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1 Introduction

One of the challenges in studying physical systems that exhibit complex temporal (or spatio-
temporal) dynamics is to obtain rigorous quantitative predictions of the system’s behaviour.
Given that rigorous, closed-form solution of the governing equations are not generally avail-
able, an interesting problem is to quantify the average properties of the system, described by
an observable function ϕ of the system’s state x. Note that x may be infinite-dimensional
and depend on position s and time t. Specifically, one is interested in estimating the value
of

〈ϕ(x)〉 = lim
T→∞

1

T

∫ T

0
ϕ[x(t)] dt (1)

or, for spatially-extended systems over a domain Ω with measure µ(Ω),

〈ϕ(x)〉 = lim
T→∞

1

T

1

µ(Ω)

∫ T

0

∫
Ω
ϕ[x(s, t)] dsdt, (2)

where we assume that the long-time limits exist. Assuming that the system has only one
attracting set of dynamical interest (either a stable equilibrium, a periodic orbit or a strange
attractor), this amounts to computing the time-average of ϕ as the system evolves on the
attractor, irrespective of the specific initial condition.

Problems of this type have received increasing interest in recent years, focussing mainly
on spatially extended systems described by partial differential equations (PDEs) and leading
to the development of a variational technique known as the “background method” [4]. The
method is based on the optimisation of a quadratic functional of the state variable, denoted
by V (x), that allows the derivation of rigorous bounds for 〈ϕ〉 (either upper or lower); in
some cases, V can be interpreted as a Lyapunov function [2]. Classical applications of the
background method include the estimation of the net turbulent heat transport in Rayleigh-
Bénard convection [6, 7] and the computation of rigorous bounds on the energy dissipation
in shear flows [5, 9]. Similar techniques can also be applied to finite-dimensional systems
exhibiting chaotic behaviour, such as truncated low-order models of Rayleigh-Bénard con-
vection including the well-known Lorenz system [14, 15].

An alternative approach to derive rigorous bounds for finite-dimensional systems with
polynomial dynamics has been proposed recently [3]. The method, introduced in the con-
text of fluid flows [3], is based on Sum-of-Squares (SOS) polynomial optimisation and allows



the construction of higher-than-quadratic Lyapunov-type functionals, generalising the back-
ground method.

Whilst the bounds obtained by these methods are rigorous and hold irrespectively of
the system’s initial condition, they do not generally represent the time averages observed
in experiments or numerical simulations accurately. This is usually because the system
possesses at least one unstable solution xu(t)— a fixed point or a periodic orbit — for
which the rigorous bounds obtained with the aforementioned techniques are sharp; yet, xu
is never observed in practice since the real system is always subject to small perturbations.
If a neighbourhood U of xu is known to not belong to the system’s attractor, a possible
solution to this problem is to directly remove U from the analysis. Another solution, that in
principle does not require any a priori knowledge of xu, is to model the physical disturbances
by adding a stochastic forcing term of strength ε to the dynamical system [3].

In this work, we first review some of the ideas introduced in [3] in the context of a general
dynamical system with polynomial dynamics. We then investigate how the influence of an
unstable solution on the estimates of 〈ϕ〉 obtained with SOS optimisation can be removed.
We will limit ourselves to unstable fixed points and develop the two approaches outlined
above for systems with a repelling fixed point; we will not consider the case of saddle points
or unstable limit cycles. We will also illustrate how these ideas work in practice by applying
them to the well known Van der Pol oscillator.

2 Bounds Using SOS Optimisation: A Review

To make this work self-contained, we start by reviewing the ideas presented in [3]. Consider
the dynamical system

ẋ = f(x), x ∈ Rn (3)

and assume that the trajectories x(t) are uniformly bounded as t → ∞ regardless of the
initial condition x0. Suppose there exists a function V [x(t)], continuous in x, and a constant
L such that

V̇ + ϕ− L ≥ 0 (4)

for all possible values of the state x. Since any trajectory x(t) is uniformly bounded as
t→∞, so is V ; hence, time averaging the last expression we obtain

〈ϕ〉 ≥ L. (5)

An upper bound U can be found in a similar way by reversing the inequality sign, and we
summarise the above in the following:

Proposition 2.1. Let ẋ = f(x) be a dynamical system whose trajectories are bounded at
all times and let ϕ(x) be an observable. If there exist continuous functions Vu(x), Vl(x),
and constants U , L such that

Du(x) := f · ∇Vu + ϕ− U ≤ 0, ∀x ∈ Rn, (6a)

Dl(x) := f · ∇Vl + ϕ− L ≥ 0, ∀x ∈ Rn, (6b)

then
L ≤ 〈ϕ〉 ≤ U. (7)



The functions Vu and Vl (which we will occasionally refer to as storage functions) that
achieve given bounds U and L may not be unique; yet, as one could expect, constructing
them is generally a challenging task. However the problem is greatly simplified when f
and ϕ are polynomials of the states xi, i ∈ {1, ..., n}. In fact, if Vu and Vl are chosen to be
polynomials, so areDu andDl, hence (6a) and (6b) amount to verifying the non-negativity of
a polynomial expression. Whilst this is an NP-hard problem, the computational complexity
can be significantly reduced by replacing the conditions Dl(x) ≥ 0 and −Du(x) ≥ 0 (note
the minus sign) with the stronger conditions that Dl and −Du admit a SOS decomposition,
i.e. that there exists families of polynomials {pi(x)}Mi=1 and {qi(x)}Ni=1 such that

Du(x) =

M∑
i=1

pi(x)2,

Dl(x) =
N∑
i=1

qi(x)2.

(8)

These conditions can be formulated in terms of linear matrix inequality (LMI) constraints,
a particular type of convex constraint; a brief explanation is given in Appendix A. Optimi-
sation problems with LMI constraints, known as semidefinite programmes (SDPs), can in
turn be solved efficiently with a number of software packages, e.g. YALMIP [10] and SOS-
TOOLS [12]. Consequently, polynomial storage functions and the corresponding bounds U
and L may be constructed systematically by solving the SoS optimisation problems

min
Vu,U

U

such that U − f · ∇Vu − ϕ ∈ Σ
(9)

and
max
Vl,L

L

such that f · ∇Vl + ϕ− L ∈ Σ
(10)

where Σ denotes the set of SOS polynomials and the optimisation is over the coefficients of
the polynomials Vu and Vl.

3 Improved Bounds for Deterministic Systems

As mentioned in the introduction and as noted in [3], the existence of unstable invariant
trajectories xu(t) (equilibria and/or limit cycles) poses a problem if one is interested in
bounds that accurately describe the time averages measured in experiments. This is because
the bounds U and L obtained from Proposition 2.1 must hold for any possible trajectory
of the system, including unstable invariant solutions. To illustrate the idea, let xu be an
unstable equilibrium, such that f(xu) = 0; for definiteness, assume that ϕ(xu) is much lower
than the observed time average 〈ϕ〉. Then, any lower bound L cannot coincide with 〈ϕ〉
since evaluating (6b) at xu yields

Dl(xu) = ϕ(xu)− L ≥ 0, (11)



implying that L ≤ 〈ϕ(xu)〉 = ϕ(xu) < 〈ϕ〉. Similarly, integrating both sides of the inequality
Dl(xu) ≥ 0 along an unstable limit cycle xu(t), the term f ·∇Vl vanishes by periodicity and
one obtains

L ≤ 〈ϕ[xu(t)]〉 (12)

i.e. the bound is constrained by the time average of ϕ over the periodic orbit. The same
problem arises for any upper bound U if ϕ(xu) > 〈ϕ〉.

One possible solution is to enforce (6a) and (6b) everywhere except for a neighbourhood
U of an unstable invariant solution xu. This relaxation can indeed be carried out rigorously
and implemented if xu is known and if all trajectories starting at the perturbed position
x0 = xu + δx permanently leave U after a finite time τ = τ(x0).

Let us proceed formally, and assume that the dynamical system (3) has global attractor
A and an unstable solution xu. Then, B = Rnr {xu} is the basin of attraction of A. Since
all trajectories leave U , moreover, T = RnrU is an absorbing domain. Clearly, A ⊆ T ⊆ B
and for any trajectory starting inside B one has

〈ϕ〉 = lim
T→∞

1

T

∫ T

0
ϕ[x(t)] dt = lim

T→∞

1

T

∫ T

τ
ϕ[x(t)] dt (13)

i.e. the time average of ϕ is completely determined by the dynamics inside T . The same
result applies if xu is a saddle by letting U be a neighbourhood of the entire stable manifold
Ws and B = Rn rWs. A trivial extension of Proposition 2.1 is therefore

Proposition 3.1. Let ẋ = f(x) be a dynamical system in Rn, let T be a bounded absorbing
domain containing an attractor A and let B be the basin of attraction of A. If there exist
continuous functions Vu(x), Vl(x), and constants U , L such that

Du(x) = f · ∇Vu + ϕ− U ≤ 0, ∀x ∈ T , (14a)

Dl(x) = f · ∇Vl + ϕ− L ≥ 0, ∀x ∈ T , (14b)

then for any initial condition x0 ∈ B

L ≤ 〈ϕ〉 ≤ U. (15)

The problem of eliminating the influence of xu on the bounds therefore reduces to that
of finding a suitable absorbing domain for the attracting set. This is generally not a trivial
task; however, when f(x) is polynomial an absorbing domain T may be constructed using
SOS techniques [16]. Moreover, T is generally a semi-algebraic set; for clarity, let us assume
that T = {x | g(x) ≥ 0} for some polynomial g.

Equation (14b) then requires that Dl(x) ≥ 0 when g(x) ≥ 0 (a similar argument holds
for (14a) and will not be considered for brevity). It is easy to see that this condition is sat-
isfied if there exists a non-negative polynomial s(x) such that Dl(x)−s(x)g(x) ≥ 0. Whilst
not necessary, this approximation — known as the generalised S-procedure [16, Lemma 2.1]
— allows the formulation of two SOS optimisation problems from Proposition 3.1 as

min
Vu,U,s

U

such that U − f · ∇Vu − ϕ− s g ∈ Σ

s ∈ Σ

(16)



and
max
Vl,L,s

L

such that f · ∇Vl + ϕ− L− s g ∈ Σ

s ∈ Σ

(17)

The S-procedure generalises to more complicated semi-algebraic absorbing domains; more
details and examples can be found in [16]. However, its applicability relies on the knowledge
of an absorbing domain that does not contain unstable solutions and that is tractable using
SOS techniques. This may not be the case for saddle point with a complicated stable
manifold, or if the unstable trajectory cannot be separated from the attractor; an example
combining both issues is the unstable saddle equilibrium at the origin in the well-known
Lorenz system [17].

4 Bounds for Stochastically-Driven Systems

An alternative approach to eliminate the influence of unstable point on the bounds, proposed
by Chernyshenko et al. [3], is to model the external disturbances that affect any real system
with a small-amplitude stochastic forcing term. If the system is stochastically stable (in
the sense of [18]), in fact, one can infer bounds for the original, unperturbed system by
studying the vanishing-noise limit.

In Section 4.1, we extend the initial ideas of [3] by considering a stochastic dynamical
system forced by finite-amplitude noise, and show how to determine bounds on its statistical
properties using SOS programming. Our analysis applies not only in the small-noise limit,
but to system which are inherently stochastic. In Section 4.2, we will then study the problem
of computing rigorous bounds in the specific case of vanishing noise strength.

4.1 Bounds for system with finite noise

Consider the stochastic dynamical system driven by additive white noise

ẋ = f(x) +
√

2εσξ, (18)

where ξ is a standard Wiener process and x, ξ ∈ Rn. The constant matrix σ ∈ Rn×n
describes the relative effect of each ξi on each state xi, while the overall noise strength ε
represents the balance between the deterministic and the stochastic dynamics.

This system can be interpreted as a stochastic perturbation of (3), and its state x (now
a random variable) is described by the system’s probability density function (PDF) ρ. We
remind the reader that ρ must be a non-negative distribution such that ‖ρ‖L1 = 1. We
assume that the system’s trajectories remain bounded at all times, and that a statistical
equilibrium is reached so the PDF satisfies the steady Fokker-Planck equation

∇ · (εD∇ρ− fρ) = 0, (19)

where D = σTσ. The stationary expectation of an observable ϕ(x) can be computed as

〈ϕ〉ε =

∫
Rn

ρ(x)ϕ(x)dx (20)



where we have introduced a subscript ε to indicate that the expectation depends on the
overall noise strength. Clearly, L is a lower bound for 〈ϕ〉ε if∫

Rn

ρ (ϕ− L) dx ≥ 0 (21)

Enforcing (19) explicitly with a Lagrange multiplier function Vl(x) and integrating by parts
we obtain ∫

Rn

ρ [∇ · (εD∇Vl) + f · ∇Vl + ϕ− L] dx

+ lim
R→∞

∫
‖x‖=R

(ε Vl D∇ρ− ε ρD∇Vl − ρ Vl f) · ν(x) dS ≥ 0
(22)

where ν(x) is the outwards unit normal to the sphere ‖x‖ = R and dS is the surface
element. Since we have assumed that the system’s trajectories are bounded when ε = 0, it
is reasonable to expect that ρ decays exponentially at infinity, so that the boundary term
vanishes if Vl does not grow too quickly. Thus, one is left with the condition∫

Rn

ρ [∇ · (εD∇Vl) + f · ∇Vl + ϕ− L] dx ≥ 0. (23)

Since ρ is non-negative and Vl is arbitrary (up to some controlled-growth conditions at
infinity), one could prove that L is a lower bound for 〈ϕ〉ε if there exists Vl such that the
term in brackets is everywhere non-negative. Applying the same argument after reversing
the inequality sign gives sufficient conditions for an upper bound U on 〈ϕ〉ε, and we conclude
the following:

Proposition 4.1. Let ẋ = f(x) +
√

2εσξ, with x, ξ ∈ Rn and σ ∈ Rn×n, be a stochastic
system for which a steady PDF exists and let D = σTσ. If there exist functions Vu and Vl
such that

lim
R→∞

∫
‖x‖=R

(εVuD∇ρ− ερD∇Vu − fρVu) · ν(x) dS(x) = 0 (24a)

lim
R→∞

∫
‖x‖=R

(εVlD∇ρ− ερD∇Vl − fρVl) · ν(x) dS(x) = 0 (24b)

and

ε∇ · (D∇Vu) + f · ∇Vu + ϕ− U ≤ 0 ∀x ∈ Rn, (25a)

ε∇ · (D∇Vl) + f · ∇Vl + ϕ− L ≥ 0 ∀x ∈ Rn, (25b)

then the stationary expectation of the random variable ϕ(x) is bounded by

L ≤ 〈ϕ〉ε ≤ U. (26)

Note that the same result was derived in [3] using an alternative approach and fixing σ to
be the identity matrix. For a given noise amplitude ε, a SOS relaxation of inequalities (25a)
and (25b) yields the optimisation problems for the bounds

min
Vu,U

U

such that U − ε∇ · (D∇Vu)− f · ∇Vu − ϕ ∈ Σ
(27)



and
max
Vl,L

L

such that ε∇ · (D∇Vl) + f · ∇Vl + ϕ− L ∈ Σ
(28)

Note that we have assumed that the boundary terms vanish when Vu and Vl are polynomials,
which is equivalent to the statement that all moments of the distribution ρ order up to the
degree of the storage functions exist.

Furthermore, note that inequalities (25a) and (25b) are the same as (6a) and (6b),
respectively, with the addition of a second order diffusive term. Consequently, a point xu
such that f(xu) = 0 — corresponding to a fixed point of the deterministic system obtained
for ε = 0 — does not constrain the bounds on 〈ϕ〉ε if Vu and Vl have large enough gradients.

4.2 Bounds for system with vanishing noise

Let us assume that a stochastic system is stable in the sense of [18]. Since stochastic bounds
are not constrained by fixed points of the corresponding deterministic system (i.e.for ε = 0),
the limit ε → 0 can be studied to infer bounds on the corresponding deterministic system
that are not affected by unstable equilibria.

Unfortunately, in practice polynomial storage functions and the SoS optimisation prob-
lems (27) and (28) give tight bounds only when the noise strength ε is relatively large. To
illustrate the reason of this limitation, let us assume without loss of generality that xu = 0
and, for definiteness, consider ϕ = ‖x‖2. To achieve a lower bound greater than the trivial
result L = 0, say L ∼ O(1), one needs

ε∇ · (D∇Vl) ∼ O(1) (29)

at least in a region near the origin, where f(x) and ϕ(x) are almost negligible. Similar
considerations can be made for Vu. When ε is small, large enough gradients can only
be achieved if Vu and Vl are polynomials of very high degree, making the SOS problem
numerically intractable.

One would therefore like a parametrisation of Vu and Vl with ε that satisfies (29) in a
neighbourhood of the unstable states, and that is suitable for polynomial optimisation.

It turns out that an appropriate functional form to study the case ε→ 0 can be derived
if the unstable solution is a repelling equilibrium. Henceforth, we will assume that the
deterministic system ẋ = f(x) has a repelling (focus or node) fixed point at x = 0, i.e. all
eigenvalues of the Jacobian J0 ∈ Rn×n of f at the origin have positive real part. Without
loss of generality, we will also assume that ϕ(0) = 0; this can always be achieved with
an appropriate shift in ϕ. For definiteness, we will consider the problem of finding a lower
bound when 〈ϕ〉 > 0 and the bound is constrained by the unstable equilibrium at the origin;
the analysis can be trivially extended to upper bounds.

Let us start by assuming that Vl is chosen so that L = 〈ϕ〉ε exactly. Repeating the
derivation of Proposition 4.1 with an equality sign, we see that Vl satisfies

ε∇ · (D∇Vl) + f · ∇Vl + ϕ− 〈ϕ〉ε = 0, (30)

with boundary conditions described by (24b). When ε → 0, this is a singularly perturbed
boundary value problem, and the method of matched asymptotic expansions can be used



to study the behaviour of Vl. Rather than determining the solution Vl, however, we are
interested in determining its scaling with ε and its approximate functional form near the
origin, where we expect large gradients.

The appropriate “inner layer” coordinate stretching is x = ε1/2x̂, where x̂ ∼ O(1) as
ε→ 0. We therefore expect that, near the origin, we can approximate Vl = Vl(ε

−1/2x).
To determine a suitable functional form, instead, let us consider the intermediate region

ε1/2 � xi � 1, i ∈ {1, ..., n}, where, to leading order, equation (30) reduces to

xT JT0 ∇Vl = 〈ϕ〉ε. (31)

Introducing a characteristic coordinate s such that

dx

ds
= J0 x, (32)

one has
Vl = 〈ϕ〉ε s+ const. (33)

Moreover, if vi and λi denote each of the n eigenvectors and eigenvalues of J0 (with <{λi} >
0 since the origin is a repellor), the solution of (32) can be written as

x =
n∑
i=1

Aivie
λi s (34)

for some constants Ai, suggesting that s should be some logarithmic function of x.
Finally, since x = 0 is a repelling point, it is not unreasonable to expect that there

exists a linear coordinate transformation x → u(x) that makes the dynamics near the
origin rotationally invariant; this situation is sketched in Figure 4.2 for a 2D system. In
this case, one expects Vl to depend only on the (squared) radius ζ(x) = ‖u(x)‖2. Note that
ζ is a homogeneous, positive definite quadratic form of x, i.e.

ζ(x) = xTZx, Z � 0 (35)

for a symmetric matrix Z to be chosen appropriately.

x
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Figure 1: Sketch of trajectories for a 2D system in the original x = (x, y) coordinates (left)
and the transformed u(x) = (u(x), v(x)) coordinates.



Combining these heuristic arguments, we suggest that

Vl(x) ≈ α log[ζ(x)] (36)

in the intermediate layer, for some constant α. Consequently, we argue that an appropriate
form for Vl is

Vl(x) = α log[ε+ ζ(x)] + Pd(x) (37)

Here, ε has been added to the argument of the logarithm to regularise Vl at x = 0 and
maintain the correct balance of ε and x in the inner layer, while Pd is a polynomial of
degree d that approximates the outer solution of (30). Moreover, this ansatz could be seen
as the generalisation to multiple dimensions of the asymptotic results for one-dimensional
systems, presented in Appendix B.

Despite not being polynomial, ansatz (37) is suitable for a SOS formulation. In fact we
can substitute

∇V =
α∇ζ
ε+ ζ

+∇Pd

∇ · (D∇V ) = α
∇ · (D∇ζ)

ε+ ζ
− α∇ζ · (D∇ζ)

(ε+ ζ)2
+∇ · (D∇Pd)

(38)

into (30), multiply by (ε+ ζ)2 and gather terms to obtain the polynomial inequality

L(x) := L0(x) + εL1(x) + ε2L2(x) + ε3L3(x) ≥ 0, (39)

where

L0 = αζ (f · ∇ζ) + ζ2 (f · ∇Pd + ϕ− L) ,

L1 = αζ∇ · (D∇ζ)− α∇ζ · (D∇ζ) + ζ2∇ · (D∇Pd) + αf · ∇ζ + 2ζ (f · ∇Pd + ϕ− L) ,

L2 = α∇ · (D∇ζ) + 2ζ∇ · (D∇Pd) + f · ∇Pd + ϕ− L, (40)

L3 = ∇ · (D∇Pd).

Consequently, a lower bound L on 〈ϕ〉ε can be calculated at a fixed, small ε by solving the
optimisation problem

max
Pd,α,L,Z

L

such that L(x) ∈ Σ,

ζ(x) = xTZx, Z � 0.

(41)

Note that when ε becomes small, the terms L1, L2 and L3 represent small perturbations
of L0, which is an augmented version of the inequality constraint (25b) for the ε = 0 case.
In particular, the term αζ (f · ∇ζ) represents the contribution of the large gradients and
allows us to improve the bounds as ε→ 0.

In fact, we can further develop this idea and derive an optimisation problem which is
rigorous in the limit ε→ 0, i.e. such that the computed L is a lower bound for limε→0〈ϕ〉ε.
To show this, let us prove that in this limit (23) holds if L0 ≥ γζ2 for any strictly positive



and arbitrarily small constant γ. In fact, since ζ is quadratic in x, it can be verified that
L0 is the dominant term in L for any fixed x 6= 0. Moreover,

lim
ε→0

εn
∫
‖x‖≥r

ρ(x)
Ln(x)

(ε+ ζ)2
dx = 0, n ∈ {1, 2, 3} (42)

for any finite radius r since we have assumed that ρ decays faster than any polynomial.
Consequently, if L0 ≥ γζ2 then L(x) is positive when ε → 0 at least outside a ball BR of
radius R ∼ ε1/2−η with 0 < η < 1/2. We conclude that∫

RnrBR

ρ [ε∇ · (D∇Vl) + f · ∇Vl + ϕ− L] dx =

∫
RnrBR

ρL
(ε+ ζ)2

dx ≥ 0 (43)

as ε→ 0. Moreover, although the integrand develops a singularity at x = 0 when ε→ 0 it
is possible to show (see Appendix C) that∫

BR

ρ [ε∇ · (D∇Vl) + f · ∇Vl + ϕ− L] dx→ 0 as ε→ 0 (44)

if ρ is bounded on BR as ε → 0 (a reasonable assumption since x = 0 is an unstable
equilibrium of the deterministic system). Therefore, a sufficient condition for L to be a
valid lower bound on 〈ϕ〉ε in the limit of vanishing noise is that L0 ≥ γζ2, i.e. (dropping a
factor of ζ and rearranging)

αf · ∇ζ + ζ (f · ∇Pd + ϕ) ≥ (L+ γ)ζ. (45)

Note that the role of γ is simply to decrease the tightest possible L by an arbitrarily small
constant; consequently, we can drop it from the analysis and determine a rigorous bound L
with the optimisation problem

max
Pd,α,L,Z

L

such that αf · ∇ζ + ζ (f · ∇Pd + ϕ− L) ∈ Σ,

ζ(x) = xTZx, Z � 0.

(46)

Finally, note that ζ is an unknown quadratic form, so the optimisation problem is
bilinear. An optimal ζ (denoted by ζ∗) could be determined using a bilinear SDP solver.
However, since the SOS constraint is homogeneous in ζ, any choice of ζ = βζ∗ for β > 0 is
optimal; this issue may be resolved by adding a constraint on the coefficients of ζ. A simpler
solution is to fix ζ a priori according to the following observation. In a neighbourhood of
the origin where x, y � 1, the SOS constraint becomes, to leading order in x,

αf̃ · ∇ζ − Lζ ≥ 0 (47)

where f̃ = J0 x denotes the linearised dynamics near the origin. Therefore, if L is to be
positive we require

αf̃ · ∇ζ > 0, (48)

i.e. that αζ̇ is positive near the unstable point.



A suitable ζ can be constructed if J0 can be diagonalised. Specifically, let U denote the
matrix of eigenvectors of J0 and Λ be the usual diagonal matrix of eigenvalues, such that

U−1J0U = Λ, (49)

and let w = U−1x. Then, an appropriate choice is

ζ = wTw = xT [U−1]TU−1x, (50)

since near the origin we have

ζ̇ = 2ẋT [U−1]TU−1x

= 2xTJT0 [U−1]TU−1x + h.o.t.

= 2xT [UU−1]T JT0 [U−1]TU−1x + h.o.t.

= 2wT [U−1J0 U]Tw + h.o.t.

= 2wTΛw + h.o.t.,

(51)

Neglecting the higher order terms near x = 0 and recalling that Λ is positive definite since
we are considering a repelling fixed point, we conclude that ζ̇ > 0 and so (48) holds for
α > 0. Note, however, that this is not the only possible choice of ζ; see Appendix E for
more examples.

4.3 Equivalence with the S-procedure

Whilst the vanishing-noise formulation presented above and the S-procedure of Section 3
have been obtained in completely separate ways, they are in fact related. To see this,
consider the inequality

α (f · ∇ζ) + ζ (f · ∇Pd + ϕ− L) ≥ 0 (52)

more carefully. The inequality is satisfied at x = 0; for x 6= 0, divide by ζ, rewrite the first
term as a time-derivative and rearrange the terms to obtain

(f · ∇Pd + ϕ− L) +

(
α

ζ

)
ζ̇ ≥ 0. (53)

Having already noted that α > 0 when ζ is as in (50), we recognise that this is a particular
form of the more general S-procedure

(f · ∇Pd + ϕ− L) + s(x)ζ̇ ≥ 0, (54)

i.e. we are imposing the inequality

f · ∇Pd + ϕ− L ≥ 0 (55)

obtained from Proposition 2.1 outside a region R where ζ̇ > 0. This represents a region of
repulsion for the unstable fixed point, in which ζ acts as an “inverse” Lyapunov function.
Consequently, (52) can be viewed as an application of Proposition 3.1 with T = Rn rR.
Adding noise to a dynamical system with a repelling fixed point and using the logarithmic



ansatz (37) for the storage function Vl is therefore equivalent to carrying out an S-procedure.
Consequently, we expect that the larger the region of repulsion defined by the level sets of
ζ, the better the lower bound L for a given degree of Pd in (37) — an observation that may
assist the construction of a good ζ.

This equivalence could be expected since L0 in (39) does not inherit any noise-related
terms from the full formulation. This is the result of the particular choice (37) of the form
of Vl. If ε is taken as a small but finite value, however, the addition of noise is not equivalent
to the S-procedure. In this case, an alternative form of Vl has to be considered to keep the
influence of noise when ε→ 0.

5 Application to the Van der Pol Oscillator

Let us illustrate how the ideas presented so far can be applied in practice by considering
the Van der Pol oscillator

ẍ− µ(1− x2)ẋ+ x = 0, (56)

or, in state-space representation,

ẋ = f(x), x :=

(
x
y

)
, f(x) :=

(
y

µ(1− x2)y − x

)
. (57)

Here, µ > 0 represents the strength of the nonlinear damping force. We are interested
in finding upper and lower bounds for ϕ = x2 + ẋ2 = x2 + y2 = ‖x‖2, a measure of the total
(potential plus kinetic) energy in the system. As is well known, for any µ the equilibrium
position x = 0 is unstable, and the system settles into periodic oscillations for any initial
perturbation (Figure 2).

5.1 Upper Bound for the deterministic oscillator

Upper bounds on 〈ϕ〉 were computed by solving the optimisation problem (9) for 0.1 ≤ µ ≤ 5
and for a range of polynomial degrees d. We used the SOS module of YALMIP [10] to
transform (9) into a semidefinite program (SDP). Initial numerical experiments showed
that the resulting SDP is ill-conditioned even for modest polynomial degrees, and cannot
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Figure 2: Sample state-space orbit of the Van der Pol oscillator for µ = 1, starting near the
unstable origin and converging to the periodic orbit.



be solved reliably by standard double-precision SDP solvers. We therefore resorted to
the high-precision solver SDPA-GMP [8]; more details and comments on the numerical
implementation can be found in Appendix D.

The upper bounds computed for d = 6, d = 8, d = 10 and d = 12 are shown in Figure 3,
alongside the values of 〈ϕ〉 obtained by direct numerical integration of (56). As one would
expect, the quality of the bound increases with d; the bounds are within approximately
5% of the simulated value for all values µ considered when d = 10, and almost sharp for
d = 12. The contours of Vu, shown in Figure 4, suggest that better bounds are achieved
when the storage function has negative peaks concentrated near the corners of the periodic
orbit, where the system evolves slowly. This explains why higher polynomial degrees are
necessary to achieve sharp bounds at large values µ, for which the periodic orbit becomes
more elongated.

5.2 Lower bound for the deterministic oscillator

For the deterministic system, the trivial lower bound 〈ϕ〉 ≥ 0 cannot be improved using
Proposition 2.1, since it is saturated by the equilibrium at the origin. In order to apply
Proposition 3.1 and the S-procedure to find a tight lower bound for trajectories attracted
to the periodic orbit, we need to construct an absorbing domain that does not contain
x = 0. As already mentioned in Section 3, SOS optimisation can be used to construct
absorbing domains that well approximate the periodic orbit [16]; however, this involves
further complication and is beyond the scope of the present investigation. Instead, we will
only consider the simple family of domains Tr = {(x, y) | g(x, y) = x2 + y2 − r2 ≥ 0} for
r ≤ 1. To show that these are indeed absorbing domains, let us reverse the direction of
time in (57) and consider the energy E = x2 + y2. One has

Ė = 2xẋ+ yẏ

= −2xy − 2µy2(1− x2) + 2xy

= 2µy2(x2 − 1)

(58)

µ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

U

3.5

4

4.5

5

5.5

6

Simulation
± 5% interval
Degree 6
Degree 8
Degree 10
Degree 12

Figure 3: Upper bound for polynomial Vu of varying degree as a function of µ vs. the exact
value of 〈ϕ〉 and the ±5% accuracy intervals.



Figure 4: Contours of the optimal Vu for varying polynomial degree. Top: µ = 1. Bottom:
µ = 3. The system’s periodic orbit (thick black line) is also shown.

meaning that E ≤ 0 when |x| ≤ 1. Therefore, any contour of E which is contained in the
strip |x| ≤ 1 defines the boundary of a region of attraction of the origin for the time-reversed
oscillator. One concludes that in the original system all orbits will leave the ball x2+y2 < r2

if r ≤ 1, i.e. Tr is an absorbing domain.
An immediate corollary of this simple proof is the lower bound 〈ϕ〉 ≥ 1. While this is

already a step forward, more significant improvements and even sharp bounds on 〈ϕ〉 can
be obtained by solving (17).

Initial numerical experiments revealed that it is sufficient to define Vl using monomials
of even order only; this is a useful simplification, as it reduces the computational effort
and improves the numerical conditioning of the SDP. In all cases, the degree of the S-
procedure multiplier s was fixed to be the same as Vl for simplicity.

Figure 5 illustrates the lower bounds computed for storage functions Vl of degree 8,
10 and 12 using the two different absorbing domains T0.5 and T1. Because T1 is a better
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Figure 5: Lower bound computed with the S-procedure for d = 8, 10, 12 using the absorbing
domains T0.5 (left) T1 (right).

approximation to the periodic orbit than T0.5, it is not surprising that better bounds are
obtained using the former for a given polynomial degree. For the same reason, the bounds
worsen as µ increases since the periodic orbit becomes more elongated. We expect that
if more sophisticated domain of attractions were computed, for example using the SOS
techniques in [16], sharper bounds could be obtained for large µ. Alternatively, bounds of
comparable accuracy could be obtained with a lower polynomial degree, reducing the cost
of the optimisation.

5.3 Bounds for a stochastic Van der Pol oscillator

Let us now add a stochastic forcing term of strength
√

2ε to the deterministic Van der Pol
differential equation, i.e. consider

ẍ− µ(1− x2)ẋ+ x =
√

2ε ξ. (59)

where ξ denotes white noise. In state-space formulation, this becomes

ẋ = f(x) +
√

2ε

(
0
ξ

)
(60)

Using the notation of Section 4, this corresponds to considering

σ =

(
0 0
0 1

)
. (61)

First, let us try to compute upper and lower bounds assuming that Vu and Vl are
polynomials. Figure 6 shows the results obtained after solving (27) and (28) for values of
ε ranging from 10−6 to 1 and polynomial degrees 8, 10 and 12. All results were obtained
for µ = 1 and defining Vu and Vl using monomials of even order only. The Figure also
shows some preliminary values for exact expectation, computed after solving the stationary
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Figure 6: Bounds for the stochastic Van der Pol oscillator for fixed finite noise amplitude.
The deterministic (ε = 0) value of 〈ϕ〉 is shown by the dashed line. Left: upper bound.
Right: lower bound.

Fokker-Planck equation (19) using a low-order finite difference method; the steady state is
achieved by time-stepping an initial distribution using an implicit Euler scheme, employing
operator splitting between x and y derivatives (that is, half a time-step is taken ignoring
any derivative in y, then another half time-step ignoring any derivative in x).

As far as the upper bounds are concerned, they are effectively indistinguishable from
the value obtained for the deterministic oscillator in Section 5.1 for ε < 10−3 approximately
and for polynomial degrees larger than 8. This is not surprising, since (27) reduces to (9)
as ε → 0 when Vu is a polynomial. At larger ε, the bounds are reasonably accurate and
capture the increase in 〈ϕ〉ε. Such an increase is indeed consistent with the stronger effect
the stochastic forcing has on the deterministic dynamics, suggesting that the well-defined,
localised periodic orbit is “smeared” by the noise.

Regarding the lower bound, instead, the addition of noise is effective only when ε is
relatively large; for all polynomial degrees, the bound L decreases to 0 as ε → 0. This
is consistent with the observation made in Section 4 that a polynomial Vl of fixed degree
cannot have large enough gradients at x = 0 to overcome the decrease in ε.

The numerical difficulties at small ε can be resolved if, instead of a polynomial, Vl is
as in (37). For simplicity, rather than trying to determine an optimal ζ, we prescribed
ζ = x2 − xy + y2 so that the optimisation problem (41) is convex and can be solved using
standard SDP solvers. It can be verified that this choice of ζ satisfies (48) for µ = 1; more
details can be found in Appendix E. Figure 7 shows the lower bounds computed using (41)
for this choice of ζ, µ = 1 and polynomials Pd of degree d = 8, d = 10 and d = 12.
The improvement compared to the results obtained with a polynomial storage function
are significant, and, for d = 12, L is indistinguishable from the deterministic bound when
ε < 10−3 approximately. Moreover, we expect that more accurate bounds could be obtained
at large ε by increasing the degree of Pd.

Finally, we can compute lower bounds in the limit ε→ 0 by solving optimisation prob-
lem (46). We fixed the degree of Pd to 12, and considered different quadratic forms ζ, shown
in Table 1. The quadratic forms ζ2 and ζ3 were constructed using the eigenvectors of the
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Jacobian J0 (Appendix E); the different formulae for µ ≤ 2 and µ > 2 are due to a change
from complex to real eigenvectors. Instead, ζ1 was obtained by arbitrarily fixing µ = 1 in
ζ2. It can be verified that ζ2 and ζ3 satisfy (48) near the origin except when µ = 2 (the
“critical damping” condition), while ζ1 satisfies (48) only for 4 − 2

√
3 < µ < 4 + 2

√
3; see

Appendix E for more details.
The lower bounds on 〈ϕ〉, computed as a function of µ, are shown in Figure 8. Overall,

Table 1: Choices of ζ for the Van der Pol oscillator.

µ ≤ 2 µ > 2

ζ1 x2 − xy + y2 x2 − xy + y2

ζ2 x2 − µxy + y2 µx2 − 4xy + µy2

ζ3 x2 − µxy + y2 (µ2 − 2)x2 − 2µxy + 2y2
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Figure 8: Left: lower bounds computed from (46) for the choices of ζ shown in Table 1 and
deg(Pd) = 12. Right: best lower bound compared to numerical integration of (57).
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our bounds are well within ±5% of the exact value of 〈ϕ〉; the poor performance of ζ1 for
µ ≤ 4−2

√
3 ≈ 0.54 and of ζ2, ζ3 near µ = 2 was expected based on our previous comments.

Moreover, ζ3 significantly outperforms the other choices for µ > 3 approximately. This can
be understood by recalling the equivalence of the logarithmic ansatz and the S-procedure:
as shown in Figure 9, the contours of ζ3 define a better region of attraction for the periodic
orbit. Finally, the bounds worsen as µ increases for a fixed polynomial degree and for a
fixed ζ, similarly to what was observed for the upper bounds of Section 5.1 and for the lower
bounds obtained with the S-procedure in Section 5.2. This could be resolved by increasing
the degree of the polynomial Pn in (37) or by a more careful choice of ζ.

6 Further Comments

Although we have tried to keep our work as general as possible, we remark that the analysis
of Section 4.2 is only appropriate to eliminate the influence of repelling fixed points; we
have not considered the more common cases in which the bounds are constrained by saddle
points or unstable limit cycles.

Unfortunately, many systems exhibiting interesting dynamics (such as the Lorenz sys-
tem) possess unstable saddle points, and one cannot generally expect to successfully apply
the techniques we have presented. For example, we expect that the logarithmic functional
form we have proposed in Section 4 will not generally be suitable for systems with an
unstable saddle point. The reason is that using the logarithmic ansatz is equivalent to im-
plementing an S-procedure, but a region of repulsion around a saddle point cannot generally
be defined without including in it the entire stable manifold — normally, a convoluted set
that cannot be easily approximated by polynomials. This was confirmed by a brief numerical
investigation on the simple system

ẋ = (x+ y)(4− x2 − y2)

ẏ = y(2− x2 − y2)
(62)
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which has a repelling fixed point at the origin, two saddle points at (±1,∓1) and two stable
equilibria at (±2, 0) as shown in Figure (10); tight bounds on ϕ = y could not be obtained
after adding noise to the system even with a logarithmic storage function.

Moreover, we expect that storage functions of impractically high degree will be needed
even for noise of relatively large amplitude, making the SOS optimisation problem in-
tractable. This is because the trajectories in the stable manifold will still try to approach
the saddle point, forced by the deterministic component of the flow. Then, one expects that
each of f ·∇Vu and f ·∇Vl in inequalities (25a) and (25b) will have opposite signs along the
stable and unstable manifolds near the saddle point, unless ∇Vu and ∇Vl can change sign
rapidly. This would require polynomial approximations of large degree.

Future work should therefore concentrate on determining an appropriate scaling and
functional form for Vu and Vl for systems with saddle points and unstable periodic orbits.

Finally, we remark that the practical implementation of the SOS problems obtained
throughout this work poses some technical challenges. Specifically, polynomials of high
degree are required to compute relatively sharp bounds, significantly increasing the size
of the SDP problems to be solved. This poses a limit on the dimension of the dynamical
systems that one can study at a reasonable computational cost and time. Moreover, all SDP
problems considered in this work were ill-conditioned, and the results we have presented
could only be obtained using computationally expensive high-precision algorithms. Such
numerical difficulties should be addressed more systematically in the future if, as it seems
inevitable, the theoretical development of appropriate scaling arguments for the storage
functions is to be reliably assisted by numerical investigations.

7 Conclusion

To summarise, we have demonstrated that bounds for long-time-averaged properties of sys-
tems with polynomial dynamics can be obtained by constructing suitable storage functions
using SOS optimisation. Moreover, we have shown that the influence of unstable equilibria
on the bounds can be removed via the S-procedure (if a suitable absorbing domain can be
defined), or, extending the ideas of [3], by adding noise to a system.



In particular, whilst the formulation of Section 4 holds for a general stochastic system
with finite noise strength, a key development is the rigorous formulation of the optimisation
problem in the vanishing noise limit for repelling fixed points. If the system is stochastically
stable, rigorous bounds for a deterministic system can be inferred when Proposition 3.1
and/or the S-procedure cannot be applied. In this context, we have demonstrated that
simple polynomial storage functions are not appropriate to prove bounds that are insensitive
to unstable solutions as ε→ 0, and a suitable asymptotic scaling of Vu and Vl with ε should
be used.

Despite our successful application of the ideas we have presented to a simple example
(the Van der Pol oscillator), some theoretical questions — such as whether it is possible to
remove the influence of saddle points on the bounds — and some practical challenges in
the implementation of the SOS optimisation remain unresolved. We anticipate that these
issues will be the subject of future work, if rigorous bounds are to be obtained for physical
systems of practical interest.
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A Introduction to SOS Optimisation

For simplicity, let us consider the problem of determining whether a polynomial p(x) of
degree 2N , i.e.

p(x) =
2N∑
n=0

cn x
n (63)

is positive for any x ∈ R (the same argument can be generalised to multiple dimensions; for
more details, see [13, 11, 1] and references therein). Clearly, a sufficient condition is that p
admits a SOS decomposition, i.e. there exists a family of polynomials {gi(x)}Mi=0 such that

p(x) = g0(x)2 + g1(x)2 + . . .+ gM (x)2. (64)

It can be shown that this is equivalent to the existence of a positive definite matrix Q
(written as Q � 0) and a vector z(x) of monomials of x such that

p(x) = z(x)T Q z(x). (65)

For example, if p(x) has degree 2N one can take z(x)T = (1, x, x2, ..., xN ). Note that the
matrix Q is generally not unique.

The problem of whether p(x) admits a SOS decomposition can therefore be rewritten
as the feasibility semidefinite problem

find Q

such that p(x)− z(x)T Q z(x) = 0,

Q � 0,

(66)

where the equality constraint p(x) − z(x)T Q z(x) = 0 is interpreted as a set of equality
constraints obtained by setting all coefficients of the difference p(x)− z(x)T Q z(x) to zero.
Note that these equality constraints are linear with respect to the coefficients cn of p(x), as
well as with respect to the entries of Q. Consequently, semidefinite programming can be used
to find values of any unknown coefficients cn such that p(x) admits a SOS decomposition,
or that minimise a linear function f(c0, c1, . . . , cN ) subject to p(x) being a SOS polynomial.
Again, more details can be found in [13, 11, 1].



B Asymptotic Analysis for 1D systems

Let us consider the one-dimensional dynamical system ẋ = f(x) +
√

2εξ, where f(x) is a
polynomial and ξ is a white noise process. Let ρε(x) be the stationary probability density
function of the system, satisfying

∂(fρε)

∂x
= ε

∂2ρε
∂x2

. (67)

Integrating once we obtain

f ρε = ε
∂ρε
∂x

, (68)

where the constant of integration has been set to zero since we must have ρ→ 0 as |x| → ∞.
This equation can be solved after letting

F (x) =

∫
f(x) dx (69)

to find

ρε(x) = N e
1
ε
F (x), N =

[∫ +∞

−∞
e

1
ε
F (x) dx

]−1

. (70)

Consequently, the expectation of an observable ϕ can be computed as

〈ϕ〉ε =

∫ +∞

−∞
ϕ(x) ρε(x) dx = N

∫ +∞

−∞
ϕ(x) e

1
ε
F (x) dx. (71)

However, we are interested in computing 〈ϕ〉ε within the framework of Proposition 4.1, in
the hope that we can gain some insight to tackle more complicated cases for which the
Fokker-Planck equation cannot be solved as easily.

According to Proposition 4.1, 〈ϕ〉ε can be calculated by finding a function V what
satisfies

ε V ′′ + f V ′ + ϕ− Lε = 0,

lim
|x|→∞

(
ρε V

′) = 0, (72)

where (·)′ denotes differentiation with respect to x and the boundary term has been simpli-
fied using (68). As we will see in the following, a solution to this problem can only be found
when Lε = 〈ϕ〉ε. Changing variable to W = V ′, we can write an exact general solution
to (72) for any value of ε as

W (x) = W0e
− 1

ε
F (x) +

1

ε
e−

1
ε
F (x)

∫ x

0
[Lε − ϕ(s)] e

1
ε
F (s) ds. (73)

The integration constant W0 is determined by the boundary conditions, which using the
expression for ρε in (70) reduce to

W0 +
1

ε

∫ +∞

0
[Lε − ϕ(s)] e

1
ε
F (s) ds = 0, (74a)

W0 −
1

ε

∫ 0

−∞
[Lε − ϕ(s)] e

1
ε
F (s) ds = 0. (74b)



Note that we have two boundary conditions for a first-order differential equation. In order
to satisfy both, we let

Lε = 〈ϕ〉ε (75)

such that, by definition of 〈ϕ〉ε,∫ +∞

−∞
[Lε − ϕ(x)] e

1
ε
F (x) dx = 0. (76)

Except from Section B.1 below, we will use (74a) and let

W0 =
1

ε

∫ 0

−∞
[Lε − ϕ(s)] e

1
ε
F (s) ds (77)

so that W becomes

W (x) =
1

ε
e−

1
ε
F (x)

∫ x

−∞

(
Lε − s2

)
e

1
ε
F (s) ds. (78)

Note that the second boundary condition (74b) is also satisfied by virtue of (76). Alterna-
tively, using (74b) to define W0 one obtains the equivalent expression

W (x) = −1

ε
e−

1
ε
F (x)

∫ +∞

x

(
Lε − s2

)
e

1
ε
F (s) ds. (79)

Unfortunately, neither (78) nor (79) give much information about the behaviour and
scaling of W for a general dynamical system. We will therefore proceed by discussing
some illustrative examples which allow us to draw some important conclusions about the
applicability of SOS optimisation to determine sharp bounds for 〈ϕ〉ε.

B.1 Case 1: f(x) = x− x3, ϕ(x) = x2

Let f(x) = x− x3 and ϕ(x) = x2 so that F (x) = x2

2 −
x4

4 is an even function with maxima
at x = ±1 and a local minimum at x = 0, as shown in Figure 11. In this case, equation (72)
can be solved using the method of matched asymptotic expansions (not show here) to find

W (x) ≈ 1

x︸︷︷︸
outer sol.

+
1√
ε
e−

x2

2ε

∫ x√
ε

0
e

s2

2 ds︸ ︷︷ ︸
inner sol.

− 1

x︸︷︷︸
common part

, (80)
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where the inner solution is valid when x ∼
√
εx̂. In the intermediate layer

√
ε� x� 1 the

solution reduces to the common part and one has

W (x) ∼ 1

x
⇒ V (x) =

∫
W (x)dx ∼ log |x| = 1

2
log x2. (81)

This fact was used in Section 4 to justify the use of logarithmic ansatz for V in higher-
dimensional systems.

The behaviour of W in the outer and inner regions could also be inferred from the
expression for the exact solution. Rather than using (78) or (79), we note that ϕ is even
and add the two conditions in (74) to deduce that W0 = 0 is an appropriate choice for the
integration constant in (73). Hence, we have

W (x) =
1

ε
e−

1
ε
F (x)

∫ x

0

(
Lε − s2

)
e

1
ε
F (s) ds. (82)

Moreover, subtracting (74b) with W0 = 0 from this equation we find

W (x) = −1

ε
e−

1
ε
F (x)

∫ +∞

x

(
Lε − s2

)
e

1
ε
F (s) ds, (83)

which is the same as (79).
To study the asymptotic behaviour of W as ε→ 0, we note that W is an odd function

so we restrict the attention to x > 0. First, we use Laplace’s method to estimate

Lε =

∫ +∞

−∞
x2 ρε dx ∼ 1− ε+O(ε2). (84)

When x is small, precisely x = ε1/2x̂ (where x̂ ∼ O(1) and the scaling of ε is suggested by

the term 1
εF (x) ∼ x2

2ε when x is small) the leading order behaviour of Lε can be used to
estimate

W (x) ∼ 1√
ε
e−

x2

2ε

∫ x√
ε

0
e

s2

2 ds. (85)

This is the same as the inner solution in (80).
When x ∼ O(1) but x < 1, we can use Laplace’s method to estimate the integral term in

W , where the dominant contribution is given by the end-point x of the integration domain,
since F is monotonically increasing over the interval (0, 1) (cf. Figure 11). Recalling that
F ′ = f > 0 for x < 1, we can show that

W (x) ∼ 1− x2

x− x3
=

1

x
, (86)

which corresponds to the outer solution in (80). The same behaviour is found for x > 1
using (83).

Finally, we can estimate the behaviour at x = 1 to the leading order in ε as

W (1) ∼ 1

ε
e−

1
4ε

∫ 1

−∞
[1− ε− 1− 2(s− 1)] e[

1
4ε
− 1

ε
(s−1)2+...] ds

∼ 1 +O(
√
ε),

(87)

which is consistent with (86). A comparison between a direct numerical integration of (82)
and its asymptotic expansion for ε = 0.01 is shown in Figure 12.
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Figure 12: Comparison between the numerical integration and the asymptotic approxima-
tion of W , ε = 0.01.

B.2 Case 2: f(x) = x− x3, ϕ(x) = x

A simple change from ϕ = x2 to ϕ = x implies a dramatic change in the behaviour of
W . The functions F (x) and ρε(x) are as in the previous example, and the symmetry of ρε
implies that

Lε =

∫ +∞

−∞
x ρε(x)dx = 0. (88)

Equation (72) then becomes

εW ′(x) + f(x)W (x) + x = 0. (89)

The method of matched asymptotic expansions fails in this case to produce an approxima-
tion to W if one assumes the usual outer solution

Wouter =
Lε − x
x− x3

=
1

x2 − 1
, (90)

since one cannot construct inner solutions at x = ±1 that satisfy the matching condition.
Let us show this by trying to construct an inner solution at x = 1. The appropriate scaling
for the inner variables is x = 1 + ε1/2 ŷ and W = ε−1/2Ŵ , so the leading-order equation for
Ŵ becomes

Ŵ ′ − 2ŷŴ + 1 = 0, ŷ =
x− 1√

ε
. (91)

Thus, we have

W =
1√
ε
Ŵ =

√
π

2
√
ε
eŷ

2
[A− erf(ŷ)] , ŷ =

x− 1√
ε
. (92)

where erf is the standard error function and A is a constant of integration to be determined
so as to match the assumed outer solution (90). Specifically, shifting coordinates x = 1+

√
εŷ

in (90), we require

lim
ŷ→+∞

√
π

2
√
ε
eŷ

2
[A− erf(ŷ)] ∼ 1

2
√
εŷ
, (93a)

lim
ŷ→−∞

√
π

2
√
ε
eŷ

2
[A− erf(ŷ)] ∼ 1

2
√
εŷ
. (93b)



These conditions cannot be satisfied simultaneously, since the first one requires A = 1, while
the second requires A = −1. Hence, matching is impossible.

This can be explained by considering the exact solution W , which according (78)
and (79) can be written as

W (x) =
1

ε
e−

1
ε
F (x)

∫ x

−∞
s e

1
ε
F (s) ds (94a)

= −1

ε
e−

1
ε
F (x)

∫ +∞

x
s e

1
ε
F (s) ds. (94b)

Note that this solution is even, so we only need to study its behaviour for x > 0.
When x > 1, W can be estimated from (94b) using Laplace’s method, where the domi-

nant contribution to the integral come from the end-point x of the domain of integration.
We obtain

W (x) ∼ 1

x2 − 1
, (95)

which corresponds to the usual outer solution (90). This, however, is not the appropriate
outer solution when 0 < x < 1; to show this, we again use Laplace’s method on (94b), but
this time the dominant contribution comes from x = 1. We obtain

W (x) ∼
√
π

ε
e

1
4ε
− 1

ε
F (x), (96)

and since F (x) < 1
4 when 0 < x < 1 (cf. Figure 11), this means that W behaves like a

gaussian (cf. Figure 13).
This behaviour could have been derived from an asymptotic analysis of the original

equation by applying the WKB method. If we assume that

W (x) = e
1
ε
ψ(x) [W0(x) + εW1(x) + ...] , (97)

equation (89) becomes[
ψ′W0 + εψ′W1 + εW ′0 + f W0 + εf W1 +O(ε2)

]
e

1
ε
ψ + x = 0. (98)

Assuming that ψ(x) ≥ 0, we can neglect the last term and impose

O(ε0) : ψ′W0 + f W0 = 0 (99)

O(ε1) : ψ′W1 +W ′0 + f W1 = 0 (100)

In order to have a non-zero W0, we must impose

ψ′(x) = −f(x) =⇒ ψ(x) = K − F (x). (101)

Since −F is bounded from below (cf. Figure 11), the integration constant K can indeed
be chosen to satisfy ψ ≥ 0 as originally assumed. It then follows from that (100) that
W0 =constant, and so

W (x) = W0e
K
ε e−

F (x)
e + . . . . (102)



Incorporating the constant term e
K
ε into W0, the WKB outer solution for 0 < x < 1 can be

written to leading order as

Wouter(x) = W0e
− 1

ε
F (x), (103)

where W0 has yet to be determined; note that we recover (96) if we choose

W0 =

√
π

ε
e

1
4ε . (104)

This choice can indeed be motivated by matching the outer solution

Wouter =


W0e

− 1
ε
F (x), 0 < x < 1,

1

x2 − 1
, x > 1.

(105)

with the inner solution near x = 1 given by (92). In particular, we choose A = 1 so that

Winner(x) =

√
π

2
√
ε
e

(x−1)2

ε

[
1− erf

(
x− 1√

ε

)]
. (106)

It is easy to verify that the inner and outer solution match for x > 1, while matching is
achieved for x < 1 if W0 is as in (104). A comparison between the exact solution and its
composite asymptotic expansion derived combining (105) and (106) is shown in Figure 13
for ε = 0.02 (the two curves are graphically indistinguishable).

B.3 General Third-Order Systems

From the examples above, we may conclude that an asymptotic solution of the equation

εW ′(x) + f(x)W (x) + ϕ(x)− Lε = 0 (107)

can only be achieved if one consider a more general outer solution than the“normal” outer
solution

Wouter =
Lε − ϕ(x)

f(x)
. (108)
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Figure 13: Comparison between the numerical integration and the asymptotic approxima-
tion of W , ε = 0.02 (the two curves are graphically indistinguishable).



To illustrate this concept, let us assume that f is a cubic polynomial with zeros at
xs,1 < xu < xs,2 such that xs,1 is the most stable fixed point of the deterministic system
ẋ = f(x). This means that F has a global maximum at xs,1, a local minimum at xu and
a local maximum at xs,2 (cf. Figure 14). In general, ϕ assumes different values at the
fixed points and therefore one finds Lε = ϕ(xs,1) + O(ε). For example, one may consider
f(x) = 2x− x2 − x3, xs,1 = −2 and ϕ(x) = x2, in which case Lε = 4 +O(ε).

Recall from (78) and (79) that if Lε = 〈ϕ〉ε the solution of (107) can be written as

W (x) =
1

ε
e−

1
ε
F (x)

∫ x

−∞
[Lε − ϕ(s)] e

1
ε
F (s) ds

= −1

ε
e−

1
ε
F (x)

∫ +∞

x
[Lε − ϕ(s)] e

1
ε
F (s) ds.

(109)

Let us now study the behaviour of W for a different values of x. When x � xs,2 an
asymptotic analysis using Laplace’s method shows that the “normal” outer solution (108) is
an appropriate approximation to W (this is similar to our discussion in Section B.2). This
approximation is valid as x decreases towards xs,2.

Since F has a local maximum at xs,2, when x is decreased past xs,2 the behaviour of W
changes; Laplace’s method shows that

W (x) ∼

√
2π

|F ′′(xs,2)|ε
[Lε − ϕ(xs,2)] e

1
ε

[F (xs,2)−F (x)], (110)

i.e. W has an exponential behaviour. In particular, W reaches a maximum at xu, when the
difference F (xs,2)− F (x) is at its maximum (cf. Figure 14).

As x is decreased even further, one reaches a point x0 at which F (x0) = F (xs,2). When
x < x0, the asymptotic behaviour changes again; one can show that, for x < x0, W scales
as in (108). This behaviour is maintained until x = xs,1. Finally, under our assumption
that Lε = ϕ(xs,1) +O(ε) it is can be shown that (108) holds for x < xs,1 and, in fact, for
x = xs,1 (the analysis is analogous to that of Section B.1).

This analysis allows us to conclude that an asymptotic analysis of (107) should con-
sider (108) as the outer solution for x < x0 and x > xs,2, while (110) should hold when
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Figure 14: Validity region for different types of outer solutions for W . A typical profile for
F satisfying our assumptions is shown. The location of inner layers where the behaviour
transition smoothly is also sketched.



x0 < x < xs,2. Inner layers are required when x → x0 and x → xs,2 for a smooth transi-
tion between the different behaviours. The validity regions for each type of outer solutions
are illustrated in Figure 14; the location of inner layers, where the behaviour smoothly
transitions from one outer solution type to another, is also sketched.

The analysis for the inner layer near xs,2 is identical to that carried out in Section B.2
for x = xs,2 = 1, so we will only consider the inner solution near x→ x0. Letting y = x−x0

and recalling our assumption that f is cubic, we may rewrite

f(x) = f(y + x0) = −(a0 + b0y + c0y
2 + d0y

3) (111)

where the constants a0, ..., d0 depend on the value of x0. In particular, a0 = −f(x0) =
−F ′(x0), and since we have assumed that xs,1 < x0 < xu, we conclude that a0 > 0 (this
can be seen from Figure 14). Equation (107) then becomes

εW ′(y)−
(
a0 + b0y + c0y

2 + d0y
3
)
W (y) + ϕ(y + x0)− Lε = 0, (112)

The appropriate coordinate stretching for this equation is y = εŷ , Winner = Ŵ ; then, the
inner solution satisfies the equation

εW ′inner − a0Winner + ϕ(x0)− Lε = 0 (113)

and can be written explicitly as

Winner(ŷ) = Aea0ŷ − Lε − ϕ(x0)

a0
. (114)

Recalling that a0 > 0, it can be verified that this expression matches with (108) as ŷ → −∞
and with (110) as ŷ → +∞ if

A =

√
2π

|F ′′(xs,2)|ε
[Lε − ϕ(xs,2)] e−

1
ε
F (xs,2), (115)

which is the required asymptotic behaviour (as illustrated in Figure 14).

B.4 Remarks & Implication for SOS Optimisation

In light of the examples discussed in the previous sections, we conclude that the appropriate
form for the function W is highly dependent on both the system’s dynamics f(x) and the
observable ϕ(x). In general, there exist intervals in which W has an exponential growth

of type e
1
ε

(·). This behaviour is due to the existence of a stable fixed point xs at which
Lε − ϕ(xs) 6= 0 (to leading order in ε) such that standard outer solution (108) cannot be
matched asymptotically to any appropriate inner solution. These considerations can be
generalised to system with polynomial flows f(x) of degree larger than 3.

The regions where W behaves exponentially, however, disappear when ϕ assumes the
same value at all stable points (such as the example studied in Section B.1). In this special
case, in fact, the “normal” outer solution does not become singular at any of the stable
points, and no inner layers are required. An asymptotic solution similar to that proposed
in Section B.1 can then be constructed.



For 1D system with bounded trajectories, one always has multiple stable points, hence
these regions of exponential behaviour are generally unavoidable. Thus, one cannot usually
approximate W with polynomials or rational functions that capture the correct scaling in
the inner layers for arbitrary ε, as the degree of such polynomial approximations would have
to be infinite.

The implication of these results is that, in general, one cannot hope to derive sharp
lower bounds on 〈ϕ〉ε using SOS techniques that hold analytically as ε → 0. Indeed, the
computational effort and the order of polynomial approximations to the exact W increase
so rapidly that SOS optimisation becomes impractical even when ε is fixed to a small value
and not treated analytically.



C Vanishing Noise Limit: Proof of Negligible Contributions

In Section 4.2 we have let

Vl(x) = α log[ε+ ζ(x)] + Pn(x)

and we have found a polynomial Pn such that∫
ρ [ε∇ · (D∇Vl) + f · ∇Vl + ϕ− L] dx ≥ 0

everywhere except from a ball BR of radius R ∼ ε1/2−η with 0 < η < 1/2; for definiteness,
let us write R = Cε1/2−η for some constant C. To complete the argument, we need to show
that ∫

BR

ρ [ε∇ · (D∇Vl) + f · ∇Vl + ϕ− L] dx→ 0 as ε→ 0. (116)

Upon substitution of the ansatz, the integral becomes∫
BR

ρ

[
ε
α∇ · (D∇ζ)

ε+ ζ
− ε α∇ζ · (D∇ζ)

(ε+ ζ)2
+ ε∇ · (D∇Pn) +

αf · ∇ζ
ε+ ζ

+ f · ∇Pn + ϕ− L
]
dx.

Let us proceed term by term and let us assume that ρ is bounded in BR uniformly as ε→ 0.
Since P and ϕ are continuous,∣∣∣∣ ∫

BR

ρ [ε∇ · (D∇Pn) + f · ∇Pn + ϕ− L] dx

∣∣∣∣ ≤ 4π

3
R3 max

BR

{
ρ|ε∇·(D∇Pn)+f ·∇P+ϕ−L|

}
so ∫

BR

ρ [ε∇ · (D∇Pn) + f · ∇P + ϕ− L] dx→ 0 as ε→ 0 (117)

To study the other terms, we switch to polar coordinates, (x1, ..., xn)→ (r, θ1, ..., θn−1)
where r ∈ [0, R], θ1, ..., θn−2 ∈ [0, π], θn−1 ∈ [0, 2π] and

dx = rn−1 sinn−2(θ1)... sin(θn−2) drdθ1...dθn−1.

Since ζ is a homogeneous, positive definite quadratic form of x and D is positive semi-
definite (recall that D = σTσ) we can write

ζ(x) = r2F (θ1, ..., θn−1)

∇ζ · (D∇ζ) = r2G(θ1, ..., θn−1)

for some strictly positive function F and non-negative function G, while ∇· (D∇ζ) is a real
number. Moreover, let

F ∗ = min
θ1,...,θn−1

F (θ1, ..., θn−1),

G∗ = max
θ1,...,θn−1

G(θ1, ..., θn−1)



and

I =

∫ R

r=0

∫ 2π

θn−1=0

∫ π

θn−2=0
...

∫ π

θ1=0

rn−1 sinn−2(θ1)... sin(θn−2)

ε+ r2F (θ1, ..., θn−1)
drdθ1...dθn−1.

Then, we have∣∣∣∣ ∫
BR

αε ρ∇ · (D∇ζ)

ε+ ζ
dx

∣∣∣∣ ≤ ε |α∇ · (D∇ζ)| max
BR

(ρ) I

≤ ε |α∇ · (D∇ζ)| max
BR

(ρ) 2πn−1

∫ R

r=0

rn−1

ε+ r2F ∗
dr

If n = 2, the last term can be integrated to give∣∣∣∣ ∫
BR

αε ρ∇ · (D∇ζ)

ε+ ζ
dx

∣∣∣∣ ≤ ε{|α∇ · (D∇ζ)| max
BR

(ρ)
πn−1

F ∗
log
(
1 + C2 F ∗ε−2η

)}
while when n ≥ 3 we can estimate∣∣∣∣ ∫

BR

αε ρ∇ · (D∇ζ)

ε+ ζ
dx

∣∣∣∣ ≤ ε3/2−η
{

2Cπn−1|α∇ · (D∇ζ)|max
BR

(ρ) max
r∈[0,R]

(
rn−1

ε+ r2F ∗

)}
.

It can be verified that the maximum of the last term is achieved at the endpoint r = R =
Cε1/2−η. Taking the limit shows that for all n ≥ 2∫

BR

αε ρ∇ · (D∇ζ)

ε+ ζ
dx→ 0 as ε→ 0 (119)

Similarly, we can show∣∣∣∣ ∫
BR

αερ∇ζ · (D∇ζ)

(ε+ ζ)2
dx

∣∣∣∣ ≤ ε |α|2πn−1 max
BR

(ρ)

∫ R

r=0

rn+1G∗

ε2 + r4F ∗2
dr

≤


ε

{
|α|πn−1G∗)

2F ∗2
max
BR

(ρ) log(1 + C4 F ∗2ε−4η)

}
, n = 2

ε3/2−η
{

2C|α|πn−1G∗ max
BR

(ρ) max
r∈[0,R]

(
rn+1

ε2 + r4F ∗2

)}
, n ≥ 3

where, again, the last maximum is achieved at r = R = Cε1/2−η. Hence we deduce∫
BR

αερ∇ζ · (D∇ζ)

(ε+ ζ)2
dx→ 0 as ε→ 0 (120)

Finally, since f(0) = 0 and ∇ζ is linear, the term f · ∇ζ is a polynomial of x that only
contains monomials of degree 2 and higher. Consequently, we can write

f · ∇ζ =

deg f∑
m=1

r1+mHm(θ)



for some continuous functions Hm such that their standard L∞ norm ‖Hm‖∞ is finite. Each
term in this series can be considered separately; for each m we have∣∣∣∣ ∫

BR

ρ
αr1+mHm(θ)

ε+ ζ
dx

∣∣∣∣ ≤ 2πn−1|α| ‖Hm‖∞ max
BR

(ρ)

∫ R

0

rn+m

ε+ r2F ∗
dr

≤ ε1/2−η
{

2Cπn−1|α| ‖Hm‖∞ max
BR

(ρ) max
r∈[0,R]

(
rn+m

ε+ r2F ∗

)}
,

which tends to 0 as ε → 0 (since n ≥ 2, m ≥ 1, and the last maximum is obtained at
r = R = Cε1/2−η). We therefore conclude that∫

BR

ρ
αf · ∇ζ
ε+ ζ

dx→ 0 as ε→ 0 (121)

Combining (117)-(121) proves (116). Note that the proof presented for estimates (119)
and (120) is valid for systems of dimension n ≥ 2 or higher. For one-dimensional systems,
instead, one needs to consider the behaviour of ρ explicitly (cf. Appendix B).



D Remarks on Technical Implementation of SOS Problems

Initial numerical experiments revealed that the SOS problems used to compute upper and
lower bounds are particularly ill-conditioned and cannot generally be solved by standard
double-precision SDP solvers. From experience, this seems especially true for lower bound
problems, and in general for polynomial degrees higher than approximately 4 or 6. The
results presented in this work were obtained by pre-processing the SOS problem using the
MATLAB toolbox YALMIP [10], and solving the resulting SDP with SDPA-GMP [8] with
the parameter precision set to 200. The procedure outlined below was followed for each
individual optimisation (we assume the reader is familiar with at least the basic commands
of the SOS optimisation module in YALMIP, such as sossolve):

1. Set up the SOS problem in YALMIP using sdpvar variables and YALMIP’s command
sos to create SOS constraints. For example, a polynomial storage function V and the
vector of its coefficients Vcoeffs are defined with the commands

>> [V,Vcoeffs] = polynomial(x,degreeV);

In an attempt to reduce the problem size, all SOS polynomials required by the S-
procedure were defined using the commands

>> z = monolist(x,degreeS);

>> Sm = sdpvar(size(z,1));

>> S = z’*Sm*z;

>> Constraints = [Sm>=0];

rather that by using YALMIP’s polynomial and sos commands. This was recom-
mended in [16].

2. Export the SDP to SDPA-GMP using a modified version of YALMIP’s solvesos

function combined with the export command. This was done in order to exploit
YALMIP’s pre-processing capabilities (e.g. Newton polytope and symmetry reduc-
tions, [11]).

3. Solve the SDP problem with SDPA-GMP and import the solution back into MAT-
LAB/YALMIP. This is necessary because the output from the solver cannot be easily
interpreted in terms of the polynomials and sdpvar objects defined by the user in
Step 1 above. We remark here that this is likely to introduce numerical errors, due
to the different numerical precision used by the solver and by MATLAB.

4. Re-define the problem using a reduced monomial basis, then repeat Steps 1-3. The
reduced monomial basis can be obtained after removing unused or zero coefficients
from Vcoeffs. This is a basic attempt to reproduce YALMIP’s post-processing rou-
tines [11] and should improve the numerical conditioning. Note that this should not
change the problem’s solution, simply improve the numerical conditioning and make
any computation more reliable. Any significant change in the solution should be
interpreted as a warning for numerical problems.



5. Repeat steps 1-4 until the monomial basis cannot be reduced any further.

6. Check the feasibility of the solution by fixing all variables to their optimal value and
calling solvesos again.

7. [Optional] Check if a certificate of strict positivity exists using Theorem 4 in [11].

This procedure was implemented successfully for most SDPs related to upper bound
problems. For lower bound prolems, instead, the numerical solution obtained with SDPA-
GMP could not be post-processed reliably with YALMIP, and the feasibility test in step
6 above was almost never successful. However SDPA-GMP never reported infeasibility or
numerical problems when solving the original SOS optimisation; in fact, it terminated with
the optimal flag pdOPT, indicating that an optimal solution could be found. Consequently,
the upper and lower bounds computed by SDPA-GMP were considered acceptable.

Further tests were carried out by disabling YALMIP’s pre-processing routines; the re-
sults were unchanged but the computation time increased significantly. This suggests that
the preliminary problem manipulation carried out by YALMIP is beneficial and does not
constitute a large source of error. Yet, the solution of the SDP produced by YALMIP
requires high-precision. Clearly, one would need to maintain high numerical precision to
correctly interpret the data returned by the solver and recover the coefficients of the poly-
nomials as defined originally by the user. Unfortunately, the “dictionary” used by YALMIP
to operate this “translation” is not immediately available to the user, and the solver data
must be returned to the SOS module in YALMIP if further processing/checking is needed.
This, in our opinion, is the main source of numerical errors that prevented us to successfully
carry out a feasibility test as in step 6 above.

Finally, a comment on the solver. Whilst SDPA-GMP allowed us to compute the results
presented in this report, it does not allow multi-threading and, consequently, we expect that
larger SDPs cannot be solved in a reasonable computation time. This is a fundamental issue
if higher-dimensional systems are to be studied, as the SDP associated with the SOS formu-
lation of the upper/lower bound problems become very large even for modest polynomial
degrees.

Clearly, future work should address these issues more carefully, especially if further
analysis of the optimal solution and certificates of true positivity are needed. As a first
step, a high-precision parser for SOS problems should be implemented to carry out the
necessary pre-processing and to interpret the solution from SDPA-GMP in a user-friendly
format. As a long-term suggestion, however, we recommend the development of a high-
precision SOS parser with pre- and post-processing capabilities similar to those of YALMIP
and of a multi-threaded high-precision SDP solver.



E Constructing ζ from Eigenvector Analysis

Remark: we construct suitable quadratic forms ζ in the context of the Van der Pol Oscil-
lator. However, the same ideas and derivations apply to a general system with a repelling
fixed point.

In the vicinity of the origin, the Van der Pol oscillator

ẋ = y

ẏ = µ(1− x2)y − x
(122)

can be expanded as

ẋ = J0x + h.o.t., J0 =

(
0 1
−1 µ

)
. (123)

Letting µ = 2ν, the eigenvalues of J0 can be written as

λ1,2 = ν ±
√
ν2 − 1 (124)

and the matrix of normalised (i.e. unit norm) eigenvectors is

U =

(
A B

Aν +A
√
ν2 − 1 Bν −B

√
ν2 − 1

)
(125)

with

A =
[
2ν2 + 2ν

√
ν2 − 1

]−1/2
, B =

[
2ν2 − 2ν

√
ν2 − 1

]−1/2
. (126)

When µ = 2 (i.e. ν = 1), the two eigenvalues and eigenvectors coincide and J0 cannot be
diagonalised; otherwise, we have

Λ :=

(
λ1 0
0 λ2

)
= U−1 J0 U. (127)

Note that Λ is a positive definite matrix.

E.1 Construction of ζ1

We arbitrarily fix ζ1 = x2 − xy − y2, which is clearly positive definite. Moreover,

ζ̇1 = 2xẋ− ẋy − xẏ + 2yẏ

= x2 − µxy + (2µ− 1)y2 + h.o.t.
(128)

Neglecting the higher-order terms, the right hand side is positive in the vicinity of the origin
if

∆ = µ2y2 − 4(2µ− 1)y2 < 0, (129)

which is satisfied for 4−2
√

3 < µ < 4+2
√

3. Thus, ζ1 satisfies the necessary condition (48)
for α > 0 if µ is in this range.



E.2 Construction of ζ2

Let w = U−1x and consider ζ2 as

ζ2 ∝ ‖w‖2 = xT [U−1]TU−1x. (130)

The (positive) proportionality constant can be chosen arbitrarily, since the constraint in (46)
is homogeneous in ζ. In particular, one can chose such constants to write

ζ2 =

{
x2 − µxy + y2, µ < 2

µx2 − 4xy + µy2, µ > 2
(131)

Clearly, ζ2 is positive definite. Moreover, it satisfies the necessary condition (48) near the
origin. In fact,

ζ̇2 ∝ 2xTJT0 [U−1]TU−1x + h.o.t.

= 2wTUTJT0 [U−1]Tw + h.o.t.

= 2wT [U−1J0 U]Tw + h.o.t.

= 2wTΛw + h.o.t..

(132)

Neglecting the higher order terms in a neighbourhood of the origin and recalling that the
matrix of eigenvalues is positive definite, we conclude that the last expression is positive.
However, this expression cannot be used for µ = 2, since U cannot be inverted.

E.3 Construction of ζ3

In order to take into account the dynamics near the origin, and not only the geometric
information contained in the eigenvectors, let

ζ3 ∝ wTΛwT = xT [U−1]TΛU−1x. (133)

Choosing appropriate proportionality constants to simplify the form of ζ3, we can write

ζ3 =

{
x2 − µxy + y2, µ < 2,(
µ2 − 2

)
x2 − 2xy + 2y2, µ > 2.

(134)

Clearly, ζ3 is positive definite. Moreover,

ζ̇3 ∝ 2xTJT0 [U−1]TΛU−1x + h.o.t.

= 2wTUTJT0 [U−1]TΛw + h.o.t.

= 2wT [U−1J0 U]TΛw + h.o.t.

= 2wTΛTΛw + h.o.t.

= 2wT

(
|λ1|2 0

0 |λ2|2
)

w + h.o.t.

(135)

Neglecting the higher order terms in a neighbourhood of the origin, we conclude that the
last expression is positive and therefore (48) is satisfied. However, this expression cannot
be used for µ = 2, since U cannot be inverted.
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