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1 Introduction

1.1 Motivation

In the context of a warming climate, a key question of interest is the fate of the Arctic sea
ice. Reductions in the sea ice extent have the potential to greatly affect Arctic communities
and ecosystems, and an ice-free Arctic would have a range of commercial and geopoliti-
cal implications related to the opening of previously unnavigable shipping routes. More
fundamentally, the Arctic sea ice is often viewed as a diagnostic for the state of the warm-
ing Earth system, and its decline is one of the most striking indicators of modern climate
change. While it is apparent that with sufficient warming the sea ice will eventually all be
lost in the Arctic, the specifics of this decline are less well understood. This is related to the
fact that superposed on the clear seasonal cycle and general decreasing trend displayed in
the satellite record of the Arctic sea ice extent (shown in Figure 1) is significant variability
on the annual timescale.

The seasonal growth and decline of Arctic sea ice is tied to the large variations in
insolation at high latitudes over the course of the year. During the winter when the daylight
hours are short or non-existent, the Arctic ocean cools sufficiently to allow ice to form,
attaining its maximum extent in March. As the daylight hours increase through spring
and summer, the Arctic warms and the ice melts back to reach its minimum extent in
early September. The variability observed on top of this seasonal cycle is in part due to
the interannual variability of the underlying climate, but also central to this variability is
the existence of strong feedbacks in the sea ice system. Positive feedbacks act to magnify
the effect of any small perturbation to the sea ice extent, while negative feedbacks dampen
perturbations. It is consequently not just the underlying climate variability that complicates
seasonal prediction, but also fluctuations in the strength of these feedbacks on different
timescales.

Due to the intrinsic sensitivity of the sea ice system to perturbations, the ability of
modern Global Climate Models (GCMs) to predict the Arctic sea ice extent seasonally
is limited. In this project, it is hoped that insight might be gained by application of
stochastic theory to an idealized sea ice model, which captures the essential physics of the
sea ice system while allowing for unmodelled variability by inclusion of a noise term. The
physical understanding derived from this study has implications for the interpretation of



Figure 1: Area extent of Arctic sea ice since the beginning of the satellite era. Earlier
years are shown in cold colors, with later years in warmer colors. In addition to the general
decreasing trend over the satellite era, there is interannual noise in the ice extent, with a
maximum variability displayed in September. (Data Source: NSIDC)

GCM results concerning short term Arctic sea ice prediction, and helps identify the key
processes GCMs must capture if they are to be successful at seasonal forecasting.

1.2 Defining predictability

Predictability describes our ability to say something about the state of a system at some
future time, given a specific initial condition. Mathematically, there are several ways to
quantify what is intuitively understood by predictability. A measure frequently used to
make statements about the predictability of Arctic sea ice is the correlation coefficient
between sea ice anomalies at a given start month and subsequent months of increasing
lag time, as shown for the sea ice extent data from the satellite era in Figure 2A. The
decrease in the correlation coefficient with increasing lag is associated with a decline in
predictability. However, how the time variation of the correlation coefficient relates to
a stochastic interpretation of the system is not immediately obvious. Instead, a more
transparent measure of predictability is the standard deviation of anomaly trajectories for
a given point in time: if the standard deviation increases from a given start month to a
later month, we might expect predictability to decrease due to the divergence of trajectories
from nearby initial conditions. On the other hand, if the standard deviation decreases over
the forecast period, the convergence of trajectories might be associated with an increase in
predictability.

The standard deviation of the ice anomaly (once the seasonal cycle is removed) for the



Figure 2: Two measures of predictability for the detrended Arctic sea ice extent satellite
data: (A) lagged correlation coefficients, and (B) path standard deviation. (Data Source:
NSIDC)

detrended sea ice extent satellite data is plotted in Figure 2B. The standard deviation is
seen to increase throughout the year from a winter minimum, to a maximum that coincides
with the sea ice minimum in September. This suggests poor predictability of the summer
minimum of Arctic sea ice in winter due to the divergence of nearby trajectories going from
March to September associated with the increase in standard deviation over this time. In
turn, this begs the question of whether a spring “predictability barrier” might exist for the
Arctic sea ice, similar to that discussed in the literature for El Niño prediction.

1.3 Model skill

The stochastic interpretation of predictability is closely related to the concept of skill,
defined in the modeling community as

skill ≡ 1− σ2
sim

σ2
ref

, (1)

where σref is the reference standard deviation of anomalies for a given period, calculated
from a long control run, and σsim is the standard deviation of runs from a given initial
condition. If the initial value problem yields the same variance as the reference, the model
has no skill. As the variance of the initialized model ensemble decreases relative to the
reference standard deviation, the model’s skill is said to increase.

In what follows, we use stochastic theory applied to a simple model of Arctic sea ice
to explain the physical origins of variations in the predictability of Arctic sea ice, and to
better understand the concept of skill. In Section 2 the simple model is introduced, and
the key features of its deterministic solutions explained. Section 3 treats the application of
stochastic theory to this model, and finally Section 4 considers the use of GCMs for seasonal
prediction in light of the findings of the previous section.



2 A Simple Model for Arctic Sea Ice

2.1 Model description

By working with a simple model of the Arctic sea ice, it is hoped that the fundamental
features of the system that act to control the annual variations in predictability might be
deduced. The energy balance model of Eisenman & Wettlaufer (2009) [1] (hereon E&W09)
is appropriate for this purpose in that it captures the essential physics of the Arctic sea
ice, without additional complications. The model is based on a simplified version of the
thermodynamic model of [3] coupled to a two-stream model of the atmosphere, which feels
a heat flux convergence that depends on the meridional temperature gradient.

The model evolves the single variable E, which describes the latent heat of the sea ice or
the heat content of the ocean mixed layer, depending on whether the water is frozen or not.
In the case that ice is present, E is determined from the latent heat of freezing Li times the
ice thickness hi, while in the ice-free case E is the product of the ocean heat capacity cml,
the mixed layer depth Hml (assumed constant), and the ocean temperature Tml. Hence,

E ≡

{
−Lihi E < 0 (sea ice)

cmlHmlTml E ≥ 0 (ocean).
(2)

The energy variable evolves according to equation

dE

dt
= [1− α(E)]Fs(t)− F0(t) + ∆F0 − FT (t)T (t, E) + FB + ν0R(−E), (3)

where α is the state-dependent albedo, FB is the oceanic heat flux to the base of the ice,
and R is the ramp function defined such that ν0R(−E) represents a constant export of 10%
year−1 of the sea ice in the case with ice, and is zero otherwise. The terms F0 + FTT are
the linearization of the Stephan-Boltzmann equation for the emission of longwave radiation
about freezing temperature TFr (adapted to include the dependence of the atmospheric heat
flux on the meridional temperature gradient, and to allow the atmosphere to be partially
opaque), and ∆F0 is an adjustable parameter used to apply radiative forcing perturba-
tions to the model (to mimic increased atmospheric CO2 levels, for instance). For given
Fs, F0,∆F0, FT , and FB, to close the equations it remains to specify functional forms for α
and T .

The albedo of solid ice αi is very high compared to the substantially lower albedo of
open water αml. As sea ice melts, pools of meltwater appear on the surface, leads open up,
and the ice thins and eventually disintegrates. This is modelled in E&W09 by allowing the
albedo to decrease smoothly from αi to αml via

α(E) =
1

2
(αml + αi) +

1

2
(αml − αi) tanh

(
E

Lihα

)
, (4)

for thickness parameter hα.
The surface temperature is given by

T (t, E) =

{
−R

[
(1−αi)Fs(t)−F0(t)+∆F0

kiLi/E−FT (t)

]
E < 0

E
cmlHml

E ≥ 0,
(5)



which expresses the energy balance in the three possible cases of an ice layer that is below
freezing, melting ice, and an ice-free ocean. If the ice is below the freezing point, E and T
are negative and ice growth occurs until a balance is reached between the surface radiative
fluxes and the upward heat flux in the ice. For ice at the freezing point, ablation may occur
and release latent heat, thinning the ice. These two regimes are expressed by the ramp
function in equation 5. When all the ice is melted, so E ≥ 0, the mixed layer is able to
absorb energy and raise its temperature (dependent on the mixed layer heat capacity cml
and depth Hml) to maintain radiative equilibrium.

2.2 Behavior of the deterministic model

For a sufficiently low forcing ∆F0, integration of the deterministic model yields a solution
with perennial sea ice, while for high ∆F0, an ice-free state results. In between, E&W09
find a stable seasonally ice-free state in the full nonlinear model, but show that this solution
is unstable in a partially linearized version of the model. Historically it has been proposed
that seasonal ice states must be unstable due to the ice-albedo feedback, which is always
positive. This has lead to concerns regarding a “tipping point” in the stability of the Arctic
sea ice, due to the possibility of hysteresis in the bifurcation diagram of such a system.
However, in the nonlinear model E&W09 find that competing longwave effects, which allow
thin ice to grow more quickly than thick ice, act to stabilize seasonal sea ice solutions. The
underlying structure of the system is still the same though, and additional heating once
this seasonally stable ice state has been reached could result in hysteresis behavior as the
system jumps to the permanently ice-free state.

A minimal model for a seasonally stable ice cover is analyzed in [4], in which it is deduced
that the minimal condition for stability of a seasonal ice state is that the seasonal cycle be
broken into more than two periods such that there may be heat loss by the ocean during
the period when the summer is ice-free. This follows intuitively from the understanding
that the ocean mixed layer must lose its accumulated heat before ice can form.

3 Stochastic Theory & its Implications for Predictability

While the deterministic deterministic E&W09 model captures the essence of the seasonal
cycle of Arctic sea ice, it was seen in the satellite data in Figure 1 that the real ice extent is
subject to small amplitude variability superposed on this cycle. To simulate this variability,
a noise term may be added to the governing ODE of the deterministic model, turning it
into the Stochastic Differential Equation (SDE)

dE

dt
= f(E, t) + σξ, (6)

where the term f(E, t) encapsulates all the right-hand side forcings of Equation 3.

3.1 Stochastic perturbation theory

The small magnitude of the noise in the sea ice extent in relation to the amplitude of its
seasonal cycle motivates the application of the stochastic perturbation theory developed by



Moon & Wettlaufer (2013) [5], in which the solution to the SDE is sought as a perturbation
about the time-dependent ODE solution in terms of small parameter σ, which is the noise
magnitude.

Starting from the deterministic equation

dEs
dt

= f(Es, t), (7)

we suppose that the SDE
dE

dt
= f(E, t) + σξ (8)

is solved by E = Es + η(t), for η small, so that the right-hand side of Equation 8 may be
expanded about ODE solution Es as

dη

dt
≈
[
∂f

∂E

∣∣∣
Es

η +
1

2

∂2f

∂E2

∣∣∣
Es

η2 + ...

]
+ σξ (9)

= c(t)η + d(t)η2 + σξ, (10)

where time-dependent parameters c and d are defined such that c(t) ≡ ∂Ef |Es and d(t) ≡
∂2
Ef |Es/2.

It follows from the above that the time evolution of perturbations to the underlying
seasonal cycle of the zero-dimensional sea ice model are entirely governed at leading order
by the parameters c and d. These parameters vary over the course of the year, and display a
seasonal cycle just like the sea ice. Over short time periods for which perturbations remain
small and the above theory is valid, c and d may be considered constant to simplify analysis.
In what follows, a consideration of the system’s behaviour for constant c and d of different
signs will allow the roles played by c and d in determining the evolution of perturbations to
the sea ice, and their resultant impact on the predictability of the system, to be understood.

3.2 Numerical solution

To integrate Equation 10, the Euler-Maruyama method may be employed. The Euler-
Maruyama method is an adaptation of the Euler method for SDEs. At each timestep in the
standard Euler integration, a Guassian random variable is drawn from normal distribution
of mean zero and standard deviation 1. This value is scaled by the size of the timestep and
the noise amplitude, and added to account for the noise term in the SDE. Explicitly

ηt+1 = ηt + f(ηt)dt+ σdW, (11)

where dW ∼ N(0,
√

dt). If an ensemble of such integrations are run for a given initial
condition, each with different realisations of the Guassian noise term at each timestep, a
pdf of the solution may be obtained from the spread of the ensemble at a given time. This
method is explained in full in [2].

Ensembles of integrations from a given small initial perturbation for constant c and d
are shown in Figure 3. For different signs of c, very different behaviour is observed, with
the divergence of trajectories for c > 0, and convergence for c < 0. To understand this
behaviour, and the importance of the values of c and d, an analytical solution is sought.



Figure 3: Realisations of integrations of Equation 10 using the Euler-Maruyama method
for c > 0 (left) and c < 0 (right). The ensemble mean is shown in black.

3.3 Analytical solution

Expanding η in powers of the (small) noise magnitude σ as η = η0 + ση1 + σ2η2 + ..., and
considering the equation at subsequent orders of σ,

O(1) :
dη0

dt
= c(t)η0 + d(t)η2

0

O(σ) :
dη1

dt
= [c(t) + 2d(t)η0(t)] η1 + ξ

O(σ2) :
dη2

dt
= [c(t) + 2d(t)η0(t)] η2 + d(t)η1(t)2,

...

(12)

It is immediate that the equation is deterministic at leading order, with solution

η0 =
cη0(0)ect

c+ dη0(0)− dη0(0)ect
, (13)

whose evolution is described by potential V (t) ≡ −1
2cη

2
0− 1

3dη
3
0. The shape of this potential

for the different sign cases is shown in Figure 4. As we supposed η is a small perturbation
to the deterministic solution and so close to zero, the salient point to take from Figure 4
is that zero is a steady state for c < 0, and and unsteady state for c > 0. In this respect
c determines the stability of the system, explaining the divergence seen in the numerical
solution for c > 0, and the convergence for c < 0. The parameter d, meanwhile, controls the
concavity of the potential, and influences the asymmetry of the response to positive versus
negative perturbations.



Figure 4: A schematic of the potential governing the evolution of the deterministic first
order solution to the SDE.



3.3.1 Order σ

The stochastic term ξ enters the equation at first order in σ, so it is possible to write down
the Fokker-Planck equation for the evolution of the pdf ρ of η1 for a given initial condition:

∂ρ

∂t
= −

[
c(t) + 2d(t)η0(t)

] ∂
∂η1

(η1ρ) +
1

2

∂2ρ

∂η2
1

. (14)

This equation is complicated by the fact that the O(σ) equation is non-autonomous, due
to c, d, and η0 being time-dependent. To solve, the Fourier transform in η1 is taken to give

∂ρ̂

∂t
= c̃k

∂ρ̂

∂k
− k2

2
ρ̂, (15)

where ˜c(t) ≡ c(t) + 2d(t)η0(t). The characteristic equations for this PDE are

dk

dt
= −c̃k (16)

dρ̂

dt
= −k

2

2
ρ̂, (17)

which integrate to give

k = k0 exp

(
−
∫ t

0
c̃(s) ds

)
(18)

ρ̂ = exp

(
−
∫ t

0

k2

2
ds

)
. (19)

Substituting for k in the equation for ρ̂, taking k0 outside of the integral and then substi-

tuting back using k0 = k exp
(∫ t

0 c̃(s) ds
)

, ρ̂ is found to be

ρ̂ = exp

[
−k

2

2

(
e2

∫ t
0 c̃(s) ds

∫ t

0
e−2

∫ s
0 c̃(r) dr ds

)]
. (20)

Finally, on inverting the Fourier transform we have

ρ =
1√

2πσT
exp

(
− η2

1

2σ2
T

)
, (21)

where the time-evolving standard deviation σ2
T is described by

σ2
T = e2I(t)

∫ t

0
e−2I(s) ds, (22)

I(t) =

∫ t

0

[
c(s) + 2d(s)η0(s)

]
ds. (23)

From this it can be deduced that the standard deviation, and hence the predictability, of
perturbation trajectory ensembles is dependent on the parameters c and d. For negative
c there is the possibility that the standard deviation will converge with time, and hence a



Figure 5: Left to right: Time evolution of the pdf of a perturbation η once its deterministic
O(1) part has been subtracted for (A) c > 0 and (B) c < 0 (c, d constant). Numerical
integrations are shown in the blue histograms, and the O(σ) analytical solution is overlaid
in red.

degree of predictability will be maintained, while for positive c it can be seen that σT will
diverge, and information will be lost. This agrees with the interpretation of c as defining
the stability of the system at first order, as noise is magnified when the system is in an
unstable state, and damped when the system is stabilizing.

This analytical solution is compared to the pdfs computed numerically from ensemble
integrations of the SDE in Figure 5. In Figure 5A, for case c > 0 when the deterministic
solution is close to an unstable steady state, the analytical solution agrees with the numer-
ically observed rapid divergence of trajectories. In the stable case c < 0 shown in Figure
5B, both the analytical and numerical solution display the maintenance of a tight Guassian
centred about the deterministic solution. There is some divergence in the tails between the
analytical and numerical solutions for the case c > 0, but overall the agreement is fair.

The role of parameter d is explored in Figure 6, in which the time evolution of standard
deviation σ2

T is plotted for various sign choices of c and d. There is either exponential growth
or convergence of the standard deviation, depending on the sign of c, as seen in Figure 5.
The parameter d has a lower order effect on the rate of this growth or convergence.

3.3.2 Approximations for small perturbations at small time

To understand the influence of c and d more clearly in Equation 22, consider the evolution of
a small perturbation over a short time period, so ε ≡ dη0(0)� 1 and ct� 1. Such solutions



Figure 6: Time evolution of the O(σ) standard deviation for various constant values of c
and d.

are relevant as perturbations to the Arctic sea ice are generally small in comparison to the
climatological value, and the initial evolution of the stochastic solution is of most interest
in determining the roles of c and d.

On introducing small parameter ε, we have that by definition,

c̃ = c+
2cεect

c+ ε(1− ect)
. (24)

So substituting into the expression for I(t),

I(t) = ct+ 2

∫ t

0

cεecs

c+ ε(1− ecs)
ds

= ct+ 2log

(
c

c+ ε(1− ect)

)
, (25)

assuming constant c and d. It follows that

σ2
T = e2I(t)

∫ t

0
e−2I(s)ds

= e2ct

(
c

c+ ε(1− ect)

)4 ∫ t

0
e−2cs

(
1 +

ε

c
(1− ecs)

)4
ds. (26)

Thus far, no assumptions have been made other than that c and d are constants. If it is
now supposed that ε is small, the binomial parts of the above expression for the standard



deviation may be expanded to give

σ2
T ' e2ct

(
1− 4ε

c
(1− ect)

)∫ t

0
e−2cs

(
1 +

4ε

c
(1− ecs)

)
ds

= e2ct

(
1− 4ε

c
(1− ect)

)(
1

2c
(1− e−2ct)− 2ε

c2
(1− e−ct)2

)
=

(
1 +

4ε

c
(ect − 1)

)(
1

2c
(e2ct − 1)− 2ε

c2
(ect − 1)2

)
. (27)

Then to O(ε), the standard deviation becomes

σ2
T '

1

2c
(e2ct − 1) + ε

2

c2
ect(ect − 1)2. (28)

From this approximate expression, the role of c and d deduced from numerically integrating
the full expression for the standard deviation can be seen directly. If c is negative, then the
limit as t→∞ can be found as −1/2c, whereas if c is positive, the variance grows without
bound with time. The parameter d only enters in combination with the initial perturbation
η0(0) through ε ≡ dη0(0). A positive value of ε increases the growth in the variance at
second order, so positive perturbations to the sea ice extent lose predictability more rapidly
when d > 0 than when d < 0, whereas negative perturbations lose predictability faster for
d < 0.

Applying the small time limit ct� 1, the exponentials may be expanded to give

σ2
T ' t(1 + (2ε+ c)t), (29)

demonstrating the role of both c and d (through the parameter ε) in the divergence of
trajectories at small time. As discussed previously, both positive c and positive ε contribute
to the loss of predictability due to the increase of σ2

T with time.

3.3.3 Order σ2

At O(σ2), the stochasticity is no longer explicit in the η2 equation, but enters through the
appearance of the stochastic variable η1. To obtain a Fokker-Planck equation at second
order then, we return to equation 10, and write down Fokker-Planck equation

∂ρ

∂t
= − ∂

∂η
(c̃η + dη2)ρ+

σ2

2

∂2ρ

∂η2
. (30)

Now rescaling by defining y such that η = σy,

∂ρ

∂t
= − ∂

∂y
(c̃y + dσy2)ρ+

1

2

∂2ρ

∂η2
, (31)

the Fokker-Planck equation may be expanded in powers of σ as

O(1) : ∂ρ0
∂t = − ∂

∂y (c̃yρ0) + 1
2
∂2ρ0
∂y2

O(σ) : ∂ρ1
∂t = − ∂

∂y (c̃yρ1) + 1
2
∂2ρ1
∂y2
− ∂

∂y (dy2ρ0)
...

(32)



Due to the rescaling employed, the O(1) equation is identical to that seen previously in
the O(σ) problem, and the O(σ2) solution comes from the O(σ) Fokker-Planck equation
above. Note that the form of the higher order equation is the same as that of the lower
order equation, but with an additional forcing term determined by the lower order solution.

To solve, a Fourier transform is taken in y to give

∂ρ̂1

∂t
= c̃k

∂ρ̂1

∂k
− k2

2
ρ̂1 + idk

∂2ρ̂0

∂k2
. (33)

Substituting in the known Guassian form of ρ̂0, the method of characteristics may be applied
similarly to before to solve for ρ̂1. It is found that

ρ̂1 = id
[
S(t)k3 −M(t)k

]
exp

(
−
σ2
Tk

2

2

)
, (34)

for: S(t) = e3I(t)

∫ t

0
σ4
T e

−3I(s) ds, (35)

M(t) = eI(t)
∫ t

0
σ2
T e

−I(s) ds. (36)

Inverting for ρ1,

ρ1 = dM(t)
∂ρ0

∂y
+ dS(t)

∂ρ0

∂y3
. (37)

So recalling that y = η/σ,

ρ ≈ ρ0 + σρ1 (38)

= ρ0 + σ2dM(t)
∂ρ0

∂y
+ σ4dS(t)

∂3ρ0

∂y3
(39)

=
[
1− dM

σ2
T

η +
dS

σ4
T

(3η − η3)
]
ρ0. (40)

3.3.4 Evolution of moments

The analytical form of the probability distribution calculated to second order in σ has the
following moments

< ηρ > = −σ2dM (41)

< η2ρ > = (σσT )2 (42)

< η3ρ > = σ4(3dMσ2
T − 6dS). (43)

The distribution skewness, defined as

Sk ≡ < η3ρ > −3 < ηρ >< η2ρ > − < ηρ >3

< η2ρ >3/2
(44)

can be calculated from these moments as

Sk =
σ

σ3
T

[
− 6dS + 6dσ2

TM + σ2d3M3
]
. (45)



Figure 7: Evolution of the perturbation pdf skewness with time, for varyious constant values
of parameters c and d.

This is plotted in Figure 7. Inclusion of the second order correction yields little improvement
of the analytic solution, but it allows the interpretation of the parameter d as the asymmetry
present in the system, when coupled with initial condition η(0). For η(0)d positive, the
skewness evolves to positive values, while for η(0)d negative, the skewness becomes more
and more negative with time. This may be intuitively understood by referring to the
potentials in Figure 4, in which it can be seen that if η(0)d is positive, the initial condition
is on the same side as the origin as the unstable steady state, while if η(0)d is negative, it
will be on the same side of the origin as the stable steady state. Depending on the stability
of this nearby secondary fixed point, the tails of the distribution evolve differently, resulting
in a positive or negative skewness.

3.4 Physical interpretation

From the simple model of Arctic sea ice, it has been seen that increases in the standard de-
viation of trajectories are caused by c positive, while convergence of trajectories is achieved
for c negative. Returning to the definition of c as ∂Ef |ES

, c may be interpreted as rep-
resenting feedbacks in the sea ice system. For c positive, the forcing f increases with the
ice thickness variable E implying that positive feedbacks dominate, while for c negative,
an increase in E causes a reduction in the ODE forcing so that the system is controlled by
negative feedbacks. This interpretation allows a physical explanation for the seasonal vari-
ation of the sea ice extent standard deviation in terms of the annual variation of feedback
strengths in the Arctic.

The two main relevant feedbacks in the Arctic are the ice-albedo feedback and the
longwave stabilization feedback. The ice-albedo feedback refers to the effect of changes in
surface albedo with ice thickness and extent. Any initial ice melt reduces the surface albedo,
causing more solar radiation to be absorbed, resulting in further melting. Conversely, a
positive perturbation to the ice thickness or extent increases the surface albedo so that



Figure 8: A schematic of the seasonal variation in trajectory standard deviation, and the
physical mechanisms that control this. The spreading of trajectories in spring and summer
is associated with the dominance of the positive ice-albedo feedback during this time of
year, while the dominance of the negative longwave stabilization feedback in fall causes the
re-focussing of trajectories going into the winter months.

more radiation is reflected, the system cools, and more ice is able to form. The ice-albedo
feedback is therefore a positive feedback. The longwave stabilization feedback, on the other
hand, describes the faster growth of thin ice than thick ice due to the nonlinearity of
the system, and is a negative feedback. If there is a negative perturbation to the sea ice
thickness, the speed at which is grows increases, pushing the system back to equilibrium.
Similarly, the growth of positive perturbations is arrested, again stabilizing the system.

On a seasonal basis, the strength of the ice-albedo feedback varies in step with the solar
radiation. In the winter when there is no sunlight to produce a positive ice-albedo feedback,
the negative longwave stabilization feedback dominates, and we would anticipate a negative
value for c. As the insolation increases through spring, the ice-albedo feedback increases
in strength, raising the value of c to its summer maximum. As the value of c controls
the growth of the standard deviation of trajectories, this explains the observed seasonal
variation in sea ice extent standard deviation, which is low during winter and increases to a
September maximum in step with the Arctic insolation levels. This situation is illustrated
in the schematic in Figure 8.

The second parameter of relevance that came out of the preceding analysis was ε; the
combination of d ≡ ∂2

Ef |ES
/2 and η0(0). It was seen that predictability was lost more

quickly in the case of positive ε. The simple model shows the seasonal cycle of d as following
a similar pattern to that of c; positive in the spring and summer, and negative over winter.
As ε comprises both d and the sign of the initial perturbation, this suggests faster loss of
predictability following anomalously high ice extents (η0(0) > 0) than for anomalously low
spring ice extents (η0(0) > 0) in spring when d > 0, but the converse in fall when d > 0.

3.4.1 Changing predictability in a warming climate

With the aid of the physical framework outlined above, it is possible to attempt to answer
the question of how the predictability of the Arctic sea ice extent might change in the
context of a warming climate. Running the simple model of Eisenmann & Wettlaufer with



Figure 9: Steady state seasonal cycle of parameters c and d under increasing radiatve forcing
F0 from the E&W09 model. The seasonal cycles of both c and d are amplified as the forcing
is increased from 0.4Wm−2 to 0.7Wm−2.

increased values of radiative forcing F0, the annual cycle of c is seen to amplify under global
warming as shown in Figure 9. As c becomes more positive in summer months in a warmer
climate, it might be anticipated that the predictability of the September minimum of Arctic
sea ice will decline under global warming. Conversely, as c is seen to become more negative
during winter as F0 increases, the predictability of the winter maximum might increase.

Although the influence of dε on predictability is secondary to that of c, the amplification
of the seasonal cycle of d could likewise contribute to a worsening predictability of summer
sea ice minima following positive perturbations to the spring ice extent, but might act to
improve predictability following anomalously low spring extents. Again, the converse would
be true for the prediction of the winter sea ice maximum, when the sign of d is reversed.

3.5 The backward equation

From analysis of the Fokker-Planck equation, it has been seen that predictability in the
sense of trajectory standard deviation is limited by the dominance of positive feedbacks
in the sea-ice system in spring. However, given an observed sea ice extent in September,
what does this feature of the system mean for our ability to pinpoint the origin of such an
anomaly? This problem calls for application of the Kolmogorov Backward Equation (KBE),
which gives the pdf at some initial time s < tend ≡ 0 of conditions that could have led to
solution ηend at t = tend (where stochastic perturbation is applied as before so that η is a
small anomaly superposed on the seasonal sea ice solution).



From the O(σ) expansion fo Equation 10, the KBE may be written down as

−∂ρ
∂s

=
[
c(s) + 2d(s)η0(s)

]
η1
∂ρ

∂η1
+

1

2

∂2ρ

∂η2
1

. (46)

Fourier transforming and applying the method of characteristics as for the forward equation,
the standard deviation of the leading order Guassian solution is found to be

σ2
TB = e−2IB(s)

∫ 0

s
e2IB(r) dr (47)

IB(s) =

∫ 0

s

[
c(r) + 2d(r)η0(r)

]
dr . (48)

This is plotted backwards in time in Figure 10.
Figure 10 demonstrates that the evolution of the standard deviation of trajectories

going back in time is controlled by the stability parameter c just as for forward trajectories.
However, unlike for the forward case, a positive value of c leads to trajectories converging
backwards in time, while a negative value of c causes them to diverge. Returning to the
interpretation of c as the stability of the system, this can be understood in terms of the
possible initial conditions that could have produced a given anomaly. If the system is in a
stable regime (c < 0), trajectories may have originated from a large range of ICs within the
potential well, so looking back in time the pdf of ICs that could have resulted in a given
anomaly is broad. On the other hand, if the system is unstable (c > 0), there is a very low
probability of the IC being far from the origin, as this is a potential hill when the system
is unstable.

If the KBE standard deviation is plotted further back in time for the stable case, then
the direction of the perturbation (controlled by asymmetry parameter η0(0)d) is found
to matter, with some divergence in trajectories occurring if this places the perturbation
on the side of the origin with a potential well, as opposed to further convergence if the
perturbation was on the opposite side of the origin (see Figure 4). While this agrees with
the interpretation above, its physical relevance may be limited by the fact that stochastic
perturbation theory is only valid for small perturbations, as so may fail far back in time
when trajectories are far from the origin.

As for the forward equations, approximations for small perturbations at small time can
be made for the backward equation to see directly the role of c, d, and η0(0) in the equation.
For small parameter ε defined as before, for constant c and d the expression for IB(s) is

IB(t) = ct+ 2

∫ t

0

cεe−cs

c+ ε(1− e−cs)
ds

= ct− 2log

(
c

c+ ε(1− e−ct)

)
, (49)

where the change of variables t ≡ −s has been made in the definition of IB for ease of
comparison with the forward equation. Then

σ2
TB = e−2IB(t)

∫ t

0
e2IB(s)ds

= e−2ct

(
c

c+ ε(1− e−ct)

)4 ∫ t

0
e2cs

(
1 +

ε

c
(1− e−cs)

)4
ds. (50)



Figure 10: Trajectory standard deviation evolution backward in time, as calculated from
applying the Kolmogorov Backward Equation to the O(σ) problem for various constant
values of parameters c and d.

Now assuming that ε is small, the binomials may be expanded as before, allowing integration
for the approximate expression

σ2
B '

(
1− 4ε

c
(1− e−ct)

)(
1

2c
(1− e−2ct) +

2ε

c2
(1− e−ct)2

)
. (51)

Then to O(ε),

σ2
TB '

1

2c
(1− e−2ct)− 2ε

c2
e−ct(1− e−ct)2. (52)

It can immediately be seen from this expression that the influence of c on the standard
deviation has changed signs; now a positive value of c allows the variance to converge, while
negative c leads to exponential growth of the variance with time. Similarly, the sign of ε is
flipped, with positive dη0(0) now reducing the divergence of trajectories.

These findings bode well for the attribution of a given year’s September sea ice minimum
to events earlier in the season, even if the forward equation suggests that the prediction of
this minimum is inherently limited. There have been attempts in the literature to trace
anomalous sea ice extents in specific years to the spring melt pond fraction [6], or the
occurrence of given winter storms [7]. In particular, our understanding of the role of ε
suggests attribution of extreme summer minima (i.e. negative η0(0)) should be easier than
the attribution of maxima (positive η0(0)) when d has a positive value as in summer.



3.6 Understanding skill

Returning to the concept of skill defined in the Section 1.3, we may now relate this to the
system’s stability in a similar manner to the above treatment of predictability. Recall that

skill ≡ 1− σ2
sim

σ2
ref

, (53)

for reference standard deviation σ2
ref, and simulation standard deviation σ2

sim. In the context
of the simple model considered previously, σ2

sim is the quantity σ2
T defined in Equation ??.

To calculate σ2
ref, the long time limit of the O(σ) SDE is taken following [5], which gives

σ2
ref = exp

(
2

∫ t̃

0
c(s) ds

)[
It̃ +

1

e2γ − 1
IT

]
, (54)

where

It̃ ≡
∫ t̃

0
exp

(
−2

∫ r

0
c(s) ds

)
dr, (55)

IT ≡
∫ T

0
exp

(
−2

∫ r

0
c(s) ds

)
dr (56)

γ ≡ −
∫ T

0
c(s) ds, (57)

for t = nT + t̃, where T is the period length of c, and t̃ = t mod T .
To make the skill calculation numerically tractable, consider a simplified two-season

model in which c = cP > 0 for six months (‘spring’), and c = −cN < 0 for six months
(‘fall’);

c(t) =

{
cP 0 ≤ t < 1/2

−cN 1/2 ≤ t < 1,
(58)

where cP and cN are positive and cN > cP for stability. In this system,

IT =

∫ 1/2

0
exp

(
−2

∫ r

0
c(s)ds

)
dr +

∫ 1

1/2
exp

(
−2

∫ r

0
c(s)

)
dr

=

∫ 1/2

0
e−2cP rdr +

∫ 1

1/2
exp

(
−cP + 2cN (r − 1

2
)

)
dr

=
1

2cP
(1− e−cP ) +

1

2cN
(ecN−cP − e−cP ). (59)

Also,

γ = −
∫ 1/2

0
cPds+

∫ 1

1/2
cNds

=
1

2
(cN − cP ). (60)



The value of It̃ depends on which half of the year the model is in. When 0 ≤ t̃ < 1/2,

It̃ =

∫ t̃

0
exp(−2cP r)dr =

1

2cP
(1− e−2cP t̃), (61)

while if 1/2 ≤ t̃ < 1,

It̃ =

∫ 1/2

0
exp(−2cP r)dr +

∫ t̃

1/2
exp

(
−cP + 2cN (r − 1

2
)

)
dr

=
1

2cP
(1− e−cP ) +

1

2cN
e−(cP +cN )(e2cN t̃ − ecN ). (62)

The above expressions give reference standard deviation

σ2
ref = e2cP t̃

[
1

2cP
(1− e−2cP t̃)+

1

e(cN−cP ) − 1

(
1

2cP
(1− e−cP ) +

1

2cN
(e(cN−cP ) − e−cP )

)]
(63)

in the first part of the year (i.e. 0 ≤ t̃ < 1/2), and

σ2
ref = ecP +cN−2cN t̃

[
1

2cP
(1− e−cP ) +

1

2cN
e−(cP +cN )(e2cN t̃ − ecN )

+
1

e(cN−cP ) − 1

(
1

2cP
(1− e−cP ) +

1

2cN
(e(cN−cP ) − e−cP

)]
(64)

in the latter part of the year (1/2 ≤ t̃ < 1).
Figure 11 shows the time evolution of the skill for such a model, in the case of a spring

start of for the case of a fall start. It is apparent that skill is lost more rapidly when the
system is in the unstable spring state than when the model is in the stable fall state. This
agrees with the role of the stability parameter c in controlling whether nearby trajectories
converge or diverge, as explained previously.

A concept often noted in the literature on model skill is that of reemergence. In general,
model skill is expected to decrease monotonically away from a given initial condition. How-
ever, some models exhibit a slight increase in skill following their initial decline; a feature
referred to as reemergence. One hypothesis put forward to explain this phenomenon is that
of natural variability. Initial work has suggested that the simple model may demonstrate a
reemergence of skill at long time if forced periodically, which motivates further consideration
of this concept in future work.

4 Application of Results to Global Climate Models

In practice, the seasonal prediction of Arctic sea ice is not done using simple one-dimensional
models, but using high resolution Global Climate Models (GCMs). From a consideration
of the origins of predictability in a simple model, however, it is evident that GCMs must
be capable of capturing the important feedbacks at play in the Arctic (principally, the



Figure 11: The decrease in skill over time for different start months; one during the unstable
season (spring; c = 0.1) and one going into the stable season (fall; c = −2.0).

positive ice-albedo feedback and the negative longwave stabilization feedback) if they hope
to predict Arctic sea ice on a seasonal basis. It might be expected that if such feedbacks are
incorporated in the GCMs, they will show the same seasonal variation in standard deviation
seen in the satellite data and explained by the simple model considered above.

4.1 CMIP5 data

To assess the success of GCMs at reproducing the seasonal cycle in the standard deviation
sea ice anomaly trajectories that forms the basis of our understanding of predictability,
data from the CMIP5 model ensemble is analysed. CMIP5 is the fifth Climate Model
Inter-comparison Project, and gathers state of the art GCMs for a series of standardised
runs with common forcings to enable comparison between the models. Available statistics
include the ice thickness, the sea ice extent, and the ice volume. From the ice extent, a
secondary metric known as the Equivalent Ice Extent (EIE) may be calculated, which is
the area within the sea ice margin. This may be used to avoid biases resulting from the
location of the ice in relation to land.

To analyse the GCM sea ice predictability, timeseries of the statistics listed above were
taken from the CMIP5 historical runs. These runs start between 50 and 150 years before
present, depending on the model, and are run through to the modern day with conditions
mimicking those of the last century. For each model, the data was detrended, and its
seasonal cycle was removed. The remaining timeseries anomalies were then split into years,
with each year considered an independent anomaly trajectory. This enabled calculation of
the annual cycle of the trajectory standard deviation, both for individual models and for
the CMIP5 data as a whole, as shown in Figure 12 for the EIE.



Figure 12: Annual evolution of the standard deviation of the EIE anomaly for the different
models included in CMIP5, with the multimodel standard deviation shown as the black
dashed line.

It is evident from Figure 12 that the models, in general, do not capture the seasonal cycle
in the sea ice anomaly standard deviation seen in the satellite data. This is problematic
given the relation of the seasonal variation in standard deviation to the annual cycle in
feedback strengths, which is fundamental to the problem of seasonal prediction. Some
insight can be gained into why the models might be failing by plotting the EIE before the
seasonal cycle is removed (Figure 13). In Figure 13 it is seen that the models may be split
into two rough categories; those that capture the naturally observed sinusoidal seasonal
cycle in the Arctic sea ice, and those that have a somewhat unnatural cycloidal-shaped
seasonal cycle. If the ice extent is considered instead of the EIE, however, this cycloidal
behaviour is eliminated and all the models display a sinusoidal seasonal cycle. This suggests
that the models may have been tuned to fit the ice extent rather than the EIE, resulting
in the strange seasonal cycles seen in Figure 13, and a loss of the statistical behaviour
pertinent to seasonal prediction.

It is hoped that the models might succeed better at reproducing the statistics of the ice
thickness and ice volume, as these metrics are dominated by the less noisy multi-year ice,
and consequently not as prone to the large interannual fluctuations experience by the sea
ice extent.

4.2 Ensemble size & statistic convergence

When using GCM runs to make statements about the Arctic sea ice, a further issue is that
of ensemble size. Under the assumption of independence, the CMIP5 data might be thought
of as providing a collection of stochastic trajectories of Arctic sea ice extent. How many



Figure 13: The seasonal cycle of Equivalent Ice Extent (EIE) for a selection trajectories
from each of the CMIP5 models. Left: those models that capture a sinusoidal seasonal
cycle, right: those models with a cycloidal seasonal cycle.

models then are needed to make robust statistical statements about the behaviour of ice,
say under a forcing like that associated global warming?

In Figure 14, the simple model SDE is integrated for increasing ensemble sizes ranging
from 10 to 1000, and the time evolution of the resultant standard deviation is compared
to that computed from the analytic solution. Convergence occurs relatively quickly, with
ensemble sizes of around 50 producing standard deviations that are in reasonable agreement
with the analytic result. Even such a modest ensemble size is somewhat larger than the
number of models included in CMIP5, though. This should be taken into consideration
when drawing conclusions from GCM data derived from a limited number of runs.

5 Conclusions & Future Work

The application of stochastic perturbation theory to a simple model has allowed the annual
variations in the predictability of Arctic sea ice to be traced back to the stability of the
system, which arises from the presence of feedbacks. The dominance of the positive ice-
albedo feedback in spring makes the system unstable, resulting in low predictability of the
sea ice minimum going into summer. The negative longwave stabilization feedback in fall,
however, focusses sea ice anomaly trajectories going into winter, increasing predictability
during this period. It was seen that the problem of attribution works in reverse, with an
unstable system making anomalies easy to attribute to events earlier in the season, and a
stable system complicating attribution.

It was further shown that the system stability may be directly related to the concept
on model skill. In the unstable regime (i.e. spring), model skill drops off faster than in
the stable regime (i.e fall). This is likewise a consequence of trajectories diverging away
from an initial condition when positive feedbacks dominate, and converging when negative
feedbacks dominate. Change in the strength of the ice-albedo and longwave stabilization
feedbacks under global warming would alter the stability properties of the system, affecting



Figure 14: Convergence of the standard deviation from the numerical integration of ensem-
bles to the analytically computed standard deviation when the system is in a stable regime
(left) and an unstable regime (right).



our ability to predict the summer and winter sea ice extents.
A brief analysis of GCM data suggests that current generation models may experience

difficulty in the seasonal prediction of Arctic sea ice as their failure to capture the annual
cycle of sea ice variance suggests difficulty in reproducing principal physical feedbacks that
underlie the evolution of sea ice anomalies.

It should be noted that the methodology presented in this project is by no means
constrained to the Arctic sea ice system, but may in fact be applied to any problem for
which there is relatively small magnitude noise superposed on a strong periodic cycle. As
such, future work might focus on using this framework to consider other climate signals for
which seasonal or interannual prediction is of interest.
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