given by p1 and p2. Each layer has viscosity ν. The gravitational
acceleration is g, and the entire channel rotates with angular velocity Ω. To include the
effect of the earth’s sphericity, the rotation rate is assumed to vary linearly with y,

Ω =
1

2

(

f0 + β̃y
)

.

Figure 1: Physical picture of two layer channel model.

The Phillips model is derived as a scaling limit of the Navier-Stokes equations for flow
in the channel. The derivation is given in greater detail in §2 of [6], but we will cover the
salient points of the derivation here. Dimensionless equations of motion are obtained by
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scaling the dimensional variables as follows

(x′, y′) = (x,y)
L , z′ = z

D , t′ = U
L t,

(u′n, v
′
n) = (un,vn)

U , w′
n = L

D
wn
U , h′ = (h−D/2) ρ1ULf0

g(ρ2−ρ1) ,

p′1 = p1+ρ1g(z−D)
ρ1Uf0L .

p′2 = p2+ρ2g(z−D/2)−ρ1gD/2
ρ2Uf0L .

where U is a characteristic scale for the horizontal velocities. On dropping primes we find

Dimensionless Parameter Name Size

ǫ = U/ (f0L), Rossby number ≪ 1
E = 2ν/f0D

2, Ekman number ∼ ǫ2

F =
2f2

0 L2

g′D rotational Froude number O(1)

δ = D/L, cross section aspect ratio ≪ 1

β = β̃L2/U planetary vorticity factor O(1)

Table 1: Dimensionless parameters appearing in derivation of Phillips Model.

that the dimensionless equations are

ǫ

[

∂un

∂t
+ un

∂un

∂x
+ vn

∂un

∂y
+wn

∂un

∂z

]

− (1 + ǫβy) vn = −∂pn

∂x
+
E

2
∇ 2

δ un, (2)

ǫ

[

∂vn

∂t
+ un

∂vn

∂x
+ vn

∂vn

∂y
+wn

∂vn

∂z

]

+ (1 + ǫβy)un = −∂pn

∂y
+
E

2
∇ 2

δ vn, (3)

δ2ǫ

[

∂wn

∂t
+ un

∂wn

∂x
+ vn

∂wn

∂y
+ wn

∂wn

∂z

]

= −∂pn

∂z
+
δ2E

2
∇ 2

δ wn, (4)

∂un

∂x
+
∂vn

∂y
+
∂wn

∂z
= 0. (5)

where

∇ 2
δ =

∂2

∂z2
+ δ2

(

∂2

∂x2
+

∂2

∂y2

)

.

It is assumed that δ ≪ 1, so that horizontal straining contributes negligibly to viscous
dissipation. The kinematic condition at the interface between the two layers is

ǫF

2

[

∂h

∂t
+ un

∂h

∂x
+ vn

∂h

∂y

]

= wn, at z =
1

2
(1 + ǫFh) . (6)

And no normal flow at the channel walls requires

vn = 0, at y = 0, 1. (7)

Several dimensionless parameters have appeared, all of which are defined in table 1.
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The parameter F is a dimensionless measure of the width of the channel. Specifically,
it compares the channel width to the distance a linear gravity wave on the interface can
travel during a rotation period. The maximum speed of these waves is c0 =

√

g′D/2, where
g′ = g (ρ2 − ρ1) /ρ2 is the reduced gravity. The rotational period is T = 2π/f0. Therefore,

F =
2f2

0L
2

g′D
= 4π2

(

L

c0T

)2

.

The Rossby number ǫ measures the relative importance of inertial forces and Coriolis forces.
We will assume ǫ ≪ 1, so that the influence of rotation will be very strong. The Ekman
number E measures the ratio of viscous forces to Coriolis forces, and determines the thick-
ness of boundary layers in which viscosity plays an important role. We set E ≪ 1 with
E1/2/ǫ = O(1). These limits are exploited by introducing asymptotic expansions of all the
dimensionless variables in powers of ǫ, such as

un ∼ u(0)
n + ǫu(1)

n + ǫ2u(2)
n + · · ·

Then, to leading order, the flow in both layers is in geostrophic and hydrostatic balance.
That is,

u
(0)
n = −∂p

(0)
n

∂y , v
(0)
n = ∂p

(0)
n

∂x , ∂p
(0)
n

∂z = 0.

The leading order flow is also horizontally nondivergent,

∂u
(0)
n

∂x
+
∂v

(0)
n

∂y
= 0,

which motivates the introduction of layer stream functions ψn such that

(

u(0)
n , v(0)

n

)

= ẑ ×∇ψn.

By hydrostatic and geostrophic balance, the stream function is proportional to both the
pressure fluctuation and the height of the interface disturbance.

Additionally, viscous forces are significant only in thin boundary layers near the top and
bottom of the channel. Nevertheless, viscosity plays an important role in the dynamics of
the bulk. Carefully considering the dynamics of the boundary layers, one finds that vorticity
in the bulk forces forces fluid to emerge from those layers with weak vertical velocities. This
phenomenon is known as Ekman pumping. These vertical velocities act to damp vorticity
in the bulk through vortex stretching. From here, one may derive the evolution equations
for ψn by manipulating the vertical vorticity equation to obtain

(

∂

∂t
+
∂ψ1

∂x

∂

∂y
− ∂ψ1

∂y

∂

∂x

)

(

∇2ψ1 + F (ψ2 − ψ1) + βy
)

= −r∇2ψ1 (8)

(

∂

∂t
+
∂ψ2

∂x

∂

∂y
− ∂ψ2

∂y

∂

∂x

)

(

∇2ψ2 + F (ψ1 − ψ2) + βy
)

= −r∇2ψ2 (9)

where r = E1/2ǫ = O(1). In these equations, fast gravity waves have been filtered out and
only the slow, vortical dynamics remain.
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To investigate baroclinic instability, we write down evolution equations for perturbations
from a shear solution where the velocity of the upper layer is U and the velocity of the lower
layer is −U . Let

ψ1 = −Uy + ψ′
1, ψ2 = Uy + ψ′

2.

and substitute into equations (8) and (9). Dropping primes, we find

(

∂

∂t
+ U

∂

∂x

)

q1 +
∂ψ1

∂x
(β + 2FU) + r∇2ψ1 = −J (ψ1, q1) , (10)

(

∂

∂t
− U

∂

∂x

)

q2 +
∂ψ2

∂x
(β − 2FU) + r∇2ψ2 = −J (ψ2, q2) , , (11)

q1 = ∇2ψ1 + F (ψ2 − ψ1) , (12)

q2 = ∇2ψ2 + F (ψ1 − ψ2) . (13)

with boundary conditions
∂ψn

∂x
= 0, y = 0, 1.

These equations are the Phillips model of baroclinic instability.
Pedlosky and Romea’s papers worked with these equations for a the channel periodic

in x. In [6], Pedlosky derived amplitude ODEs for the purely viscous case β = 0 and
r = O(1), and the inviscid cases with r = 0 and β = O(1) or β = 0. Pedlosky obtained
a Ginzburg-Landau ODE with real coefficients for β = 0, r = O(1). However, the small
viscosity cases do not lead to Ginzburg-Landau type amplitude equations, because there is
no scale separation between the decay rate of the stable modes and the growth rate of the
unstable modes. Also, the case of 0 < r ≪ 1 is a singular limit of the linear theory. The
introduction of an infinitesimal viscosity actually destabilizes the flow, reducing the critical
value of U by an O(1) amount. Pedlosky derived amplitude equations for this subtle case
with β = 0 in [7]. In [11], Romea tackled the small r case with β = O(1).

It seems, however, that the case with both β = O(1) and r = O(1) has never been
addressed. It is interesting to know how these two effects compete when they are of compa-
rable strength. The infinite-size limit, which introduces the possibility of spatio-temporal
disorder and localized structures, has also never been investigated.

3 Derivation of CGL

The Phillips model equations (10)-(13) may be written in the form

∂

∂t
MΨ = LΨ − J (Ψ,MΨ) , (14)

∂Ψ

∂x
= 0, for y = 0, 1. (15)
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where

Ψ =

(

ψ1

ψ2

)

M =

[

∇2 − F F
F ∇2 − F

]

L =

[

−U ∂
∂x

(

∇2 − F
)

− (β + 2FU) ∂
∂x − r∇2 −UF ∂

∂x

UF ∂
∂x U ∂

∂x

(

∇2 − F
)

− (β − 2FU) ∂
∂x − r∇2

]

and

J (A,B) =
∂A

∂x
⋆
∂B

∂y
− ∂A

∂y
⋆
∂B

∂x
.

The ⋆ operator is termwise multiplication of vectors without summing. That is

(

a1

a2

)

⋆

(

b1
b2

)

=

(

a1b1
a2b2

)

.

3.1 Linear Theory

Much of the structure of the finite amplitude evolution equations is determined by the linear
instability properties of the system. The linearized equations are

∂

∂t
MΨ = LΨ,

∂Ψ

∂x
= 0, for y = 0, 1. (16)

One may seek normal mode solutions of the form

Ψ (x, y, t) = Re

{

Ψ̂(k,m,U)e i(kx+my−ωt)
}

.

Substitution of this form into equation (16) yields a system of algebraic equations

(

L̂ + iωM̂

)

Ψ̂ = 0 (17)

where

M̂(k,m) =

[

−(k2 +m2 + F ) F
F −(k2 +m2 + F )

]

L̂(k,m,U) =









Uik
(

k2 +m2 + F
)

+ · · · −ikUF
+r
(

k2 +m2
)

− ik (β + 2FU)
−ikU

(

k2 +m2 + F
)

− · · ·
ikUF −ik (β − 2FU) + r

(

k2 +m2
)









For a null vector Ψ̂ to exist,

det
(

L̂ + iωM̂

)

= 0 (18)
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Figure 2: Growth rate curves for m = π, 2π, 3π, 4π, calculated for the critical shear U = Uc

at which a single mode k = kc is marginally stable.

must hold. Equation (18) implies that ω must be a root of a second order polynomial with
coefficients that are functions of k, m, and the physical parameters of the system. Thus,
for fixed values of these arguments there are at most two distinct values of ω satisfying
equation (18). This condition defines the dispersion relationships

ω = Ω (k,m,U, d)

= −
(

βk

K2
+ ir

)

(

K2 + F
)

(K2 + 2F )
+ (−1)d

√

k2K4 (K4 − 4F 2)U2 + F 2 (βk + irK2)2

K2 (K2 + 2F )
.(19)

where d = 1, 2, and K2 = k2 + m2. A mode is stable if Im {Ω} < 0 and unstable if
Im {Ω} > 0.

Because of the boundary condition (15), normal mode solutions exist only for m =
π, 2π, 3π, . . . when k 6= 0. However, because the channel is infinite in the x direction there is
a continuous spectrum of solutions in k. Plotting Im {Ω} for admissible k and m produces
a discrete set of growth rate curves, as shown in figure (2).

When all the growth rate curves lie in Im {Ω} < 0, the system is stable to infinites-
imal perturbations. For fixed (k,m), one may compute the critical value of the shear
U = Umarg(k,m) at which that particular mode becomes marginally stable by setting
Im {Ω(k,m,U, d)} = 0 and solving for U . One may use the identity

Re

{√
a+ bi

}

= sgn(a)

√

1

2

√

a2 + b2 +
1

2
a
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and perform some lengthy algebra, the result of which is

Umarg(k,m) =

√

√

√

√

(

r
k

)2
K4 (K2 + F )2 + F 2β2

K2 (K2 + F )2 (2F −K2)
(20)

The mode is stable for U < Umarg(k,m). Therefore, the entire system is stable for

U < Uc = inf
0≤K2≤2F

m=nπ

Umarg (k,m) (21)

It is worth noting that equation (20) implies that instability is impossible for F < π2/2.
Furthermore, one can show that Umarg increases monotonically with m, so that the first
modes to become marginally stable as U is increased will lie on the m = π curve.

3.2 Nonlinear modulation

At U = Uc, a single mode (kc, π) has Im {Ω (kc, π)} = 0, and all other modes are stable. The
purpose of this work is to learn what happens when the shear is increased slightly above Uc

and the system becomes weakly unstable. As the modes grow, their nonlinear interactions
play a pivotal role in the subsequent evolution of the instability.

Figure (6) visually summarizes the insight into this situation that linear theory provides.
If U = Uc + ∆, with |∆| ≪ 1, then the maximum growth rate is positive and O (|∆|). The
growth rate curve is well described by a parabolic function in the neighborhood of its

maximum, so there is a band of unstable wavenumbers of width O
(

|∆|1/2
)

around k = kc.

Any exact solution to (14), (15) can be written in the form

Ψ(x, y, t) =

∞
∑

n=1

∫ ∞

−∞
Ak,nπ(t)Ψ̂(k, nπ,U)e i[kx+nπy−Ω(k,nπ,U)t] dk (22)

Here, Ψ̂(k,m,U) is the mode eigenvector defined by equation (17), and Ak,m(t) tracks the
time evolution of the amplitude of mode (k,m). The amplitudes of the unstable modes
will dominate because, as mentioned above, strongly stable modes decay rapidly and are
present due only to nonlinear forcing by the slowly evolving stable modes. That is, Ak,m

should be strongly peaked near k = kc on the m = π branch.
Using this assumption to write an approximate form for the Fourier series-transform

solution (22) will motivate scalings for an asymptotic solution of this problem. First, ne-
glecting the summands for n 6= 1 and changing the integration variable to center on k = kc

gives

Ψ(x, y, t) ≈
∫ ∞

−∞
Akc+k′,π(t)Ψ̂(kc + k′, π)e (i((kc+k′)x+πy−Ω(kc+k′,π,Uc+∆)t))dk′

Now, we make use of the fact that the dominant contribution to the integral comes from

k′ = O
(

|∆|1/2
)

. Let k̃ = |∆|−1/2 k′ and Taylor expand the integrand about kc. One finds:

Ψ(x, y, t) ≈ Ψ̂(kc, π)e i(kcx+πy−Ω(kc,π,Uc)t)

∫ ∞

−∞
Ãk̃(t)e

i|∆|1/2k̃
“

x− ∂Ω
∂k |k=kc

t
”

−i∆ ∂Ω
∂U |U=Uc

t
dk̃
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where Ãk̃ = |∆|1/2 A
kc+|∆|1/2k̃

(t). This expression is the product of the marginally stable

mode at criticality with an amplitude envelope slowly varying in space and time:

Ψ(x, y, t) ≈ A
(

|∆|1/2 (x− cgt) , |∆| t
)

Ψ̂(kc, π, Uc)e
(i(kcx+πy−Ωct)). (23)

Here,

cg =
∂Ω

∂k

∣

∣

∣

∣

k=kc

(24)

is the group velocity of the marginally unstable mode. We also write Ωc = Ω(kc, π, Uc) and
Ψ̂c = Ψ̂(kc, π, Uc).

Note that there is only one marginal wave at criticality, and not a pair of waves traveling
in opposite directions. This fact can be established by noting that, though the critical branch
satisfies Im {Ω} = 0 for both kc and −kc, we have Re {Ω (−kc, π, 1)} = −Re {Ω (kc, π, 1)}.
This implies that the critical modes (kc, π) and (−kc, π) differ by only a phase shift. The
second branch associated with (kc, π) is strongly damped. This loss of symmetry is due to
the β-effect, which imposes a directionality to the propagation of waves supported by the
planetary vorticity gradient.

3.3 Method of Multiple Scales

The considerations leading to equation (23) reveal the proper scalings to use in a multiple-
scales approach to this problem. Let

U = Uc + ∆, T = |∆|1/2 t, τ = |∆| t, X = |∆|1/2 x.

Then, seek a solution for Ψ of the form

Ψ = |∆|1/2 Ψ(1)(t, x, y, T, τ,X) + |∆|Ψ(2)(t, x, y, T, τ,X) + |∆|3/2 Ψ(3)(t, x, y, T, τ,X) + · · ·

The introduction of new space and time scales requires, by the chain rule,

∂

∂t
→ ∂

∂t
+ |∆|1/2 ∂

∂T
+ |∆| ∂

∂τ
,

∂

∂x
→ ∂

∂x
+ |∆|1/2 ∂

∂X
,

∇2 → ∇2 + 2 |∆|1/2 ∂2

∂x∂X
+ |∆| ∂2

∂X2
.

Substituting these transformations into the system (14), (15) and collecting terms of like
order in |∆|, one may obtain a hierarchy of inhomogeneous linear problems. The most
straightforward way of doing this requires the explicit manipulation of the terms of M

and L. Unfortunately, proceeding in this manner produces extremely messy algebra and
complicated expressions that are difficult to interpret in terms of physical properties of
the system. However, it is possible to develop the expansion in general terms without
considering the detailed structure of the operators M and L. By keeping track of only the
formal structure of the expansion, we will be able to make useful simplifications throughout
the computation.
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When the linear operators M and L are applied to slowly varying wave packets, they
can be expanded in the following way. First, note that

M

(

∂x + |∆|1/2 ∂X , ∂y

)

A(X,T, τ)Ψ̂(k,m)ei(kx+my) = M̂

(

k − i |∆|1/2 ∂

∂X
,m

)

AΨ̂ei(kx+my).

Formally, we may treat ∂X as a variable and Taylor expand M̂ to find

M

(

∂x + |∆|1/2 ∂X , ∂y

)

AΨ̂ei(kx+my) =

[

M̂(k,m) − i |∆|1/2 ∂M̂

∂k
(k,m)

∂

∂X

−|∆|
2

∂2
M̂

∂k2
(k,m)

∂2

∂X2
+ · · ·

]

AΨ̂ei(kx+my).

Thus, the formal expansion of M takes the form

MA(X,T, τ)Ψ̂(k,m,U)e i(kx+my−Ωt) →
[

AM̂Ψ̂ − |∆|1/2 ∂A

∂X

(

i
∂M̂

∂k
Ψ̂

)

−|∆|
2

∂2A

∂X2

(

∂2
M̂

∂k2
Ψ̂

)

+ · · ·
]

ei(kx+my−Ωt).

Likewise, the formal expansion of L takes the form

LA(X,T, τ)Ψ̂(k,m,U)e i(kx+my−Ωt) → e i(kx+my−Ωt)

[

AL̂Ψ̂ − |∆|1/2 ∂A

∂X

(

i
∂L̂

∂k
Ψ̂

)

+ |∆|
(

sgn(∆)A
∂L̂

∂U
Ψ̂ − 1

2

∂2A

∂X2

(

∂2
L̂

∂k2
Ψ̂

))]

.

To simplify notation, let L̂o = L̂(kc, π, Uc) and M̂o = M̂(kc, π).

Utilizing these expansions and collecting terms of O
(

|∆|1/2
)

yields the leading order

problem

(

∂

∂t
Mo − Lo

)

Ψ(1) = 0, (25)

∂Ψ(1)

∂x
= 0, for y = 0, 1. (26)

This is the linear problem (16) at the marginal shear Uc. There are infinitely many normal
mode solutions, but all will decay at long times T = O(1) except for the marginally stable
mode. As we are concerned with the long time evolution of the instability, we take the
leading order solution to be

Ψ(1) = Re

{

A(X,T, τ)Ψ̂ce
i(kcx−Ωct) sinπy

}

. (27)
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Collecting terms of O (|∆|) yields

(

∂

∂t
Mo − Lo

)

Ψ(2) = − ∂

∂T
M̂oΨ

(1) + i
∂

∂t

∂M̂

∂k

∂Ψ(1)

∂X
− i

∂L̂

∂k

∂Ψ(1)

∂X
− J

(

Ψ(1), M̂0Ψ
(1)
)

,

∂Ψ(2)

∂x
= 0, for y = 0, 1. (28)

The operator on the left hand side of this equation is the same as in equation (26). Thus,
inhomogeneous terms proportional to the marginally stable mode will produce a secular
response in Ψ(2). The elimination of these secular terms introduces a first constraint on the
evolution of A(X,T, τ).

Substituting the solution (27) into equation (28), one finds

(

∂

∂t
Mo − Lo

)

Ψ(2) = Re

{(

−M̂oΨ̂c
∂A

∂T
− i

[

∂L̂

∂k
+ iΩc

∂M̂

∂k

]

Ψ̂c
∂A

∂X

)

e i(kcx−Ωct)

}

sinπy

+Im

{

Ψ̂c ⋆ M̂oΨ̂c

} πkc

2
|A|2 sin 2πy. (29)

The overbar represents complex conjugation. Since equation (29) is linear, Ψ(2) takes the
form

Ψ(2) = Re

{

A(2)(X,T, τ)e i(kcx−Ωct)
}

sinπy+B(2)(X,T, τ) sin 2πy+U (2)(X,T, τ)

(

y − 1

2

)

.

The first term represents a correction proportional to the marginally stable mode. The
second two terms are independent of x, and represent an O(|∆|) correction to the zonal
mean flow. Substituting this form into equation (29) and collecting terms proportional to
sin 2πy yields a problem for B(2):

−L̂(0, 2π,Uc)B
(2) =

kcπ

2
Im

{

Ψ̂c ⋆ M̂oΨ̂c

}

|A|2

Using
L̂(0, 2π,Uc) = 4π2rI

gives

B(2) = − kc

8πr
Im

{

Ψ̂c ⋆ M̂oΨ̂c

}

|A|2 . (30)

Collecting terms proportional to sinπy yields a problem for A(2):

(

L̂o + iΩcM̂o

)

A(2) = M̂oΨ̂c
∂A

∂T
+ i

(

∂L̂

∂k
+ iΩc

∂M̂

∂k

)

Ψ̂c
∂A

∂X

Now, as demonstrated by equation (17), the operator on the left hand side is singular. For
the equation to be solvable, the right hand side must be orthogonal to the operator’s left
null vector. That is, for Ψ̂†

c such that

Ψ̂†
c

(

L̂o + iΩcM̂o

)

= 0,
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we must have

Ψ̂†
c

[

M̂oΨ̂c
∂A

∂T
+ i

(

∂L̂

∂k
+ iΩc

∂M̂

∂k

)

Ψ̂c
∂A

∂X

]

= 0. (31)

This equation implies something about the evolution of A. Unfortunately, it is a mess and
difficult to interpret physically, especially if the matrix products are written out in full. It
is at this point that our attention to the formal structure of the expansion becomes useful.
Note that

∂

∂k

[(

L̂o + iΩ(k, π, Uc

)

Ψ̂ (k, π, Uc)
]

= 0.

If we expand this expression with the product rule and evaluate at k = kc, we find
(

∂L̂

∂k
+ iΩc

∂M̂

∂k

)

Ψ̂c = −i ∂Ω

∂k

∣

∣

∣

∣

k=kc

M̂oΨ̂c −
(

L̂o + iΩcM̂o

) ∂Ψ̂

∂k
.

That is, the operator splits into a term proportional to the group velocity of the marginal
wave (see equation (24)) and a term that is orthogonal to the left null vector Ψ̂†

c by definition!
Substituting this new relation into equation (31) yields a more familiar evolution equation
for A:

∂A

∂T
+ cg

∂A

∂X
= 0.

The amplitude envelope propagates at the group velocity of the marginally stable wave. We
now write A(X,T, τ) = A(η, τ) where η = X − cgT . We also have

∂

∂X
=

∂

∂η
,

∂

∂T
= −cg

∂

∂η
.

It is still necessary to solve for A(2). One solution is

A(2) = −i∂Ψ̂

∂k

∂A

∂η
. (32)

One might add a homogeneous term proportional to Ψ̂c to this solution, but the inclusion
of such a term has no impact on the results of the computation. The term is proportional
to Ψ(1), so we may simply require that it be absorbed into the leading order solution.

Finally, U (2) is determined by enforcing the boundary condition (15). It can be shown
[10] that the normal flow condition implies a constraint on the zonally averaged flow at the
boundaries,

∂

∂t
un = lim

M→∞

1

2M

∫ M

−M

∂2ψn

∂y∂t
dx = 0, for y = 0, 1.

This equation implies that, as higher order corrections develop, they cannot alter the mean
zonal flow at the boundaries. We deduce that,

U (2) = −2πB(2)

To summarize, we have found

Ψ(2) = Re

{

−i∂Ψ̂

∂k

∂A

∂η
e i(kcx−Ωct)

}

sinπy− kc

8πr
Im

{

Ψ̂c ⋆ M̂oΨ̂c

}

|A|2
(

sin 2πy − 2π

(

y − 1

2

))

.

238



Collecting terms of O
(

|∆|3/2
)

yields

(

∂

∂t
Mo − Lo

)

Ψ(3) = −
(

∂

∂T
M̂o + i

(

∂L̂

∂k
− ∂

∂t

∂M̂

∂k

)

∂

∂X

)

Ψ(2)

−
(

∂

∂τ
M̂o − i

∂2

∂X∂T

∂M̂

∂k
+

1

2

∂2

∂X2

(

∂2
L̂

∂k2
− ∂

∂t

∂2
M̂

∂k2

)

+ ∆
∂L̂

∂U

)

Ψ(1)

−J
(

Ψ(2), M̂oΨ
(1)
)

− J
(

Ψ(1), M̂oΨ
(2)
)

+ J̃
(

Ψ(1), M̂Ψ(1)
)

. (33)

where

J̃
(

Ψ(1), M̂Ψ(1)
)

=
∂Ψ(1)

∂X

∂

∂y

(

M̂oΨ
(1)
)

− ∂Ψ(1)

∂y

∂

∂X

(

M̂oΨ
(1)
)

.

Since our only purpose in proceeding to this order is to find another evolution equation for A,
it is not necessary to solve for Ψ(3) in full. We simply note that the right hand side of equa-
tion (33) contains terms proportional to e i(kcx−Ωct) sinπy, sin 2πy, and e i(kcx−Ωct) sin 3πy.
Therefore, since the problem is linear we may assume

Ψ(3) = Re

{

e i(kcx−Ωct)
(

A(3) sinπy +B(3) sin 3πy
)}

+ C(3) sin 2πy − U (3)y.

The evolution equation we seek will emerge as we attempt to solve for A(3). Substituting
in the solutions for Ψ(1) and Ψ(2) and equating terms proportional to sinπy yields

(

L̂o + iΩcM̂

)

A(3) =
(

M̂oΨ̂c

) ∂A

∂τ
−
(

∆

|∆|
∂L̂

∂U
Ψ̂c

)

A+ Π1
∂2A

∂η2
+ Π2A |A|2 . (34)

where

Π1 =
1

2

[(

∂2
L̂

∂k2
+ iΩc

∂2
M̂

∂k2

)

Ψ̂c + 2

(

∂L̂

∂k
+ iΩc

∂M̂

∂k

)

∂Ψ̂

∂k
+ 2i

∂Ω

∂k

∂

∂k

(

M̂oΨ̂c

)

]

,

and

Π2 = − ik
2
c

8r

[

3Im

{

Ψ̂c ⋆ M̂oΨ̂c

}

⋆
(

M̂oΨ̂c

)

−MIm

{

Ψ̂c ⋆ M̂oΨ̂c

}

⋆ Ψ̂c

]

,

where

M = M̂ (0, 2π) +

(

−2F 2F
2F −2F

)

=

(

−4π2 − 3F 3F
3F −4π2 − 3F

)

.

Using the relationship

∂2

∂k2

[(

L̂o + iΩ(k, π, Uc

)

Ψ̂ (k, π, Uc)
]

= 0,

one can show that

Π1 = −1

2
i
∂2Ω

∂k2
M̂oΨ̂c −

(

L̂o + iΩcM̂o

) ∂2Ψ̂

∂k2
.

Likewise, using
∂

∂U

[(

L̂o + iΩ(k, π, Uc

)

Ψ̂ (kc, π, U)
]

= 0,
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one may show that
∂L̂

∂U
Ψ̂c = −i ∂Ω

∂U
M̂oΨ̂c −

(

L̂o + iΩcM̂o

) ∂Ψ̂

∂U
.

Finally, forming the solvability condition as in equation (31) gives

∂A

∂τ
= µA+ ν

∂2A

∂η2
− ζA |A|2 . (35)

where the coefficients are given by

µ = sgn(∆)
Ψ̂†

c
∂L̂

∂U Ψ̂c

Ψ̂†
cM̂oΨ̂c

= −i sgn(∆)
∂Ω

∂U

∣

∣

∣

∣

k=kc

, (36)

ν =
1

2
i
∂2Ω

∂k2

∣

∣

∣

∣

k=kc

(37)

ζ =
ik2

c

8r

Ψ̂†
c

(

3Im

{

Ψ̂c ⋆ M̂oΨ̂c

}

⋆
(

M̂oΨ̂c

)

−MIm

{

Ψ̂c ⋆ M̂oΨ̂c

}

⋆ Ψ̂c

)

Ψ̂†
cM̂oΨ̂c

. (38)

We have derived a complex Ginzburg-Landau equation governing the onset of baroclinic
instability in a two layer model. The expressions for the coefficients are expressed in terms
of quantities computable from the linear theory of baroclinic modes. Specifically, we have

Ψ̂c = (1, γ)T ,

where

γ =
K2

c + F

F
− β + 2FUc

F (Uc − c)
− i

r

kc

K2
c

F (Uc − c)
.

where c = Ωc/kc. A useful fact about γ is that

γ−1 =
K2

c + F

F
+
β − 2FUc

F (Uc + c)
+ i

r

kc

K2
c

F (Uc + c)
.

The left null vector Ψ̂†
c is simply

Ψ̂†
c =

(

1,−Uc − c

Uc + c
γ

)

.

After some algebra, one finds the following explicit expressions for the coefficients:

µ =
ikcF sgn (∆)

[

1+γ
Uc−c + γ+γ2

Uc+c − K2
c

F (Uc−c) −
γ2K2

c
F (Uc+c)

]

Z + γ2Z ′
, (39)

ν =
1

Z + γ2Z ′

[

ikc

(

1 + γ2 + 2
Uc − cg
Uc − c

+ 2γ2Uc + cg
Uc + c

)

+ r

(

1

Uc − c
− γ2

Uc + c

)

+
(Uc − cg)Z + Y

ikcF

(

F
Uc − cg
Uc − c

−
(

K2
c + F

)

γ
Uc + cg
Uc + c

+ γY ′

)]

(40)

ζ =
ikcK

2
c

8 (Z + γ2Z ′)





4π2 + 3F

(Uc − c)2
+
γ2 |γ|2

(

4π2 + 3F
)

(Uc + c)2
+

3F
(

|γ|2 + γ2
)

U2
c − c2

+
3γ2 |γ|2 Z ′

Uc + c
− 3Z

Uc − c

]

. (41)
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where

Z =
β + 2FUc

(Uc − c)2
+ i

r

kc

K2
c

(Uc − c)2
,

Z ′ =
β − 2FUc

(Uc + c)2
+ i

r

kc

K2
c

(Uc + c)2
,

Y = 2k2
c − β + 2FUc + 2ikcr

Uc − c
,

Y ′ = 2k2
c +

β − 2FUc + 2ikcr

Uc + c
.

4 Parameter Regime Analysis

Having computed the coefficients of equation (35) in terms of physical variables, we are now
prepared to determine which of the qualitative dynamics of the CGL observed numerically
in [1] and [12] may be observable in baroclinic instability.

In [1], Chaté analyzes the CGL in the form

∂B

∂t
= B + (1 + ib1)

∂2B

∂x2
− (b3 − i) |B|2B. (42)

where b1, b3 are real and b3 > 0. This simple form is obtained from equation (35) by making
the transformations

t = Re {µ} τ, x =
√

Re{µ}
Re{ν}η, B(x, t) =

√

− Im{ζ}
Im{µ}e

−i Im{µ}
Re{µ}

t
A
(
√

Re{ν}
Re{µ}x, t/Re {µ}

)

,

from which we find

b1 = − sgn(Im {ζ})Im {ν}
Re {ν} , (43)

b3 =

∣

∣

∣

∣

Re {ζ}
Im {ζ}

∣

∣

∣

∣

. (44)

Thus, the parameter space of the CGL has two real dimensions.1

The qualitatively different regimes of parameter space are mapped with respect to b1
and b3 in figure 3a. This figure is reproduced from [1]. To discover which regimes are
relevant to baroclinic instability, b1 and b3 were computed numerically for a range of β, r,
and F .

It was found that b1, b3 are functions of F and β/r only, though this fact is not immedi-
ately obvious from the formulas for ζ and ν. For all tested values of F , β/r, we found b1 ≤ 0.
At fixed F , decreasing β/r increases b3 and decreases |b1|. As β/r is varied, the coefficients
roughly satisfy b1b3 = C(F ). Decreasing F at fixed β/r also increases b3 and decreases |b1|.
In the limit that β/r → 0 or F → π2/2, we find that b3 → ∞ and b1 → 0. 2 In this limit,

1Technically, this form can be obtained from equation (35) only if Im {ζ} < 0, as is apparent from an
inspection of the transformations. However, if Im {ζ} > 0, taking the complex conjugate of equation (1) and
then applying the transformations yields equation (42) for B.

2Recall from §3 that for F ≤ π2/2, baroclinic instability is impossible.
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Figure 3: (a) The parameter regime diagram of the CGL produced by Chaté, Shraiman, et
al. Reproduced from [1]. (b) These points represent the only points for 5 < F < 50 and
0.1 < β/r < 50 that fall in the sector of parameter space studied in [1], [12]. The points
correspond to β/r ≈ 10 − 40 and fall well within the “no chaos” regime.

the coefficients of the CGL are purely real. The real Ginzburg-Landau equation, unlike its
complex cousin, is derivable from a variational principle, and its solutions always relax to
a stationary equilibrium state.

The values of b1 and b3 for 5 < F < 50 and 0.1 < β/r < 50 are plotted in figure 4. The
lower limits of these ranges were chosen to exclude divergent values of b3 as F → π2/2 ≈ 4.93
and β/r → 0. An upper limit of 50 was chosen for both F and β/r to prevent these
parameters from being much more than an order of magnitude larger than one. It is implicit
in the derivation of equation (35) that F, β, r ≪ |∆|−1/2. The larger these parameters
become, the smaller |∆| must be for equation (35) to be asymptotically consistent.

As baroclinic instability resides exclusively in the region b1 ≤ 0, we focus on the dy-
namical regimes present there. For b1 < b3, a band of stable plane wave solutions3 of the
form

B = B̃(k)e i(kx−ω(k)t)

exists with B̃2 =
(

1 − k2
)

/b3 and ω = 1/b3 − (b1 + 1/b3)k
2. These solutions are linearly

3When b1 = b3, this band of wavenumbers vanishes, and stable monochromatic plane wave solutions
cease to exist. This bifurcation is known as the Benjamin-Feir instability of the k = 0 state. The turbulent
regimes in the Benjamin-Feir unstable region b1 > b3 are the subject of [12], but because these regimes
appear to be inaccessible to baroclinic instability in the Phillips model, we omit discussion of them here.
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Figure 4: Values of b1 and b3 computed for a range of values of β/r and F . Each streak of
like-shaped markers corresponds to a fixed value of β/r with F = 5, 7, 9, 16, 50. Increasing
F with fixed β/r decreases b3 and increases |b1|. Increasing β/r with fixed F yields the
same trend, but the dependence of β/r is stronger than on F .

stable for

k2 <
(b3 − b1)

3b3 + 2
b3

− b1
.

However, the existence of stable plane wave solutions does not preclude the existence of
chaotic solutions or localized structures in the same parameter regime. Chaté found that
for sufficiently small b3 solutions could be found numerically in which localized, propagating
structures separate large regions of stable plane waves. The structures are characterized
by a sharp reduction in |A|, and discontinuities or rapid variations in the phase of A. The
structures act as nucleation sites for disorder; the stable plane wave regions do not break
down until they are contaminated by one of these structures. The nature of these structures
is discussed in the context of known exact solutions of the CGL at some length in [1] and
[13].

However, it is not yet clear whether these structures can be expected to appear in
baroclinic instability. For the range of β, r, and F , tested here, the coefficients b1, and b3
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Figure 5: (a) Space-time plot of |A|. x increases left to right and t increases upwards. White
represents the amplitude maximum |A| = 2.37, and black represents |A| = 0.
(b) Space-time plot of the phase φ of A. Reproduced from [1]. In this run, b1 = −0.75,
b3 = 0.18.

generally lie far outside the region of parameter space explored directly by Chaté. Figure
3b shows those parameter values that did lie in that region, and all of those are well within
the “no chaos” zone in which intermittency was not observed. For small β/r and F , we
have seen that the coefficients asymptote to b1 = 0 and b3 = 0, where the dynamics
collapse to those of the real Ginzburg-Landau equation. It is unlikely that disordered states
will be discovered in this limit, since solutions of the real Ginzburg-Landau always relax
to equilibrium. But as β/r increases, b3 becomes small. This raises the possibility of
intermittency for sufficiently large β/r. However, |b1| simultaneously becomes large as β/r
increases, pushing the coefficients out of the sector of parameter space observed by Chaté.
Chaté found that as |b1| increases, b3 must be ever smaller for intermittency to be observed.
The question, then, is whether b3 decreases quickly enough to counteract the stabilizing
effect of increased |b1|. Furthermore, β/r cannot be increased without bound. We must

have |∆|1/2 ≪ r ≪ absdel−1/2 and β ≪ |∆|−1/2 for equation (35) to be accurate, and thus
β/r ≪ |∆|. Numerical simulations of CGL at parameter values appropriate to baroclinic
instability are necessary to determine if “baroclinic structures” will emerge or not.

5 Conclusions

We have computed a complex Ginzbug-Landau equation for baroclinic instability in the
Phillips model. We have compared the coefficient of this equation to a parameter regime
study by Chaté [1] and Shraiman et al [12]. The comparison suggests that, for most physical
situations, baroclinic instability should saturate to a monochromatic wave train without
intermittency or spatial disorder.

However, the search for baroclinic structures should not be called off yet. The possibility
remains that localized structures and spatiotemporal disorder could emerge for large β/r.
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Further numerical simulation of the CGL is necessary to determine whether this will happen,
as this region of parameter space was not explored in Chaté’s paper. In future work,
we intend to search for baroclinic structures in numerical solutions of both the CGL and
more realistic models of baroclinic instability, such as the Phillips model or a continuously
stratified QG model.
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[1] H. Chaté, Spatiotemporal intermittency regimes of the one-dimensional complex

Ginzburg-Landau equation , Nonlinearity, 7 (1994), pp. 185–204.

[2] P. H. Coullet and E. A. Spiegel, Amplitude Equations for Systems with Competing

Instabilities., SIAM Journal on Applied Mathematics, 43 (1983), pp. 776–821.

[3] M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium,
Reviews of Modern Physics, 65 (1993), pp. 851–1112.

[4] A. E. Gill, Atmosphere-Ocean Dynamics, Academic Press, San Diego, California,
1982.

[5] A. C. Newell, T. Passot, and J. Lega, Order parameter equations for patterns,
Annual Review of Fluid Mechanics, 25 (1993), pp. 399–453.

[6] J. Pedlosky, Finite-Amplitude Baroclinic Waves., J. Atmos. Sci., 27 (1970), pp. 15–
30.

[7] , Finite-Amplitude Baroclinic Waves with Small Dissipation., J. Atmos. Sci., 28
(1971), pp. 587–597.

[8] , Limit Cycles and Unstable Baroclinic Waves., J. Atmos. Sci., 29 (1972), pp. 53–
63.

[9] J. Pedlosky, Geophysical Fluid Dynamics, Springer Verlag, New York, second ed.,
1987.

[10] N. A. Phillips, Energy transformations and meridional circulations associated with

simple baroclinic waves., Tellus, 6 (1954), pp. 273–286.

[11] R. D. Romea, The Effects of Friction and β on Finite-Amplitude Baroclinic Waves.,
J. Atmos. Sci., 34 (1977), pp. 1689–1695.

245



[12] Shraiman, B. I., Pumir, A. van Saarloos, W. Hohenberg, P. C. Chaté, and
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Figure 6: In both these figures, waves modes’ growth rates Im {Ω} are plotted against zonal
wavenumber k. (a) When U = Uc +∆, zooming in around k = kc reveals a band of unstable

wavenumbers k with growth rates of O(∆). The unstable band has width O
(

|∆|1/2
)

.

(b) When the channel has finite length, only a discrete spectrum of wavenumbers k are
allowed. In this case, one mode may become unstable alone, while all others remain stable.
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