
Double-Diffusive effects in a Dam Break Experiment

Frédéric Laliberté

January 16, 2008

Abstract

A rotating dam break experiment was conducted with a vertical barrier
at the midpoint separating a salt solution in one half of the channel and a
sugar solution in the other half. Sugar diffuses slower than salt so that it plays
a role equivalent to oceanic salt which diffuses slower than heat. In simpler
experiments with fresh water in one half and a slightly denser saline solution
in the other, a tongue of fresh water flows along the surface on the right side
of the channel and the interface at the surface dividing the two fluids becomes
unstable and sheds fresh vortices into the salt solution. When the less dense fluid
contains salt and the heavier fluid contains sugar, with a small initial density
difference, much weaker instabilities occur and vertical diffusion of salt into the
sugar solution reduces the density of the saline solution and therefore increase
the density differences. This local increase in reduced gravity, resulting in spatial
variations of the deformation scale, widens the boundary current, suppresses the
instabilities and enhance the rightward flux of mass.

1 Introduction

Previous works on gravity currents are numerous with early results dating as far
back as Benjamin [1], who mentions even earlier work by von Kármán (1940). In
his paper, Benjamin describes non-rotating gravity currents in a two-layer system
and derives some of the first rigorous results, including an asymptotic expression for
the velocity of propagation of a gravity current over a deep layer. This result, which
assumes that away from the head of the current the depth attains a constant value
H, states that the head’s velocity should be c =

√
2g∆ρ

ρ H. This system has been
extensively studied in the laboratory with results that vary depending on the flow
regime. In most flows, viscosity as well as mixing tend to remove the factor

√
2, and

other effects, such as the interaction with a wall perpendicular to the motion, tends
to affect the velocity dramatically.
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In a rotating environment, the dynamics may be expected to be quite different
with the current being constrained to propagate along a wall due to Coriolis deflec-
tion [3]. However, apart from an initial adjustment, it has been shown by Stern,
Whitehead and Hua [5] both theoretically and experimentally that the the gravity
current nose speed should be essentially the same as for the non-rotating case, with
similar dependence on viscous, mixing and boundary interaction effects. In another
set of experiments, Stern [4] investigated the evolution of a coastal gravity current
and observed strong instabilities. These instabilities often develop filaments and
smaller eddies, impacting on the entrainment (and detrainment) capabilities of the
jet.

As described by Stern and Chassignet [2], several laboratory experiments in a
rotating basin have been carried out in which a lighter fluid (fresh water) flows as
a boundary current over a denser environment (salty water). In these experiments,
detachment of eddies is common and is thought to reduce significantly the down-
stream transport of fresh water. The impact on the jet is observed to be important
in comparison with the theoretical laminar flow with a large amount of detrainment
occurring due to small scale eddies separating from the jet. Depending on the na-
ture of these small scale turbulent features, the current can be observed to effectively
widen or actually “eject” mass to its surroundings.

In double diffusive experiments, where one of the fluids is a sugar solution and
the other is a salt solution, it has been observed [6] that these instabilities disappear,
that the gravity current propagates faster and that the boundary current is wider.
The exact mechanism on how the instabilities are damped was not clarified nor how
this influences the effectiveness of the flow to transport lighter fluid over heavier
fluid.

The goal of this report is to demonstrate, for the range of parameters investi-
gated, that the flow is primarily driven by double diffusion and that it increases the
transport of lighter fluid over heavier fluid. We also show that the rate at which the
boundary current widens is higher in the regions where a non-diffusive current would
shed eddies, leading us to propose that it is the local increase in the deformation
radius by double diffusion that suppresses the interfacial instabilities. In section 2
we describe the experimental setup and in section 3 how we processed our photo-
graphic data. In section 4 we discuss our results, always comparing double-diffusive
experiments with their non-diffusive counterparts. We finally conclude in section 5
and we propose a theoretical model in appendix A for future work.
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Figure 1: Our experimental setup, where camera 2 was not used. Taken from [6].

2 The Experiment

2.1 Experimental Setting

The experiment was conducted in a 60 cm ×10 cm tank with a removable barrier
in the middle. The tank was on a table rotating with angular velocity Ω where
f = 2Ω = 1.25 s−1. A co-rotating digital still camera was placed directly above the
tank and a mirror inclined at 45◦ to the horizontal was used in order to obtain a side
view. The lighter fluid, placed on the left, was dyed blue and we used approximately
1 liter of each fluid, leading to a depth of ≈ 3.3cm. The experiments were carried
through in two distinct sessions, one during the summer of 2007 and the other during
the month of October 2007. The setup changed slightly between these two sessions,
with the major difference being the introduction of a motor to lift the gate. The
motor has the advantage of lifting slowly enough that only limited turbulence is
produced by the removal of the gate but with the drawback that it takes several
rotations before the gate is lifted, thus impacting on the initial evolution of the flow.
The experimental schematics are depicted in figure 1.

2.2 Experimental Parameters

The environment was maintained at a constant temperature, 20◦C, and the atmo-
spheric pressure was assumed to be constant. The rotation frequency was kept
constant at a value of f = 1.25 s−1. This choice was to some extent arbitrary and
was mainly dictated by experimental manipulations. A faster rotation would have
made manipulations more intricate without having a profound impact on the physics
of the experiment. This frequency, corresponding to a rotation period of 10.25 s, was
conveniently in phase with our digital camera’s highest shooting rate, at 11 s. This
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Table 1: Experimental parameters and the number of experiments conducted

`````````````̀∆ρ (g cm−3)

ρ0 (g cm−3)
0.99823 1.0100 1.0400

2.0 ×10−4 1 1 1
3.5 ×10−4 1 1 1
5.0 ×10−4 1 1 1

(a) Summer 2007

`````````````̀∆ρ(g cm−3)

ρ0(g cm−3)
0.99823 1.0050 1.0100 1.0150

0.8 ×10−4 2 3 3 3
2.0 ×10−4 3 3 3 4
3.5 ×10−4 3 3 3 3

(b) October 2007

The experiments with ρ0 = 0.99823 g cm3 were carried with fresh water on top and
salty water on the bottom so that in these situations ∆ρ = ρT − ρf . For all other
experiments, the salty solution was on top and ∆ρ = ρS − ρT .

slight out-of-phase leads to a slow phase change, reducing possible biases due to
position.

In order to describe our experiments, we use two parameters, ∆ρ = ρS − ρT and
ρ0 = ρS , where ρS and ρT are the density of sweet water and salty water, respectively.
The first quantity indicates how fast the boundary current should propagate initially
(vi ≈

√
g(∆ρ/ρ0)H) whereas the second quantity is a measure of how strong double

diffusion is at the removal of the gate (the diffusive fluxes are proportional to ρ0−ρf ,
where ρf is the density of fresh water). Note that the sign of ∆ρ indicates which
of the two layers is salty. These parameters have been investigated for the values
shown in table 1.

Negative values of ∆ρ for ρ0 > ρf = 0.99823 g cm3 would lead to “sugar fin-
gers”, the salty-sweet system’s counterpart of salt fingers in the warm-salty system,
a situation we decided not to study because of its complicated layer structure.
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3 Data Acquisition

The fluid in each experiment was calibrated with a 10−5 g cm−3 accurate densiome-
ter. These values were assumed highly accurate with inconsequential associated
errors since we were computing density differences of the order of 10−4 g cm3. The
rest of the data was acquired by two cameras, both top mounted with a side view
provided by a 45◦ mirror. One of the cameras was a low-resolution analog cam-
era, used mainly as a quick experiment assessment tool. The second camera, a still
10 megapixels digital camera (resolution of 2448 × 3264 pixels), was our reliable
data acquisition apparatus. The camera was set to take a shot every 11 seconds (the
shortest interval allowed by the equipment) with constant lighting and fixed exposure
settings. The result is a sequence of high resolution photos. The main uncertainty
remaining is the exact moment that the gate was pulled. This exact moment is
in fact immaterial to our analysis since we will look mainly at time derivatives of
quantities and never compare two quantities at a fixed time after the removal of the
gate.

3.1 Image Processing

The image files produced by the camera, once loaded in Matlab, have three com-
ponents for each pixel: one red, one green and one blue. If blue dye was used, one
can infer the thickness of the blue layer by the intensity of blue color, after having
removed the constant signal coming from shadows and other constant variations in
spatial light intensity. In figure 2, we show a photo that includes the side view.
For y > 0, we see the fluid from directly above and for y < 0, we see the side view
through the 45◦ mirror. This means that one can recover the z-coordinates by simply
writing z = −y for y < 0. In the figure, the side view shows a linearly decreasing
depth in x from 10 cm to 20 cm to the right of the barrier (located at x = 0 in
the graph). Since during the experiment we could easily assess that the most blue
dye was located at y = 0 cm, we know that along this line the thickness decreases
linearly.

Next, we show in figure 3 the adjusted color intensity for the three color com-
ponents along the line y = 0 in the photo. The adjustment refers to the removal of
white noise from the blue color, by using the empty tank as a reference point. In
this figure, we see clearly that the intensity increases linearly (the line is a linear
fit) over the same region over which the thickness decreases linearly. From this, we
concluded that there is a linear correspondence between thickness and adjusted blue
color intensity. This linear relation is computed independently for each experiment,
in order to remove systematic errors.

One of the remaining problems is to filter out the noise when the intensity of
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blue color reaches saturation. Even though the intensity is on average constant in
the no-dye region, the fluctuations can be quite large, hence a need to filter out this
unnecessary noise. If one would simply demand that negative thicknesses be ignored,
important noise would be left. Instead, we realized that the red color intensity was
almost a step function at the nose (as can easily be seen from figures 2 and 3 ), and
so we used the red component as a simple cutoff criterion (we cut off at > 70 of
intensity) to decide when the thickness was zero, regardless of the noise.

One could inquire why the green component of the image was not used instead
of the blue. After all, in figure 3 the green intensity and the blue intensity seem to
behave similarly. However, there is one major difference: the green color is every-
where less intense, making our thickness inference more susceptible to noise for thick
regions, leading to a less accurate layer thickness analysis.

In the remaining part of this report, when we refer to the thickness we refer to
the linearly inferred thickness plus the red-color filtering that we just discussed.
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Figure 2: Picture taken during an experiment. In the upper part of the picture, the
line shows the section along which figure 3 is plotting the color intensities. In the
lower part, the line is there to show how linear the depth is in this region.

4 Results

4.1 Evolution of the jet

Non-Diffusive case, fresh water over salty water In the non-diffusive case,
the jet starts off as a laminar boundary current of width determined by the radius
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Figure 3: The color intensity along the line in figure 2. The line is a linear fit on
the blue color. Note the sudden increase in red color at x ≈ 22 cm in the transition
zone between blue dye and no dye.

of deformation [4] and is usually accompanied by an unstable interface that fluxes
mass toward the center of the tank. Sometimes eddies are formed (for small density
differences) and detach themselves from the right-flowing current.

In figure 4, we show the time-evolution of a non-diffusive dam break experiment.
What is observed is typical of small reduced gravity experiments, with strong insta-
bilities and numerous eddies. Note how most of the dye is restricted to a region close
to the boundary, with the transition zone between this current and the interior flow
being almost entirely populated with instabilities and their generated eddies. The
evolution is constant with the first onset of instabilities appearing very shortly after
the removal of the gate. Otherwise, most of the dye seems to be transported first
by the boundary jet with a secondary transport towards the interior, by the defor-
mation of the interface. Notice in figure 4 the big lump of blue dye that seems to be
trapped left of x = 5 cm; this feature was observed systematically in all non-diffusive
experiments.

Double Diffusive case, salty water over sweet water The double diffusive
case has been extensively studied in non-rotating environments. The typical double
diffusive jet evolution with rotation has not often been described and it still remains
unclear how the instabilities observed in the non-diffusive case are suppressed.

In figure 5, we show the evolution of the jet for one of the double diffusive
experiments with ∆ρ about the same as that in figure 4. One quickly notices that
the boundary current is wider and has progressed farther than the one in figure 4.
It is also relatively shallow away from the boundary. What is striking about these

7



x (cm)

y 
(c

m
)

Flow at t=55 s, for ρ
0
 = 0.99823 g cm−3, ∆ρ = 2.1× 10−4 g cm−3

0 5 10 15 20 25
0

2

4

6

8

(a) t=55 s

x (cm)

y 
(c

m
)

Flow at t=110 s, for ρ
0
 = 0.99823 g cm−3, ∆ρ = 2.1× 10−4 g cm−3

0 5 10 15 20 25
0

2

4

6

8

(b) t=110 s

x (cm)

y 
(c

m
)

Flow at t=165 s, for ρ
0
 = 0.99823 g cm−3, ∆ρ = 2.1× 10−4 g cm−3

0 5 10 15 20 25
0

2

4

6

8

(c) t=165 s

x (cm)

y 
(c

m
)

Flow at t=220 s, for ρ
0
 = 0.99823 g cm−3, ∆ρ = 2.1× 10−4 g cm−3

0 5 10 15 20 25
0

2

4

6

8

(d) t=220 s

x (cm)

y 
(c

m
)

Flow at t=275 s, for ρ
0
 = 0.99823 g cm−3, ∆ρ = 2.1× 10−4 g cm−3

0 5 10 15 20 25
0

2

4

6

8

(e) t=275 s
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(f) t=330 s

Figure 4: Time evolution of a non-diffusive front for ρ0 = 0.99823 g cm−3 and
∆ρ = 2.1× 10−4 g cm−3.
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experiments is how they inhibit the development of the instabilities. One can see in
figure 5(d), the interface growing filaments, in precisely the same manner as for the
non-diffusive jet. However, for some reason, these are not sustainable in a double-
diffusive environment and collapse soon after their first appearance. They usually
simply evolve as to reform another interface, a bit further from the boundary.

Referring again to figure 5, one sees how a large part of the blue dye actually
does not have to propagate first through the boundary current but instead is able to
penetrate much further. This is in stark contrast with the non-diffusive experiment
where most of the dye was confined to x < 5 cm or to the boundary current. In the
double diffusive case, the bulk of the blue dye does not even seem to be confined,
except that the interior circulation appears to be slower than the propagation speed
of the jet. This gives a second way for double-diffusive experiments to flux mass
rightward, a statement that will be clarified later.

4.2 Nose Displacement

The speed at which the tip of the gravity current propagates is directly affected
by the gravitational forcing associated to ∆ρ. This means that any change in ∆ρ,
through diffusion for example, will influence the speed at which the nose moves. In
order to quantify how much, we computed the nose position as a function of time
for each experiment. Then, we found the linear fit of the nose position over the time
interval [t15, t25], where the time tx0 is the first time when the nose reaches x0. The
slope of the linear fit gives the nose speed over that interval. We have plotted these
speeds as a function of ρ0 in figure 6.

For the two smaller ∆ρ, we observe a clear tendency of the flow to be accelerated
with increasing ρ0 but for the largest ∆ρ, this tendency seems absent. One expla-
nation is that as ∆ρ increases the initial velocity increases, which reduces the time
scale, but for fixed ρ0, the diffusive fluxes are kept constant. The compounded effect
of diffusion over the course of an experiment will then be of the order of the time
scale multiplied by the diffusive fluxes. Therefore, a smaller time-scale should lead
to weaker total diffusive effects. One could imagine in the limit of very large ∆ρ, for
a fixed ρ0, to observe no clear effects of double diffusion before the nose reaches the
end of the tank. In figure 7, we plotted the relative gain of speed by double diffusion
for each ∆ρ. The bigger the ∆ρ, the smaller the relative gain is, which justifies our
explanation.

Alternatively, one could argue that the error bars being as large as they are, these
results should be taken with some reserve. This is clearly true for the largest ∆ρ
but not for the smallest. More experiments would be needed to solve this problem,
ideally with a longer tank for higher ∆ρ.
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(d) t=132 s
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(e) t=165 s
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Figure 5: Time evolution of a double diffusive front for ρ0 = 1.01 g cm−3 and
∆ρ = 2.0× 10−4 g cm−3. Note that panel 5(f) occurs at a time between panels 4(c)
and 4(d)
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Figure 7: The ratio of the nose speed for ρ0 = 1.015 g cm−3 to the velocity for
ρ0 = 1.005 g cm−3. Observe the decrease in ratio with increasing ∆ρ.
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4.3 Mass transport

The nose speed is an important quantity because it gives us an idea of how fast the
system is able to transport lighter fluid to the right. It is however limited in scope
because it only tells us how fast the current close to the wall at y = 0 cm is going. In
the situation where the bulk of the mass is transported close to the wall, this velocity
multiplied by the cross-section of the boundary current would be equivalent to the
mass transport. But if that is not the case and an important part of the transport
is located far from the wall, this velocity does not give the whole picture. One could
imagine a fast boundary current that releases an important quantity of slow moving
fluid towards the interior. The effect would be a fast nose and a wide current that
would not flux much more mass than a slower current that does not eject any mass
towards increasing y. The mass transport thus appears to be an important feature
of the flow worth investigating.

In order to compute the mass transport, we assume that the blue dye is a tracer
and that each layer is shallow enough that it has a velocity uniform in z:

∂th+∇ · (hu) = 0 (1)

where h is the thickness of the blue layer.
Since there is no flow normal to the side walls, if we integrate over the region to

the right of a vertical line x, we get

∂t

[ ∫ 30

x

∫ 10

0
h dx dy

]
=
∫ 10

0
h(x, y)u(x, y)dy (2)

where the term in the time derivative corresponds to the total amount of dye at the
right of x, that will be denoted H(x, t), and where the right hand side corresponds
to the total horizontal dye flux across the vertical line at x, that will be denoted
Fh(x, t).

This means that from our data we can recover the horizontal flux through any
vertical line. This can be done by fixing an x, x = 15 cm for example, computing
H(15, t) for all time and then taking the time derivative. This way, we can observe
how efficient our currents are at transporting mass rightward. Using the same ap-
proach as with the nose speed, we compute the derivative of H(15, t) by using a
linear fit on the time interval when the nose is between x = 25 cm and x = 30 cm.
We are using a different interval because as the nose crosses the line x = 15 cm,
H(15, t) increases non-linearly until the nose is sufficiently far.

In figure 8, we plotted the fluxes at 15 cm as a function of ρ0. The flux is seen
to increase with ρ0 but it is unclear why there so much variability. Clearly, higher
density differences are leading to apparently smaller gains, which is coherent with
our discussion about velocities.
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Figure 8: Flux at x = 15 cm. Generally the flux increases with ρ0 except for
ρ0 = 0.99823 g cm−3 and ∆ρ = 2.0 × 10−4 g cm−3. Considering the high level of
uncertainty associated with this point, we attribute this to statistical errors. The
absence of data for the non-diffusive experiment with the lowest ∆ρ is due to the
fact that the current did not propagate far enough in the tank.
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Figure 9: An example of the curve y.75(x) for a double diffusive experiment. For
each x, y = y.75(x) corresponds to the point below which lies 75% of the mass on
the vertical passing by x.

4.4 Area Increase

Another striking feature of double diffusive gravity currents is how their width exceed
that of non-diffusive currents. In order to get a measure of the width, we first tracked
the evolution of the interface by using an uncommon technique. The technique uses
the h(x, y, t), the depth in space and time, and the function

yp(x, t), such that
∫ yp(x,t)

0
h(x, y′, t) dy′ = p

∫ 10

0
h(x, y′, t) dy′, (3)

where we must have p ≤ 1.
If one sets p = 1, y1(x, t) is simply the interface between the blue and the trans-

parent fluid. By using p < 1, yp(x, t) is the curve below which lies a fraction p of
the mass on the vertical line passing through x. It enables us to track the interface
without really tracking it, thus reducing the noise, especially in non-diffusive exper-
iments. Also, it emphasizes the fact that even though the interface has important
physical properties, it is what happens to the bulk of the flow that interests us. We
show an example of such a curve with p = 0.75 in figure 9.

Now, one can compute the area Ap(t) =
∫ 30
0 yp(x, t)dx, thus finding the area

occupied by the fraction p of the mass closest to the boundary at y = 0 cm. Using
this technique on our data, we realized that on the time interval where the nose
lies between x = 15 cm and x = 25 cm, Ap(t) is almost a linear function of time.
Computing a linear fit on this function over that time interval is thus justified and
the slope of the fit is then a good approximation of the time derivative dAp(t)

dt . This
quantity is then giving us an idea how fast the bulk of the fluid is spreading.
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Figure 10: The linear fit rate of change of dA.95
dt − dA.5

dt during the residence time of
the nose between x = 15 cm and x = 25 cm. Observe a clear increase in the rate
of change of the area for increasing ρ0. Only the experiments with ρ0 = 1.015 g
cm−3 have higher uncertainties but not enough to make the previously mentioned
tendency be questionable. The error bars are sampling standard deviations.

Dilatation of the interior flow. The flow can be qualitatively split into two
regions: the boundary current and the interior flow. The boundary current contains
most of the mass, is concentrated close to the wall at y = 0 cm and its dynamic is to
first order characterized by the nose velocity. The interior flows is defined as the slow
moving, shallow and instabilities prone region that remains. When one is evaluating
how the bulk of the flow is spreading using the previously described technique, both
the evolution of the boundary current and of the interior flow contribute to the
analysis. Since the two regions have qualitatively different dynamics, we should not
expect to capture any feature particular to any one of these regions. We will therefore
have to devise an analysis that enables us to observe each region separately.

In order to do so, we need to have a quantitative definition of each region. Any
such definition will be to some extent arbitrary so here we decide to define the interior
flow as the region that has 50% of the mass furthest from the boundary. Basically, it
is the region contained between the curve y.5(x, t) and y.95(x, t). The rate of change
of its area, dA.95

dt − dA.5
dt , indicates how the bulk of the interior spreads. The results

are shown in figure 10.
It shows a clear increase in area with ρ0, implying a general increase in defor-
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mation radius. One could compute the average widening, or the average increase in
deformation radius, by dividing the rate of change by 20 cm, the average length of
the boundary current when the derivative was taken. This would be a way to quan-
tify the bulk diffusion but what interests us is where most of this diffusion occurs,
not how much it occurs on average. To accomplish this, we have to develop another
special technique.

Spatial distribution of area increase. We start by subdividing the interval
[0, xN (t)], where xN (t) is the nose position, in n subintervals [xi, xi+1]. Then we
define the area under the curve yp(x, t) in the ith subinterval by

a(i)
p (t) =

∫ xi+1

xi

yp(x, t) dx. (4)

Summing up and taking the time derivative,

dAp

dt
=

N∑
i=1

da
(i)
p

dt
(5)

where Ap is as defined in section 4.4.

The functions da
(i)
p

dt , the rates of change of the area in the ith subinterval, are the
quantities we would like to recover because they locally quantify how fast the flow
spreads towards the interior. But what we have now is one equation for n unknowns,
which is highly underdetermined. Thus, in order to make any progress, we have to
make some assumptions. We assume that for any p1, p2 such that .95 ≥ p2 > p1 ≥ .5
we can write

da
(i)
p2

dt
− da

(i)
p1

dt
= ā′i

(
a

(i)
p2 (t)− a

(i)
p1 (t)

a
(i)
.95(t)− a

(i)
.5 (t)

)
, (6)

which means that every subinterval has an uniform rate of area increase ā′i. The
factor is the fraction of the area between yp2 and yp1 with the total area of the
interior flow in the ith subinterval.

We then divide the interval [.5, .95] in m subintervals [pj , pj+1], yielding a system
of m equations for ā′i,

dApj+1

dt
−
dApj

dt
=

n∑
i=1

ā′i(t)

(
a

(i)
pj+1(t)− a

(i)
pj (t)

a
(i)
.95(t)− a

(i)
.5 (t)

)
, (7)

which is of the form Mξ = b with the columns of M summing to 1.
If m = n, this system has a unique solution. However, this solution will most

likely result in negatives ā′i, which would indicate a reduction of area in some interval
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[xi, xi+1]. Even if such a situation could be physically justified, we would like to avoid
it for numerical stability purposes. So, instead, we solve the system in a least-squares
sense demanding that the solution be everywhere positive and that the total change
in area be conserved,

dA.95

dt
− dA.5

dt
=

n∑
i=1

ā′i(t). (8)

This is an optimization problem that depends on the initial guess, here chosen
as a random vector, to reduce bias.

We can then convert the ā′i to local width increase by

l̄′(x, t) = ā′i

(
y.95(x, t)− y.5(x, t)

a
(i)
.95(t)− a

(i)
.5 (t)

)

)
, for x ∈ [xi, xi+1]. (9)

Since by construction l̄′(x, t) ≥ 0, it can be transformed into a distribution and
one can compute its moments. For example, one can compute x̄ = 〈xN − x〉l̄′ , its
first moment with respect to the nose position. This value tells us where the average
widening takes place. If it is close to 0, it means most of the widening happens
at the nose whereas, if it is non-zero, the widening occurs on average at x̄ cm at
the left of the nose. In figure 11, we show the results for our experiments. We
observe that for non-diffusive experiments, the increase is close to the nose, which
is not surprising considering that our technique does not correct for the increase
in area due to the gravitational propagation of the boundary current. For diffusive
experiments, however, most of the widening occurs away from the nose, at about 5
cm to the left, precisely where the unstable eddies would form in the non-diffusive
case.

5 Conclusion

The double diffusive rotating dam break experiment shows significant qualitative
differences from the non-diffusive one, with most instabilities suppressed. The re-
sulting boundary currents are wider and transport mass more effectively. From our
data, we are able to extract a clear trend that shows an increase in nose velocity with
increasing ρ0, mainly for smaller ∆ρ. Moreover, our data suggest that the rightward
flux of mass is enhanced with increasing values of ρ0. This indicates that double
diffusive systems should be more efficient at transporting mass than non-diffusive
ones, with the effect of ρ0 dominating that due to ∆ρ in diffusive experiments.

This means that over the course of the experiment, ∆ρ must acquire a signifi-
cant spatial variation, in order to drive the system. Such a spatial variation, one
can hypothesize, must increase the local radius of deformation, thereby widening
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Figure 11: The average distance from the nose where the widening of the jet occurs.
Note how much closer to the nose the non-diffusive experiments widen.The error
bars are sampling standard deviations.
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the boundary current. Variations of radii of deformation should also influence the
turbulent cascade and, hence, the energy spectrum distribution of the system since
it is the scale at which eddies evolve. This means that major spatial variations in
deformation scale would most likely distort and make unsustainable two-dimensional
type turbulent eddies.

We have demonstrated that the width of the boundary current in diffusive ex-
periments exceeds that in non-diffusive ones, and that the width increases with in-
creasing values of ρ0. In diffusive experiments, the first moment of this widening was
shown to occur in the region where the turbulent eddies form in non-diffusive exper-
iments. In contrast, in non-diffusive experiments it occurred close to the nose, which
is consistent with the biases of our measurement method. This strongly suggests
that the deformation radius in regions where instabilities would normally develop in
non-diffusive experiments increases in double diffusive experiments. This leads us to
conclude that this local inflation of the deformation radius destroys the instabilities.

This conclusion remains to be investigated using more theoretical models. In
appendix A, we propose a simple toy model that could verify this explanation. It
is based on a two-layer QG model with spatially varying radius of deformation. We
expect that in such a model growth of instabilities will be slowed, if not removed,
and that the width of the boundary current will be wider than in situations with a
constant radius of deformation.
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A Two-layer QG with non-uniform densities

To derive the shallow water equations for non-uniform densities, one makes the
momentum budget in a test volume containing a whole layer:

∂tρ1h1 +∇ · (ρ1h1u1) = 0,

∂t(ρ1h1u1) +∇ · (ρ1h1u1 ⊗ u1) + f × ρ1h1u1 = −g∇(ρ1
h2

1

2
)− gρ1h1∇h2, (10)

∂tρ2h2 +∇ · (ρ2h2u2) = 0,

∂t(ρ2h2u2) +∇ · (ρ2h2u2 ⊗ u2) + f × ρ2h2u2 = −g∇(ρ1h1h2 + ρ2
h2

2

2
) + gρ1h1∇h2,

These equations characterize the system if ρi are constants. However, here we
want to allow them to vary in both space and time. We assume that ρi = ρ0+ρTi+ρSi
where ρ0 is the density of pure water at some fixed temperature. ρT and ρS are the
densities of salt and sugar respectively.

We assume that the two layers don’t mix but that they can exchange chemicals.
This leads to

∂t(ραihi) +∇ · (ραihiui) = (−1)iSα +Dαi,

∂tρ0hi +∇ · (ρ0hiui) = 0. (11)

where the last expression implies conservation of volume since ρ0 is constant.
Sα is the exchange of mass between the two layers. A heuristic candidate would

be:
Sα = καρi(mα1 −mα2)

√
|∇h2|2 + 1|ρα1 − ρα2| (12)

where mαi = ραi

ρi
is the mass fraction and κα is a diffusivity constant.

From these equations, one can find advection equations:

Dmαi

Dt
= (−1)i Sα

ρihi
+
Dαi

ρihi
(13)

Where the diffusion can be written as

Dαi

ρihi
= κ̄α∇2mαi

or as any other mass-ratio diffusion.
From now on, we will drop the diffusion as it only add uninteresting complexity.
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Equations After some manipulations, one gets the following equations:

∂thi +∇ · (hiui) = 0,
Dmαi

Dt
= (−1)i Sα

ρihi
,

γi =
1
ρihi

=
1−mTi −mSi

ρ0hi
, (14)

Du1

Dt
+ f × u1 = u1γ1(ST + SS)− gγ1∇(ρ1

h2
1

2
)− g∇h2,

Du2

Dt
+ f × u2 = −u2γ2(ST + SS)− gγ2∇(ρ1h1h2 + ρ2

h2
2

2
) + g

γ2

γ1
∇h2.

March towards a QG formulation In order to find a QG formulation of the
problem, one must first find the geostrophic winds. First, we assume a small Rossby
number, leading to:

f × u1 = u1γ1(ST + SS)− g∇(h1 + h2)− g
h1

2
∇ρ1

ρ1
,

f × u2 = −u2γ2(ST + SS) + g
ρ2 − ρ1

ρ2
∇h1 − g∇(h1 + h2) (15)

− g(h1
∇ρ1

ρ2
+
h2

2
∇ρ2

ρ2
).

We now assume the density variations in horizontal to be small and that the
mass exchange between the layers is relatively weak. This leads to the following
streamfunctions:

ψ1 =
g

f
(h1 + h2),

∇2(ψ2 − ψ1) = −∇ · (g
′

f
∇h1). (16)

Advection of reduced gravity We now assume that the density difference is
small between the two layers, so that ρ1 ≈ ρ2 = ρ̄. Subtracting the two advection
equations, yields

D(∆mα)
Dt

=
Sα

ρ̄
(

1
h1

+
1
h2

)

and adding the two diffusers,

D∆m
Dt

=
ST + SS

ρ̄
(

1
h1

+
1
h2

)
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where ∆m = (mT2 +mS2)− (mT1 +mS1).
Now, one can write

1
ρ̄
(ST + SS) =

√
|∇h2|2 + 1(κT ∆mT |∆mT |+ κS∆mS |∆mS |))

where we wrote mαi ≈ ραi

ρ̄ .
Now, assuming κS

κT
� 1, we obtain

D∆m
Dt

≈ κT ∆mT |∆mT |(
1
h1

+
1
h2

)
√
|∇h2|2 + 1 (17)

which can be seen as a equation of reduced gravity since g′ ≈ g∆m.

PV advections By defining the PVs:

qi =
ωi + f

ρihi

One get the following advection equations:

Dq1
Dt

= −γ2
1f(ST + SS) + γ1J(ψ1, γ1(ST + SS))− g

2
J(γ1, h1),

Dq2
Dt

= γ2
2f(ST + SS) + γ2J(ψ2, γ2(ST + SS)) + γ2J(g′, h1)−

gγ2

(
J(
h1

ρ2
, ρ1) +

1
2
J(
h2

ρ2
, ρ2)

)
.

Assuming a small Rossby number and high correlation between densities and
constant heights, we can neglect most terms:

Dq1
Dt

= −γ2
1f(ST + SS),

Dq2
Dt

= γ2
2f(ST + SS).

The last terms remaining are the ones relating the exchange of vorticity due to the
exchange of mass, in order to conserve the total vorticity. One could not bother
and assume that the mass exchange is not done in a PV preserving kind of way and
neglect them, which is the approach we will take here.
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PV inversion The PV perturbations can be written as:

qi ≈
1

ρ̄iHi

(
f + ωi −

f

Hi
h′i −

f

ρ̄i
ρ′i

)
The resulting set of simplified equations is:

ψ1 =
g

f
(h′1 + h′2),

∇2(ψ2 − ψ1) = −∇ · (g
′

f
∇h′1), (18)

qi = ∇2ψi −
f

Hi
h′i −

f

ρ̄i
ρ′i,

∂tqi + J(ψi, qi) = 0.

Looking more closely at the inversion equations:

ξ1 = q1 −
f

ρ̄1
ρ1 = ∇2ψ2 −∇ · (g

′

f
∇h′1)−

f

H1
h′1,

ξ2 = q2 −
f

ρ̄2
ρ2 = ∇2ψ2 +

f

H2
h′1 −

f2

gH2
ψ1.

We use the rigid lid approximation to neglect the last term in ξ2, leading to:

ξ1 = ∇2ψ2 +∇ · (g
′

f
∇h1)−

f

H1
h′1, (19)

ξ2 = ∇2ψ2 +
f

H2
h′1.

One can solve the baroclinic equations for h1:

ξ2 − ξ1 = −∇ · (g
′

f
∇h′1) + (

1
H1

+
1
H2

)fh′1. (20)

with homogeneous dirichlet BCs.
Which enables to solve for ψi:

ξ1 +
f

H1
h′1 = ∇2ψ1, (21)

ξ2 −
f

H2
h′1 = ∇2ψ2.

This then gives us h2:

h′2 =
f

g
ψ1 − h′1.

So this means that the system we are looking at consists of 6 advection equations,
one helmhotz equation and 2 poisson’s equation.
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