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Abstract

A key question to develop our understanding of turbulence in shear flows is: what is the
smallest perturbation to the laminar flow that causes a transition to turbulence, and how
does this change with the Reynolds number R? Finding this so-called “minimal seed” is as
yet unachievable in direct numerical simulations of the Navier-Stokes equations, but there
exist low-dimensional dynamical systems that model those aspects of the full flow which
are considered essential to turbulence. We search for the minimal seed in one such model,
owing to Waleffe (1997). We employ an optimization technique, reviewed by Kerswell et
al. (2014), to find non-linear optimal perturbations, with some modifications. In particular
we apply the technique to a new regime in which the edge that is sought is an internal
boundary to the basin of attraction of the laminar flow state. We find such a boundary in
Waleffe’s model and calculate the minimal seed on this edge.

1 Introduction

1.1 Shear Turbulence

It is well known that the Navier-Stokes equations for fluid flow present one of the greatest
challenges of classical physics. The equations in general have not been solved analytically,
and even numerical solutions have been unobtainable until recent decades owing to the
vast range of scales that must be captured in a turbulent flow. One aim of study has
been to consider the simplified case of a constant density, incompressible fluid with simple
boundary conditions such as for flow through a pipe first studied by Reynolds, or between
two concentric cylinders as first studied by Couette. Yet fluid flow even in these idealized
settings remains far from understood. One major problem is how a laminar flow transitions
to a turbulent flow.

For instance, plane Poiseuille flow1 (PPF) admits a laminar flow that is linearly stable
for all R < Rc = 5772.22, where R = LU/ν is the Reynolds number, Rc is the critical
Reynolds number, L is the half-width of the channel, U is the maximum flow speed, and ν is

1This is flow between two infinite parallel plane sheets with a no-slip boundary condition and forced by
a pressure gradient also parallel to the sheets.
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the kinematic viscosity (Orszag, 1971). Yet laboratory experiments of such flows typically
observe the laminar flow transitioning to turbulence at much lower Reynolds numbers,
around R ≈ 1000. A similar scenario exists for plane Couette flow2 (PCF): the laminar
flow is linearly stable for all R out to∞ but turbulence is typically observed with Reynolds
numbers as low as R ≈ 350. This disagreement between experiment and linear stability
theory ultimately owes to noise in the experimental setup: finite perturbations to the linear
flow can, in dynamical systems parlance, move the system out of the basin of attraction
of the stable laminar flow and into the basin of attraction of some other, turbulent state.
Since the basin of attraction of the laminar flow diminishes in size with increasing R, a
given experimental setup subject to a certain amount of noise will observe transition to
turbulence at some sub-critical R.

Reversing this problem presents a key question, as posed in an illuminating paper by
Trefethen et al. (1993): for a given R, what is the minimal perturbation to the laminar flow
that causes the flow to transition to turbulence? This perturbation is called the “minimal
seed”, although sometimes this term simply refers to the magnitude of the actual pertur-
bation. These authors conjectured that the magnitude of the minimal seed should be of
order Rγ for some value of γ which will depend on the problem under consideration. For
shear flows with stable eigenvalues for the laminar flow, they state γ ≤ −1 citing a technical
report that was later published (Kreiss et al., 1994).

Following this conjecture there has been significant work to determine γ for differ-
ent flows, using theory, laboratory experiments, direct numerical simulation, and low-
dimensional model analogues. Many studies focus on a particular form of perturbation
that is thought to be especially effective at generating turbulence—effective in the sense
that a small energy injection to this mode then excites other modes in such a way as to
amplify the total energy. By careful study of the asymptotics of flows with initial conditions
in these particular modes,Chapman (2002) derived a R−1 scaling for PCF and R−3/2 for
PPF.

In the laboratory, Hof et al. (2003) searched for the minimal seed in pipe Poiseuille flow
by injecting fluid through six small drill holes equally spaced around the circumference of
the pipe downstream of where the flow was deemed to be laminar. The magnitude and
total time of the injections was controlled and downstream observations made to determine
whether the flow became turbulent. They found extremely good agreement with a R−1

scaling for the minimal seed, in this case the energy of their injections.
However, there is a common problem with the above studies: they begin with a specified

form of initial perturbation, then determine the magnitude of that perturbation which is
necessary for transition to turbulence. This is even true in the laboratory where the drill
holes are specified and therefore allow only certain forms of perturbations. A complete
solution to the minimal seed problem must determine the form of the perturbation as well
as its magnitude. This is certainly a very difficult problem, and the above studies are
important steps towards a full understanding.

Another approach, and the one taken here, is to study low-dimensional analogues of the
full Navier-Stokes equations for shear turbulence. In these simpler systems it is possible
(though still non-trivial) to find the exact form of the minimal seed. Many such models for

2This flow is the same as PPF but is forced instead by a constant velocity difference between the sheets.
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various flow geometries were developed in the 1990’s; Baggett & Trefethen (1997) compared
them and found the particular γ for each. We focus in particular on the model by Waleffe
(1997, hereafter W97). Waleffe formed by Galerkin truncation a four-dimensional model of
sinusoidal flow3 and speculated an R−1 scaling for the minimal seed of this flow, based on
the fact that one component of the lower branch fixed point in the 4D model scales as R−1.
However, the minimal seed will involve non-zero values for the other three components; the
possibility exists that the minimal seed could scale as Rγ with γ < −1. Waleffe’s model also
elucidated a “Self-Sustaining Process” that is supposedly a crucial building block of shear
turbulence. This will be further discussed in Section 3.1; for now note that streamwise
vortices are a critical flow structure in initiating turbulence: a small amount of energy
in a streamwise vortex mode can, by advecting the mean shear, lead to a large transient
growth of energy. Indeed these or their close cousins constitute the particular form studied
intensively, as in the aforementioned studies.

The W97 model is a development of an earlier model (Waleffe, 1995,a) model that was
included in the study by Baggett & Trefethen (1997). However, the 1995 and 1997 mod-
els are significantly different, and only much later was the first attempt made to find the
minimal seed and the particular γ for the W97 model (Cossu, 2005). Cossu employed a
three-dimensional search algorithm (having eliminated one dimension as described in Sec-
tion 3.4). The particular “minimal seeds” found by Cossu are those minimal perturbations
(for each R) which lead to permanent turbulence. However, initial conditions for the W97
model can be quickly found which demonstrate transient turbulence—they behave turbu-
lently for a time but ultimately decay to the laminar state. It is these perturbations which,
we argue, constitute candidates for the minimal seed.

To find these minimal seeds (over a range of Reynolds numbers), we will use a new opti-
mization technique, recently reviewed by Kerswell et al. (2014) and discussed in Section 2.
With some modifications, we apply it to a new class of problems wherein the turbulence
is transient, versus those problems illustrated by Kerswell et al. or even the region of the
W97 model that was studied by Cossu (2005) in which the turbulence is persistent. The
W97 model itself and results from the search for its minimal seed are given in Section 3,
before concluding in Section 4.

1.2 Definitions and Examples: Optimal Perturbations, The Edge, and
the Minimal Seed

We now formulate the problem in dynamical systems terms and give a few brief definitions.
The Navier-Stokes equations are shifted so that the laminar state is at the origin. They

may then be written in the following generic form:

dx

dt
= F (x) = Lx +N(x), (1)

where L is a linear operator and N a non-linear function. This dynamical system defines a
new function X(t,x0) that is the solution to (1) which also satisfies X(0,x0) = x0.

The standard dot product is used together with the L2 norm ‖x‖2, written simply as
|x|. For Navier-Stokes, the state x represents the discretized velocity field u and hence the

3This is PCF but with free-slip boundary conditions, leading to a sinusoidal crosswise profile of the
laminar streamwise flow.
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kinetic energy E = 1
2

∫
u · u dV is technically given by the quadratic form 1

2x · x. Since

this maps one-to-one onto |x| = (2 · E)1/2, we often refer to |x| as simply the energy and
sometimes write it as E(x).

The orbit starting from an initial condition x0 is the set of points {X(t,x0) : t ∈ [0,∞)}.
A fixed point of a dynamical system is an xFP for which F (xFP ) = 0. The stability of

the fixed point is found by computing the eigenvalues and eigenvectors of F linearized about
xFP . If all eigenvalues have negative real part, xFP is stable. If at least one eigenvalue has
a positive real part, xFP is unstable.

The stable manifold of the fixed point xFP , written SM(xFP ), is an invariant set {x0 :
limt→∞X(t,x0) = xFP }.

The basin of attraction of a set A is {x0 : limt→∞X(t,x0) ∈ A}.
For the Navier-Stokes equations shifted about the laminar shear flow solution, as in

(1), the linear operator L is stable, having eigenvalues all with negative real part, but is
non-normal, i.e. L does not commute with its adjoint. These properties of L imply that
any solution of the linearized problem dx

dt = Lx has limt→∞ |x(t)| = 0, but some solutions
can exhibit a large transient growth before decay. The non-linear function N is quadratic
in x and conserves the energy E .

The Linear Optimal Perturbation (LOP) xLOP satisfies

max
t
{|X(lin)(t,xLOP )|} ≥ max

t
{|X(lin)(t,x)|} ∀ |x| = 1 (2)

where X(lin)(t,x0) is the solution to the linearized problem dx
dt = Lx, and having X(lin)(0,x0) =

x0. In fact there are two LOPs, with −xLOP also satisfying the above. In words, xLOP
maximizes the furthest distance from the origin obtained by the orbit of the linearized
problem. When L is non-normal, transient growth of |X(lin)(t,x0)| is possible even when
all eigenvalues have negative real part (e.g. Farrell, 1988).

We define the Non-Linear Optimal Perturbation (NLOP) xNLOP , for a given d and T ,
to satisfy |xNLOP | = d and

|X(T,xNLOP )| > |X(T,x)| ∀ |x| = d. (3)

That is, the NLOP maximizes, over all initial conditions with magnitude d, the distance
from the origin of the orbit at time T .

The Edge E is the boundary of Ω, the basin of attraction of the origin. Recall that the
boundary of a set Ω is the set defined as {x : ∀ ε > 0, Bε(x)∩Ω 6= ∅ and Bε(x)∩Ω 6= ∅},
where Bε(x0) = {x : |x − x0| < ε}, and Ω is the compliment of Ω. That is, for a point
x ∈ E and any ε > 0, the ball of radius ε centred at x contains a point in Ω and another
point not in Ω. For all problems considered here, it will be a co-dimension one invariant
manifold.

A Strong Edge is an edge, or subset of an edge, which separates orbits on one side which
return to the origin from orbits on the other side which do not.

A Weak Edge is an edge, or subset of an edge, for which the orbits of initial conditions
on either side both return to the origin but do so in a qualitatively different way: orbits
started on one side return to the origin directly while orbits started on the other side take
a more circuitous route and/or require more time to return to the origin.

The Edge is, in general, the union of the Strong Edge and the Weak Edge.
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The Minimal Seed xMS is the initial condition on the Edge that is closest to the laminar
fixed point (the origin): xMS ≡ argminx{|x| : x ∈ E}.

1.3 A 2D Example

An illustrative two-dimensional dynamical system was explored by Lebovitz (2012). The
equations are:

dx1

dt
= −δx1 + x2 + x1x2 − 3x2

2, (4)

dx2

dt
= −δx2 − x2

1 + 3x1x2 (5)

where δ = 1/R. The origin is a fixed point for all R. A saddle-node bifurcation occurs at
R = 2: hence for R > 2 an additional pair of fixed points exists, the lower branch point
xLB and the upper branch point xUB. For a full bifurcation analysis, see Lebovitz (2012).

Let us consider this example system with R = 2.45, as shown in Figure 1. The LOP
shows transient growth: its orbit at a particular time is actually further from the origin
than where it began at a radius d from the origin. Most other orbits started at radius d do
not have this property. Note that because L(ax) = aLx for any scalar a, trajectories of the
linearized system have a scale invariance, and hence so too does the LOP.

Four NLOPs are shown. In each case it is seen that its orbit (magenta curve) finishes (at
time T ) further from the origin than other orbits (black curves) started the same distance
from the origin.

Here, the stable manifold of the lower branch point SM(xLB) extends from xLB in
two directions: positive in x1 and negative in x1, roughly speaking. The first extends to
+∞ in x1, while the second winds around xUB and hence does not extend to −∞ in x1.
Thus, SM(xLB) does not divide phase space into two separate regions. Orbits started on
either side of SM(xLB) eventually return to the origin, but they do so by qualitatively and
significantly different paths. Thus, SM(xLB) forms the weak edge. Orbits started below
the weak edge return to the origin with at most one instance of transient growth, which
can be thought of either as due to the linearized dynamics or due to the orbit, started near
SM(xLB), must move to near to xLB. Orbits started above SM(xLB) must wind their way
around xUB before returning to the origin.

The strong edge is, clearly, the periodic orbit P surrounding xUB. Orbits started outside
P eventually return to the origin, while those started inside P eventually reach xUB.

The edge, being the union of its strong and weak components, is therefore the union of
SM(xLB) and P .

The Minimal Seed xMS is that point on the edge with least distance from the origin.
This distance |xMS | happens to be approximately 0.2384. Furthermore, xMS is the NLOP
for d = |xMS |, since X(T,xMS) will be near xLB while any other x with |x| = |xMS | has
X(T,x) near the origin, for sufficiently large T . In fact, the d = 0.2384 ball is slightly below
the edge everywhere, and hence the orbit of its NLOP (third magenta curve moving radially
outward from the origin) goes towards xLB then decreases towards the origin. Increasing
this NLOP by a multiplicative factor of 1.0005 yields a new initial condition that is slightly
above the edge: its orbit (cyan curve) goes to xLB then increases (eventually returning to
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the origin given enough time, but here it is only shown up to T = 16). Thus the exact
minimal seed lies somewhere near these points and has magnitude between 0.2384 and
1.0005× 0.2384. These bounds can be tightened considerably, but for illustrative purposes
we shall leave it at that.

For small d where the linearized dynamics well approximate the full dynamics, the NLOP
tends to be near to the LOP (scaled by d). This is not in general true for larger d. Note
that it is merely coincidental that here the LOP scaled by |xUB| is in fact xUB. It is also
not in general true that the LOP scaled by 0.2384 is the NLOP with d = 0.2384.

2 Optimization Algorithm

In this section we describe the optimization technique, which is the subject of a recent
review paper (Kerswell et al., 2014), that we employ to find the NLOP. The basic idea
is described in the next section, followed by a more careful discussion of the convergence
criteria. We then discuss how this algorithm fits into a bisection of energy levels to find
the minimal seed. The reader may find it useful to keep Figure 1 in mind throughout this
section.

2.1 Basic Algorithm

The technique described here is an algorithm to determine the NLOP, i.e. the initial con-
dition x0 ≡ x(0) having |x0| = d which maximizes |x(T )|. The leftmost branch of the
flowchart in Figure 2, beginning with “K” and ending with “A”, “U”, or “MS”, shows the
algorithm. The underlying idea is to maximize a Lagrangian

L = L(x,ν, λ; d, T ) = |x(T )|2 +

∫ T

0
ν ·
(

dx

dt
− Lx−N(x)

)
dt+ λ (|x(0)| − d) (6)

where ν and λ are the Lagrange multipliers which respectively ensure that x is a solution
of the dynamical system (1), and that the initial condition lies on a sphere of radius d from
the origin, i.e. has a specified energy.

Taking the variation of L with respect to x gives

δL = [x(T ) + ν(T )]︸ ︷︷ ︸
A

·δx(T )−
∫ T

0

[
dν

dt
+ ν · ∂F

∂x

]

︸ ︷︷ ︸
B

·δx dt+ [λx(0)− ν(0)]︸ ︷︷ ︸
C

·δx(0) (7)

When L has been maximized, the perturbation δL = 0 for an arbitrary perturbation
δx(t), t ∈ [0, T ], and thus the quantities labelled A, B, and C must all vanish. Thus, the
optimization procedure is as follows:

Step 0: Guess an initial condition x(n)(0) with n = 1.
Step 1: Integrate the dynamical system (1) forwards from x(n)(0) to obtain x(n)(T ).
Step 2 (Apply A = 0): Set ν(n)(T ) = −x(n)(T ).
Step 3 (Apply B = 0): Integrate the dual dynamical system,

dν(n)

dt
= −ν(n) · ∂F

∂x
, (8)
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backwards in time4 from ν(n)(T ) to obtain ν(n)(0).
Step 4 (Apply C to maximize L): Having now ensured A = 0 and B = 0, L varies with

x(t) only through x(0). Therefore, use

δL
δx(n)(0)

= λx(n)(0)− ν(n)(0) (9)

to maximize L by a maximum ascent method: for some small step-size ε(n), the next
iteration’s guess for the NLOP is

x(n+1)(0) = x(n)(0) + ε(n)
[
λx(n)(0)− ν(n)(0)

]
. (10)

Note that, although L is being maximized for arbitrary values of the Lagrange multipliers
ν and λ, their specific values are important, and here we must simultaneously choose λ to
satisfy

d =
∣∣∣x(n+1)(0)

∣∣∣ =
∣∣∣x(n)(0) + ε(n)

[
λx(n)(0)− ν(n)(0)

]∣∣∣ (11)

Using the squared L2 norm |x| = ‖x‖22 = x ·x, this condition on λ yields an easily solved
quadratic equation (dropping (n) superscripts for clarity):

(ε2 x0 · x0)λ2 + (2ε x0 · x0 − 2ε2 x0 · ν0)λ+ (ε2 ν0 · ν0 − 2ε x0 · ν0) = 0. (12)

The choice of the step-size ε is critically important for convergence and is discussed next.
The choice of T is also important and may need to be adjusted as d changes, as discussed
in the subsequent section.

2.2 Convergence

How one chooses the step size ε is of great practical importance. With ε too small, the
method will take too long to feasibly complete, while too large an ε can lead to ∆x0 =
x(0)(n+1) − x(0)(n) also being so large that ∆L = L(n+1) −L(n) ≈ (δL/δx0) ·∆x0 is a poor
approximation and L actually decreases. We therefore employ some additional measures,
applied in each iteration of the algorithm, to determine a good step-size ε, so as to prevent
both the above problems.

First, we require ε ≤ εmax,λ, where the latter is defined as the maximum ε for which λ
can be real. Requiring λ ∈ R in turn requires the discriminant of (12) to be non-negative,
giving another quadratic equation, this time for ε, the solution of which is

εmax,λ =

(
(x0 · x0)2

(x0 · x0)(ν0 · ν0)− (x0 · ν0)2

)1/2

, (13)

having chosen the positive root so as to maximize, not minimize, L. This criterion is applied
at each iteration (n).

4This requires knowing x(t) at each time step (and sub-steps) of the ODE integration method. For high
dimensional dynamical systems such as a direct numerical simulation of the Navier-Stokes equations, the
full forward integration of x(t) cannot be stored in memory, and therefore a check-pointing procedure is
required, as discussed by Kerswell et al. (2014), wherein x(t) is saved only at some times tj and these x(tj)’s
are used, when needed in solving for ν(t), to initiate another forward integration of x from tj to tj+1.
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Figure 1: The system (4) with R = 2.45. Blue circles indicate the three fixed points: the
origin O, the lower branch point xLB, and the upper branch point xUB. The unstable
manifold of xLB (red curves) consists of two orbits, beginning in opposite directions but
both converging to O. The stable manifold of xLB (green curves) winds around an unstable
periodic orbit P (blue) which encloses the basin of attraction of the stable fixed point xUB.
The LOP and its negative are indicated by the the orange circles, together with their orbits
in the linearized system (orange curves). Other orange lines show orbits of the linearized
system started at 30◦ intervals around the origin and at a radius of 0.075 (dashed orange
circle). Any point on the dashed orange line is an LOP. The NLOP (magenta circles) is
shown for each of d = 0.1, 0.21, 0.2384, 0.265 (black dashed circles), with T = 8, 8, 16, 8
respectively. The NLOP is calculated by the iterative procedure described in Section 2:
successive orbits (black curves) begin with the orbit started at an angle from the +x1 axis
of 50◦ (for this illustration) and converge to the NLOPs orbit (magenta curves). The orbit
started from the NLOP with d = 0.2384 scaled by a factor 1.0005 is shown (cyan curve).
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Figure 2: Flowchart showing the optimization procedure to calculate the NLOP (left branch,
K to A, U, or MS), the energy incrementation and bisection procedure (right branch, MS
to K or Stop), and the initialization for the whole algorithm (centre branch, Start to K).
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The above criterion is useful when beginning the iterations, telling us how large a step
size we can feasibly take. But it will not bring ε → 0, so we add another criterion which
limits the contribution ν can make to ∆x0 in (10):

ε
(n)
max,ν = ε(n−1) |ν

(n−1)
0 |
|ν(n)

0 |
. (14)

and require ε(n) ≤ ε(n)
max,ν .

Another criteria that was considered was to require that the jump in x0 between succes-

sive iterations does not increase. That is,
∣∣∣x(n+1)

0 − x
(n)
0

∣∣∣
2
≤
∣∣∣x(n)

0 − x
(n−1)
0

∣∣∣
2
≡ D(n)

0 . Using

(10) this yields another upper bound for ε(n), which is

ε
(n)
max,x0 =

(
D0(x0 · x0)−D2

0/4

(x0 · x0)(ν0 · ν0)− (x0 · ν0)2

)1/2

, (15)

all evaluated at iterate (n). However, this was found to be too restrictive. Consider when
the initial guess x0 begins in a fairly “flat” region of phase space (i.e. where |x(T )| changes
little with changes in x(0)) and is also not near the local maxima of |x(T )|. Including this
restriction forces all subsequent steps after the initial step in x(0), which is small owing
to flatness, to be at least as small; hence convergence to the NLOP requires an enormous
number of iterations. Without this condition, small initial steps are taken, followed by
larger steps when x(0) has left the flat region.

The two criteria used above attempt to limit ε but do not themselves ensure that L,
and hence |x(T )|, increases with each iteration. Since this is essential, one final condition is
added: the dynamical system is integrated forward to obtain x(n+1)(T ) and

∣∣x(n+1)(T )
∣∣ >∣∣x(n)(T )

∣∣ is explicitly checked. This requirement becomes more stringent as the iterations

proceed. If this check fails, ε(n) is halved, x
(n+1)
0 re-calculated from (10), and this criteria

checked again. This halving process is repeated until the condition passes, or some maximum
number of halvings is reached, currently set to 20.5

Not only does this ε-halving technique give us confidence that we are finding a local
maximum of L, numerical experiments suggest that it may even hasten the whole optimiza-
tion algorithm by preventing overshooting of the NLOP and thereby reduce the number of
iterations (n) required.

The final statement regarding convergence regards when the NLOP is deemed to be
found and the full optimization algorithm finishes. During the forward integrations of the
ε-halving procedure (which also serve as performing Step 1 in Section 2.1 above; see also
Figure 2) we determine whether

∣∣x(n+1)(0)− x(n)(0)
∣∣ < Etol

0 , for some small number Etol
0 ,

for which we tend to use a default value of 10−8. When this is true we declare the NLOP
found and finish the algorithm.

5For additional numerical safety, subsequent applications of the ODE solver for forward integration of
x(t) at this iteration level (n) will do the following: sub-sample the output x(t) by a further factor of two, to
help ensure the backwards integration of ν is accurate, and raise by tenfold the accuracy of the ODE solver
(which reduces the size of the time steps).
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2.3 Energy Incrementation and the Two Sides of the Edge

Having a procedure to find the NLOP on a given energy ball {x : |x| = E0} (and for a
given integration time T ), we now desire an algorithm that applies the above procedure on
successively larger energy spheres, in order to find the minimal seed. The basic idea here
is to increase the size of the energy spheres until the edge is passed, and then to refine the
energy by bisection down to a desired precision.

2.3.1 Which Side of the Edge?

This procedure will require a function that determines whether a particular orbit is above or
below the edge, or whether this is unclear from the information available. The information
available is the full orbit x(t), t ∈ [0, T ], as well as, in principle, all previously calculated
orbits, although in practice only the orbits of the previously calculated NLOPs are needed
and generally just some metric (such as the gain) of them.

This function will vary between problems. Clearly, if the problem has a strong edge
(the basin of attraction of xUB) but not a weak edge, a criteria could be the following: if
|x(T )| < δO then x0 is below the edge; if |x(T ) − xUB| < δUB then x0 is above the edge;
otherwise, it is unclear whether x0 is above or below the edge.

However, if the problem has a weak edge which is sought then a different function must
be used. One approach is use the ratio of the gain G ≡ maxt{|x(t)|} / |x(0)| between the
current orbit and the orbit of the last NLOP determined to be below the edge. If this ratio
exceeds a certain value6 then x0 is above the edge; if |x(T )| < δO then x0 is below the edge;
otherwise, it is unclear whether x0 is above or below the edge.

This approach has been successful in simple problems such as the 2D system studied by
Lebovitz (2012) (Section 1.3), and also in the 2D example problem used by Kerswell et al.
(2014) which only has a strong edge.

However, the geometry of the problem may prevent this gain-based approach from work-
ing. This is easily seen if we had |xLB| > |xUB|. Then two orbits started nearby but on
either side of the edge would, as per the usual understanding, go near xLB; then one goes
directly back to the origin O while the other goes around xUB before returning to O. But
the gain of both orbits would be approximately |xLB|/|x(0)|, with no obvious difference
between them.

For the W97 4D model, we do have the desirable |xLB| < |xUB| but the separation is
not so large and a formulation in terms of the gain, as above, was not robustly successful.
The following, more reliable approach, was found instead. Find all local maxima of the
function |x(t)|, then for numerical reasons discard all those having |x(t)| < δ0. If there
are one or fewer local maxima—the orbit either directly relaminarizes or does so after a
transient growth as per a non-normal linear system—the orbit is deemed below the edge.
If there are two or more local maxima—the orbit first undergoes transient growth, then
undergoes secondary growth when repulsed on the far side of the saddle that is xLB—and
their magnitudes exceed some specified thresholds (for each maxima), the orbit is deemed

6This value need not be much great than 1. For the 2D problem of Section 1.3, we choose a value of 1.2.
If the incremental increase of the energy spheres is small enough then, for two spheres below the edge, the
ratio of the gains of their NLOPs will be nearly 1, while for two spheres straddling the edge this ratio grows
without bound as the distance between the energy spheres shrinks.
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above the edge. The thresholds chosen were 0 for the first peak (any size peak will do), and
|xLB| + max(δLB, 0.2 · |xUB − xLB|), where δLB is defined below. This function, together
with another improvement detailed below, is illustrated as a flowchart in Figure 3.

When, in all examples above, it is deemed unclear whether the orbit is above or below
the edge, the correct thing to do is to choose a larger T . Clearly this works as desired in
the first example above when all of phase space (except for a measure zero set, the stable
manifold of the lower branch point) is in the basin of attraction of either O or xUB. In the
second example, the added time may allow further gain to be realized (supporting an above-
edge result), or it may simply bring the orbit closer to the origin (supporting a below-edge
result). Thus, increasing T is still the correct response, but one must have carefully chosen
the threshold for the ratio of the gains, based on previous experience with the particular
problem.

When, by bisection of energy levels, the orbits under question are very near the minimal
seed, they will track the stable manifold of xLB until near xLB itself; this point being a
fixed point, velocities near xLB are small so the orbit lingers for much time near xLB.
If increasing T sufficiently to escape xLB is infeasible, a complimentary condition may
be added that applies when the orbit enters a small ball δLB � 1 of xLB wherein the

linearized dynamics dominate. First, linearize F about xLB: FLB = ∂F/∂x
∣∣∣
xLB

. Second,

find all stable eigenvectors of FLB and (as by Gram-Schmidt) orthonormalize them to get
v1, . . . , vn−1. Third, calculate the vector rejection of the unstable eigenvector vn of FLB:

vO = vn −
n−1∑

i=1

(vn · vi)vi. (16)

This vO is orthogonal to the hyperplane formed by the stable eigenvectors. Fourth, calculate
the orbits starting from xLB + δLBvO and xLB− δLBvO and decide which is below the edge
and which is above. The orbit below the edge may be said to be the one that requires less
time to reach a δ0-ball around the origin7, or the one that has a lesser gain. If xLB−δLBvO
is the one below the edge, then re-assign vO := −vO. Hence vO points, following the
dynamical system’s trajectories, from xLB towards the origin. Now, for any orbit x(t), find
the time tc which minimizes DLB = |x(tc) − xLB|. If DLB > δLB then it is unclear from
this analysis whether the orbit is above or below the edge. If DLB < δLB then the orbit
x(t) is deemed below the edge if

S = (x(tc)− xLB) · vO (17)

is positive, and above the edge if S is negative.

2.3.2 Energy Incrementation

Now the task is to increase the size of the energy spheres upon which the NLOP is calculated,
until a sphere intersects the edge. The fundamental outline of the algorithm is, in words,
as follows.

7There are systems, such as the 2D system of Lebovitz (2012), where the orbit from xLB that winds
around xUB , thereby obtaining a much larger gain, actually relaminarizes (reaches the δ0-ball centred at the
origin for δ0 � 1) in less time.
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x(t), t ∈ [0, T ]
δLB, δ0, vO

α

Find all ti ∈ [0, T ], i = 1..N
such that E(ti) ≡ |x(ti)|
is a local maximum.

N ≥ 2 AND
E(t2)− |xLB| >

max(δLB, α)

tc := argmint{|x(t)− xLB|}
no

|x(tc)− xLB| < δLB
(x(tc)− xLB) · vO

< 0yes ABOVEyes

BELOW

no

Stop

E(T ) < δ0

no

yes

no

UNCLEAR

no

yes

Figure 3: Flowchart to determine whether an orbit x(t) is above or below the edge, or
whether this is unclear. This formulation was used to work on the W97 problem, with
δLB = 10−2, and α = (|xUB| − |xLB|)/5. δ0 was initially chosen as 10−2 but can be
made larger (as discussed in Section 2.3.2) once the minimal seeds for some values of R are
available and an approximate scaling law for the minimal seed can be made.



Step 0: Choose a series of energy spheres El ≡ E1, . . . EN ≡ Eh. Choose δ0: an orbit
entering the δ0-ball from outside is deemed going to the origin and below the edge. Set
x0 := El xLOP , where xLOP is the Linear Optimal Perturbation with unit magnitude. Run
the orbit starting at x0 until the smallest time T such that |x(T )| < δ0.

Step 1: Calculate, by the optimization algorithm above, xNLOP .
Step 2: Check whether the orbit from xNLOP is above or below the edge, or if this is

unclear.
If unclear: increase T .
If above: set Eh := E0; reduce E0 by bisection between Eh and El; scale x0 to x0 E0 / |x0|.
If below: set El := E0; increase E0 by bisection between El and Eh if previously an orbit

was found above the edge, or if the Ei set is exhausted; otherwise set E0 to the next element
in Ei; set x0 to xNLOP E0 / |xNLOP |.

Step 3: Check convergence. If Eh−El < δMS for some specified δMS , exit the algorithm;
otherwise, go to Step 1.

There are several additional points which can improve the basic algorithm, which we
now discuss. The flowchart in Figure 2 includes many of these improvements.

In all problems considered so far, the condition for an orbit to be below the edge rests
on whether |x(T )| < δ0. When beginning this energy incrementing algorithm, this δ0 must
be chosen very small so that there is complete confidence that any orbit which crosses from
outside to inside of the δ0-ball centred at the origin will continue directly to the origin, i.e.
with no later growth of |x(t)|. However, this δ0 can be increased to El, the size of the energy
sphere upon which the NLOP was last found to be below the edge: if the NLOP on the
El-ball goes to the origin and an orbit started on the E0-ball passes from outside to inside
of the El-ball, then this orbit must also go to the origin.

When an orbit is above the edge, we don’t need to find the NLOP for that energy sphere.
We simply decrease the energy and try again. Thus, at each iteration in the optimization
algorithm, the orbit is passed to the function that determines whether it’s above or below
the edge. If it’s above the edge, then the energy sphere is immediately shrunk (“A” in
Figure 2).

Relatedly, if it is unclear whether the orbit is above or below the edge, but the orbit is
in fact below the edge, then since further iterations of the optimization procedure will only
increase |x(T )|, the orbits of all further iterations will also be deemed unclear. Hence, T
should be immediately increased and the optimization procedure restarted. Similarly, if it
is unclear whether the orbit is above or below the edge, but the orbit is in fact above the
edge, then increasing T will likely accelerate the whole algorithm and at the very least will
not lead to an incorrect answer. Hence, shortcut “U” is taken in Figure 2.

When the NLOP is found to be below the edge, it is scaled radially outward to the
next energy sphere. But note, when an x0 is detected above the edge (shortcut “A”), the
NLOP is not found and so it is the last NLOP that is scaled to the next energy sphere. x0

should similarly not be updated when it is unclear whether the orbit of the optimization
procedure is above or below the edge (but this case can only occur on the first iteration of
the optimization procedure, before x0 could be updated.)

In the W97 model, the fourth and final component of an orbit that relaminarizes decays
to 0 much faster than the other components. This component can quickly become less than
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the absolute error tolerance of the ODE solver used to integrate the dynamical system—a
situation that can cause numerical issues. Thus, it was found extremely helpful to nudge the
initial condition x0 given to the optimization algorithm. In this case we chose to increase
the fourth component to a minimum of 10−4, while scaling down the other components of
x0 such that the total energy |x(0)| is unchanged.

3 In Search of the Minimal Seed

In this section we give the results obtained by applying the optimization algorithm of
Section 2 to the W97 four-dimensional model. We begin by describing this model, then
discuss how the optimization technique operates for this model, then show our results and
briefly compare them to the previous results of Cossu (2005).

3.1 The Waleffe (1997) 4D Model

While significant progress has been made recently, a complete understanding of shear turbu-
lence arising from the full Navier-Stokes equations, even in simple geometries such as plane
Couette flow or plane Poiseuille flow, remains out of reach. When viewed as a dynamical
system, such a system would have roughly 105 degrees of freedom, obfuscating visualization
as well as the implementation of many numerical techniques. A lower dimensional system
that still captures the important features of a potentially turbulent shear flow is therefore
desired.

One such low dimensional model for plane Couette flow was developed in the 1990’s
by Waleffe and collaborators, culminating in a 1997 paper (Waleffe, 1997). One feature of
this work was to recognize that organized, coherent structures may exist within a turbulent
shear flow. These structures, uncovered in their analysis, are streamwise roll vortices,
streaks (spanwise perturbations of the streamwise flow), and a streamwise wave dominated
by spanwise velocity perturbations. The streamwise rolls advect the mean shear, pulling
positive streamwise flow down and lifting negative streamwise flow up, thereby creating
streaks. Even for roll vortices that are weak (relative to the mean shear), the streaks
represent significant spanwise variation of the streamwise flow and can be linearly unstable,
leading to the growth of the streamwise wave. Through careful analysis, Waleffe showed
that these waves non-linearly force a streamwise roll vortex very near to the original rolls,
thereby amplifying the original perturbation. Thus, this is an energetically “self-sustaining
process”, thereby avoiding the decay to the laminar state.

In addition to the physical understanding of these structures and their interaction, this
work led to a four-dimensional dynamical system. It has been much studied and seems to
capture many important features of the full Navier-Stokes equations for shear turbulence.

Writing x = (m,u, v, w)T , the Waleffe’s model in the general form (1) has

L =




−k2
mR
−1 0 0 0

0 −k2
uR
−1 σu 0

0 0 −k2
vR
−1 0

0 0 0 −k2
wR
−1


 (18)
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Figure 4: Magnitude of fixed points of the W97 model over a range of Reynolds numbers
R. See text for details.

and

N(x) =




σmw
2 − σuuv

−σww2 + σumv
σvw

2

(σwu− σmm− σvv)w


 . (19)

The non-linear terms conserve the energy, recycling it between the different modes. The
linearized problem admits a globally attracting fixed point at the origin—the laminar state.
The same is true for the full non-linear problem when R is small.

For values of R > RSN = 104.5467 where a saddle-node bifurcation occurs, two ad-
ditional fixed points are born: the lower branch fixed point, xLB, and the upper branch
fixed point xUB. Their magnitudes are shown in Figure 4. A sub-critical Hopf-type bi-
furcation occurs at RP2 = 137.2569: an unstable periodic orbit is born and for R > RP2,
xUB becomes a stable attractor—it has two complex pairs of eigenvalues, both pairs having
negative real parts. For 104.6434 = RP1 < R < RP2, xUB one pair of complex eigenvalues
has positive real part, so xUB is unstable. For RSN < R < RP1, these eigenvalues become
real but remain positive and hence xUB is unstable here as well.

This 4D model has been a popular choice for study, but so far only one attempt has
been made to find the minimal seed systematically over a range of R values. That study,
by Cossu (2005), found that |xMS | scaled closely with R−1. However, the orbits started
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Figure 5: Magnitude of orbits beginning from the minimal seeds found by Cossu (2005).
Colours are for different R values. All minimal seeds have orbits that are attracted to the
upper branch point. Hence, they are within the basin of attraction of the upper branch
point, not the origin, and are on the far side of the strong edge.

from these minimal seeds are seen (Figure 5) to go to the upper branch point8 rather than
to return to the origin. Thus, Cossu’s results are for the minimal distance from the origin
to the strong edge. If there exists a weak edge, it is entirely possible and perhaps likely
that it contains a point closer to the origin than any point on the strong edge, in which
case the minimal seed will be smaller than stated by these previous results. We will give
results from applying the search method of Section 2 to the W97 model, which first requires
a discussion of local maxima.

3.2 Optimizing to the Global Maximum

The optimization procedure of Section 2.1 finds a local maximum of L, i.e. it maximizes
|x(T )|. A common difficulty with such optimization algorithms lies in whether the result is
the global maximum or merely a lesser, local maximum.

We therefore calculate |x(T )| for two degrees of freedom of initial conditions x(0), con-
strained to have a specified w and a specified |(m,u, v)| = E0 (Figure 6). When these con-
straints place all x(0) well below the edge (top panel), |x(T )| appears a smooth function of
initial conditions with only two local maxima, and for very small E0 these are nearly equal, as
expected from the linearized problem which has a−1 symmetry (i.e. X(t,x0) = −X(t,−x0);

8Cossu (2005) only studied values of R for which the upper branch point is a stable attractor.
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Figure 6: The final energy |x(T )| (colours), as a function of φ ∈ [0, π] and θ ∈ [−π, π]
which define an initial condition x(0) = (E0 cosφ, E0 cos θ sinφ, E0 sin θ sinφ,W0). The W97
system with R = 200 and T = 80 then gives x(T ). The values E0, W0 are respectively (top)
10−2, 2.1894 · 10−3, (middle) 4.3 · 10−2, 9.4142 · 10−3, and (bottom) 0.3, 6.5681 · 10−2. The
chosen E0 place the top, middle, and bottom panels well below, just below, and well above
the edge, respectively. To complement this W0 was chosen as wMS · (E0/|xMS |), but the
qualitative results are not sensitive to small changes of W0. Well below the edge (top) there
are two nearly equal local maxima of |x(T )|, one the negative of the other, as expected
from the non-normal linearized problem. Just below the edge (middle), there is one clearly
global maxima and one lesser, local maxima. Well above the edge (bottom) there are many
local maxima.
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Figure 7: Left: The energy, E(x(t)) ≡ |x(t)|, of successive orbits x(t) in the iterative proce-
dure to find the minimal seed, for the W97 model with R = 200. Each curve corresponds
to the orbit started from an initial condition with energy indicated by colour. For orbits
below the edge, the initial condition is the NLOP. Thick lines show the orbits of those initial
conditions straddling the edge. Right: The two thick-lined orbits from the left panel, shown
in phase space. Both orbits begin near the origin (blue circle) and track each other closely
until they near the lower branch point (green circle), at which point the black orbit (below
the edge) returns directly to the origin while the red orbit (above the edge) circumnavigates
the upper branch point (black circle) before returning to the origin. The top, middle, and
bottom panels show x1 vs. x2, x3 vs. x2, and x3 vs. x4, respectively.

also note that the W97 model is symmetric about the w = 0 hyperplane). For larger E0 up
to and below the minimal seed, one local maxima dominates and becomes the global max-
ima (middle panel). For E0 above the minimal seed (bottom panel), SM(xLB) folds (back
and forth, or perhaps around xUB) across this domain of x(0). In the limit of T → ∞,
all orbits started off of SM(xLB) will have |x(T )| ≈ 0 or |xUB|, while those started on
SM(xLB) will have |x(T )| ≈ |xLB|, suggesting the folds of SM(xLB) represent different
local maxima of |x(T )| with finite but large T . Thus, for such high E0, many local maxima
of |x(T )| emerge.

These calculations provide evidence that the optimization procedure of Section 2, applied
to successively larger energy spheres and initiated in the correct hemisphere (the right
hemisphere in Figure 6) will find the global maximum when below the minimal seed. Above
the minimal seed, there is no guarantee that the optimization procedure will find the global
maximum, which is why the algorithm was chosen so that finding the NLOP for energy
spheres above the minimal seed is not necessary.
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3.3 Results

We have found the minimal seed xMS for the W97 model for values of R ranging from 105
to 2000. Let us first illustrate the search: the left panel of Figure 7 shows the progression
of orbits in the search for the minimal seed when R = 200. The orbit of an NLOP below
the edge shows transient growth with one well-defined maximum in energy. The growth is
transient as would be had in the linearized system, with the orbit returning to the origin,
hence producing a single maximum.

An orbit started above the edge shows similar initial transient growth followed by at
least one further growth episode. When the initial condition is near the edge, the initial
transient growth sends the orbit into a region of phase space where it is attracted towards
the lower branch point. This much of the orbit, so far, has therefore been on or near the
non-linear stable manifold of the lower branch point. The lower branch point being a saddle
point, it has one unstable eigenvector vu. An orbit that began just above the edge will,
when it gets near to xLB, be pushed off the stable manifold of xLB by its unstable dynamics
vu and away from the origin, generating a second local maxima in the orbit’s magnitude.
An orbit started just below the edge, however, would be pushed towards the origin by the
unstable dynamics of −vu. This weak edge, which is the stable manifold of the lower branch
point, separates initial conditions whose orbits follow qualitatively different routes back to
the origin (right panel of Figure 7). These orbits that straddle the edge also linger for a
long time near xLB itself (t ∼ 80—125 in Figure 6): since xLB is a fixed point, the velocity
through phase space in nearby regions is small.

Note that there are often additional small maxima of energy at large time (not visible),
owing to numerical inaccuracies when the orbit becomes extremely close to the origin. This
necessitates the condition involving α in Figure 3.

Before showing the main result of this work—how the minimal seed scales with R—
we ask how the minimal seed scales relative to |xLB|. In this model we know that |xLB|
asymptotes to a non-zero value for large R, and that the minimal seed |xMS | asymptotes
to zero for large R. Hence the ratio |xLB|/|xMS | should go to ∞ as R→∞. But how does
it behave for finite R, in particular for R→ RSN . This is shown in Figure 8 over the range
of R tested. The relationship is remarkably linear over almost all R, shallowing only for R
very close to RSN where the lower branch point is born and its magnitude changes rapidly
with R.

Now in Figure 9 we show the scaling of the minimal seed against R. First, note that for
each R the size of the minimal seeds found here is less than that found by Cossu (2005).
This is indeed because we have found the minimal distance to the weak edge, which lies
closer to the origin than does the strong edge. Second, we are now able to add to the
discussion regarding how the minimal seed should scale with R. Cossu found reasonably
good agreement with an asymptotic R−1 scaling, and we do too. For comparison, we found
that the asymptotic (i.e. requiring the R = 2000 data point to be matched perfectly)
scaling with a minimal least squares fit is R−1.0361—reasonably close to R−1. However, the
exceptionally linear relationship shown in Figure 8 suggests we can do even better if we
include not just R but also the (easily attainable) information of |xLB|: we find the scaling
|xLB|R−1 fits especially well. Indeed, |xLB| is asymptotically flat at large R (recall Figure 4),
so this scaling is equivalent to the R−1 scaling in the large R limit. However, the increase of
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Figure 8: The ratio between the magnitude of the lower branch point |xLB| and the minimal
seed |xMS | shown in black stars over a range of R, for Waleffe’s 4D model. The upper solid
line with a slope of 1 has been added to guide the eye, indicating a linear relationship
between R and |xLB|/|xMS |.

|xLB| going to smaller R allows this scaling to capture a great deal of how the minimal seed
grows (as R decreases) faster than the R−1 scaling in the finite, non-asymptotic R regime.

Finally, we show in Figure 10 how the first, second, and fourth components of the
minimal seed compare against its third component v, over a range of R. Recall that in the
W97 model, v represents the amplitude of streamwise rolls. That v is always the largest
component confirms that, in this model, perturbing the laminar flow with streamwise rolls
is, broadly speaking, the most effective way to transition to turbulence. However, the
other components being non-zero, the minimal seed—the most effective perturbation—is
somewhat different from a pure streamwise roll perturbation, having finite but smaller
perturbations from the laminar state in all modes (components of x).

3.4 Cossu’s Necessary Condition

Cossu (2005) gives a necessary condition for an initial condition x0 to be that point with
minimal magnitude E(x0) which satisfies

lim
t→∞
E(X(t,x0)) 6= 0, (20)

i.e. for x0 to be what Cossu had called the minimal seed. Following his argument, consider
a candidate x0 for the minimal seed, and perturb it by following its orbit forward for a
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short time ∆t. The perturbation energy, in a Taylor series expansion, is

E0(∆t) ≡ E(X(∆t,x0)) = E0(0) + ∆t

(
dE0

dt

∣∣∣∣
∆t=0

)
+

∆t2

2

(
d2E0

dt2

∣∣∣∣
∆t=0

)
+O(∆t3). (21)

If dE0
dt

∣∣∣
∆t=0

< 0, then E(X(∆t,x0)) < E(x0). So X(∆t,x0), since it shares an orbit with

x0, must also satisfy (20), and hence x0 is not the minimal seed. Similarly if dE0
dt

∣∣∣
∆t=0

> 0,

then X(−∆t,x0) shows that x0 is not the minimal seed. Therefore, it is necessary that the
minimal seed xMS must satisfy

dE(X(t,xMS))

dt

∣∣∣∣
t=0

= 0 and
d2E(X(t,xMS))

dt2

∣∣∣∣
t=0

≥ 0 (22)

This argument also applies when finding the minimal seed when the edge contains a
weak component, i.e. when the minimal seed is on the stable manifold of, in this case, the
lower branch point: xMS ∈ SM(xLB). But note, however, that this argument does not
apply so easily when searching for the NLOP subject to E(x0) equal to some specified d.

These ideas afford us a way to check our results. First, for the W97 model and any
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other in which the non-linear terms are energy preserving,

d

dt

(
1

2
E(x)2

)
=

1

2

d

dt
x · x = x · (Lx) + x · (N(x)) = x · (Lx). (23)

This measure of the error is immediately calculable and shown in Figure 11, scaled by
xMS · xMS , over the range of R tested. That there is no particular pattern suggests the
error is due to numerical noise.

However, what is an acceptable magnitude for the above error? If we shift xMS along
its orbit by a small time ∆t, then E2/2 will change by approximately ∆t xMS · (LxMS).
But the size of ∆t is presently unknown: too large a ∆t and higher order terms in (21)
will become significant. Thus, for a given R and estimate of xMS , we follow the orbit from
xMS backwards, or forwards, in time until dE/dt = 0 is had, and therefore a more minimal
xMS is found. Carrying this out on the xMS for R = 120 manages to reduce |xMS | by only
5 · 10−12, or 2 · 10−11 for R = 800, or 2 · 10−13 for R = 2000, suggesting our estimate of xMS

is quite accurate.
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Figure 11: (xMS · (LxMS)) / (xMS ·xMS) as a function of R. Deviations from zero indicate
error in the estimation of xMS .

4 Conclusion

We have undertaken a search, across a range of Reynolds numbers R, for the minimal seed in
the low-dimensional model of W97. One previous attempt (Cossu, 2005) at this was made.
Cossu kindly shared his data with us in private communication, from which we discovered
that his results for the minimal seed are in fact the least distance from the origin (the laminar
flow state) to the boundary of the basin of attraction of the upper branch fixed point (a
flow state that exists within turbulence yet itself is stable). The latter marks the (“strong”)
edge of the basin of attraction of the laminar fixed point, separating orbits that eventually
return to the laminar flow state from those that never return. However, we have shown
that in the W97 model there exists a boundary that is internal to the basin of attraction of
the laminar fixed point: this so-called “weak” edge separates orbits that both return to the
laminar flow state given sufficient time but do so by qualitatively different routes: orbits
below this “weak” edge return fairly directly to the origin, while orbits above undergo a
circuitous route that must wind around the upper branch fixed point before returning to
the origin. The latter orbit, it would be said, did indeed transition to turbulence, despite
that it ultimately relaminarizes. Thus the true minimal seed lies on this “weak” edge, and
is in fact smaller than any point on the “strong” edge. We have found a more minimal seed
than was previously known.

We have applied the relatively new non-linear optimization technique, reviewed by Ker-
swell et al. (2014). In this problem, the demarcation between states that are above and those
that are below the weak edge is more subtle than between states that are above or below
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the strong edge in which the demarcation is simply whether the orbit eventually relaminar-
izes. This marks new territory for this optimization technique and some modifications were
required.

Considering the magnitudes of the minimal seeds we found over a range of R, our
results support the hypothesis for a R−1 scaling law of the minimal seed in the W97 model.
However, we discovered an even better scaling can be obtained if an additional piece of
information is used: the magnitude of the lower branch point. Now, the minimal seed is the
point on the stable manifold of the lower branch point closest to the origin. At large R the
lower branch point is relatively insensitive to increases in R, and the decreasing minimal
seed with increasing R is due to this stable manifold shifting closer to the origin. At finite
R however, the lower branch point moves towards the origin with increasing R, translating
its stable manifold closer to the origin along with it. This shifting of the lower branch point,
it seems, causes the minimal seed to decrease somewhat faster than R−1. In fact, we found
that the ratio of the lower branch point to the minimal seed was exceptionally linear with
R, leading to a new scaling for the minimal seed that goes as the product of the magnitude
of the lower branch point with R−1. The agreement of this scaling law with our results is
quite encouraging, but whether such a scaling law is unique to the particular model studied
here is not presently known.
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